	Teste de Matemá	Teste de Matemática A				
	2021 / 2022					
Teste N.º 3						
Matemática A						
12.º Ano de Escolaridade						
Nome do aluno:	N.º:	Turma:				
Utilize apenas caneta ou esferográfica de tinta az	rul ou preta					
Não é permitido o uso de corretor. Risque aquilo		sificado.				
É permitido o uso de calculadora.						
Apresente apenas uma resposta para cada item.						
As cotações dos itens encontram-se no final do e	nunciado.					

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g$$
 – geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a + b) = sen a cos b + sen b cos a

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^{u})' = u' \cdot a^{u} \cdot \ln a \ (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x\to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

1. Num clube desportivo praticam-se as modalidades de futebol e voleibol, entre outras.

Sabe-se que, escolhido ao acaso um atleta deste clube, a probabilidade de ele não praticar voleibol é o dobro da probabilidade de ele praticar futebol.

Sabe-se, ainda, que:

- dos atletas que praticam futebol, 1 em cada 3 pratica voleibol;
- o número de atletas que praticam, pelo menos, uma das duas modalidades é o sêxtuplo do número de atletas que praticam as duas modalidades.
- **1.1.** Escolhe-se, ao acaso, um atleta deste clube.

Mostre que a probabilidade de o atleta escolhido praticar futebol é igual a 0,3.

1.2. O Sérgio, que é atleta desse clube, pratica futebol.

Escolhe-se, ao acaso, uma comissão constituída por dois atletas desse clube.

Sabe-se que a probabilidade de a comissão ser constituída por dois atletas praticantes de futebol e não incluir o Sérgio é $\frac{11}{156}$.

Seja n o número total de atletas desse clube.

Determine o valor de n.

Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- resolva a equação, sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos.
- **1.3.** Admita que a equipa de voleibol deste clube vai participar na final nacional.

A comitiva vai deslocar-se num automóvel de cinco lugares e numa carrinha de dez lugares.

A comitiva é constituída por um dirigente, dois treinadores e doze jogadores.

A expressão que dá o número de maneiras distintas de distribuir os quinze elementos da comitiva pelos quinze lugares disponíveis, de modo que os condutores sejam os dois treinadores e que o dirigente vá no automóvel, é:

(A)
$$2 \times {}^{12}C_3 \times 4! \times {}^9A_9$$

(B)
$$2 \times {}^{12}A_3 \times {}^{9}A_9$$

(C)
$$^{12}C_3 \times 4! \times {}^9A_9$$

(D)
$$^{12}A_3 \times {}^9A_9$$

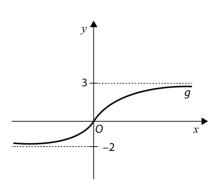
2. Na figura encontra-se representada graficamente a função g, de domínio R.

Seja (u_n) a sucessão de termo geral $u_n = \frac{-n+3}{\sqrt{n}}$.

A que é igual $\lim g(u_n)$?



(D)
$$+\infty$$



3. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{x-1}{\sqrt{x^2 + x + 2} - 2x} & \text{se } x < 1 \\ -\frac{4}{5} & \text{se } x = 1 \\ \frac{3x^3 - x^2 - 3x + 1}{-2x^2 - x + 3} & \text{se } x > 1 \end{cases}$$

Resolva os itens seguintes, sem recorrer à calculadora.

- **3.1.** Averigue se a função f é contínua em x = 1.
- 3.2. Estude a função f quanto à existência de assíntotas horizontais ao seu gráfico e, caso exista(m), escreva a(s) sua(s) equação(ões).
- **4.** Seja g uma função, de domínio \mathbb{R} , diferenciável em todos os pontos do seu domínio.

Sabe-se que:

•
$$\lim_{x \to 2} \frac{g(x) - g(2)}{x^2 - 2x} = 5$$

•
$$\lim_{x \to 2} g(x) = 3$$

Sejam A o ponto do gráfico de g de abcissa 2 e t a reta tangente ao gráfico de g no ponto A.

Qual é a equação reduzida da reta que passa em A e é perpendicular à reta t?

(A)
$$y = -\frac{1}{10}x + \frac{23}{10}$$

(B)
$$y = -\frac{1}{10}x + \frac{16}{5}$$

(C)
$$y = -\frac{1}{5}x + \frac{13}{5}$$

(D)
$$y = -\frac{1}{5}x + \frac{17}{5}$$

- **5.** Numa certa linha n do triângulo de Pascal tem-se que ${}^n\mathcal{C}_1 {}^n\mathcal{C}_{n-1} + {}^n\mathcal{C}_{34} {}^n\mathcal{C}_{56} = 0$. Qual é o produto do segundo elemento pelo antepenúltimo elemento dessa linha?
 - (A) 1904
- **(B)** 8 100

- **(C)** 117 480
- **(D)** 360 450

6. Seja f a função, de domínio $\left]-\frac{\pi}{2}, +\infty\right[$, definida por:

$$f(x) = \begin{cases} \operatorname{tg} x \operatorname{sen} x & \operatorname{se} -\frac{\pi}{2} < x \le 0 \\ 2\operatorname{sen}^{2} x + 1 & \operatorname{se} x > 0 \end{cases}$$

O argumento da função está expresso em radianos.

- **6.1.** Em relação às assíntotas verticais do gráfico da função f, qual das afirmações é verdadeira?
 - (A) O gráfico de f não tem assíntotas verticais.
 - **(B)** A reta de equação x = 0 é a única assíntota vertical.
 - (C) A reta de equação $x = -\frac{\pi}{2}$ é a única assíntota vertical.
 - (D) As retas de equação x=0 e $x=-\frac{\pi}{2}$ são as únicas assíntotas verticais.
- **6.2.** Sem recorrer à calculadora, estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão no intervalo $]0,\pi[$.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para cima;
- as coordenadas do(s) ponto(s) de inflexão do gráfico de f, caso exista(m).
- 7. Considere um determinado número real a e a função f, de domínio \mathbb{R} , da qual se sabe que:
 - *f* é contínua;
 - f(a) = f(a+6) = 0;
 - f(a+3) < 0.

Mostre que a equação f(x) = f(x + 3) tem, pelo menos, uma solução no intervalo a, a + 3.

8. Em relação a uma certa função g, de domínio \mathbb{R}^+ , sabe-se que $\lim_{x \to +\infty} \frac{xg(x) + x^2 - 3x}{x} = 0$.

Seja a reta r a assíntota oblíqua ao gráfico de g.

Considere, num referencial o.n. Oxy, a representação gráfica da função f, de domínio \mathbb{R} , definida por f(x) = 2sen(x) + cos(x), a reta r e o triângulo [OAB] tal que:

- o ponto A é o ponto de interseção do gráfico da função f com a reta r, de menor abcissa;
- o ponto B é o ponto de interseção do gráfico da função f com a reta r, de maior abcissa.

O argumento da função *f* está expresso em radianos.

Determine, recorrendo às capacidades gráficas da sua calculadora, a área do triângulo [OAB], com aproximação às centésimas.

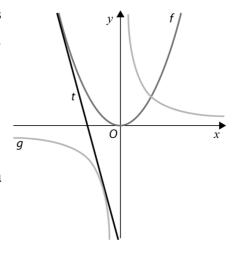
Pode realizar algum trabalho analítico antes de recorrer à calculadora.

Na sua resposta, deve:

- reproduzir o gráfico ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial;
- assinalar os pontos A e B;
- desenhar o triângulo [OAB];
- indicar as coordenadas dos pontos A e B, com arredondamento às centésimas.
- 9. Na figura estão representadas, em referencial o.n. 0xy, partes dos gráficos das funções f e g e a reta t, tangente, simultaneamente, ao gráfico de f e ao gráfico de g. Sabe-se que:

- a função f, de domínio \mathbb{R} , é definida por $f(x) = x^2$;
- a função g, de domínio $\mathbb{R}\setminus\{0\}$, é definida por $g(x)=\frac{1}{x}$.

Determine, sem recorrer à calculadora, a equação reduzida da reta t.



FIM

COTAÇÕES

	Item												
	Cotação (em pontos)												
1.1.	1.2.	1.3.	2.	3.1.	3.2.	4.	5.	6.1.	6.2.	7.	8.	9.	Total
18	18	10	10	20	20	10	10	10	18	18	20	18	200