Teste de Avaliação

Nome	N.	0	_Turma _	Data	/out./2020
Avaliação	E. Educação		Professor		

MATEMÁTICA - 9.º ANO

Duração (Caderno 1 + Caderno 2): 90 minutos

O teste é constituído por dois cadernos (Caderno 1 e Caderno 2).

Só é permitido o uso de calculadora no Caderno 1.

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias.

FORMULÁRIO

Números e Operações

Valor aproximado de $\pi: 3.14159$

Geometria e Medida

Áreas

Polígono regular:
$$\frac{\text{Perímetro}}{2} \times \text{Apótema}$$

Trapézio:
$$\frac{\text{Base maior} + \text{Base menor}}{2} \times \text{Altura}$$

Superfície esférica: $4\pi r^2$, sendo r o raio da esfera

Superfície lateral do cone: $\pi r g$, sendo r o raio da base do cone e g a geratriz do cone

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone: $\frac{\text{Área da base} \times \text{Altura}}{3}$

Esfera: $\frac{4}{3}\pi r^3$, sendo r o raio da esfera

Trigonometria

Fórmula fundamental: $sen^2 x + cos^2 x = 1$

Relação da tangente com o seno e o cosseno: $tg x = \frac{sen x}{cos x}$

CADERNO 1: 20 minutos

(É permitido o uso de calculadora.)

1. Sejam $a \in b$ dois números reais positivos tais que a < b.

Qual das opções seguintes é falsa?

(A)
$$a + 1 < b + 1$$

(B)
$$2a < 2b$$

(c)
$$-a < -b$$

(C)
$$-a < -b$$
 (D) $\frac{a}{3} < \frac{b}{3}$

2. Na figura 1 está representada parte da reta real e um pentágono regular com um lado contido nessa reta.

Atendendo aos dados da figura e sendo P o perímetro do pentágono, qual das seguintes opções é verdadeira?

(B)
$$6,071 < P < 7,660$$

(C)
$$2,071 < P < 3,660$$

(D)
$$1,071 < P < 2,660$$

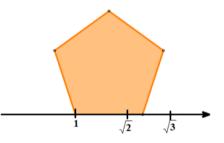


Figura 1

3. Na figura 2 estão representados o quadrado [ABCD] e o círculo de centro O inscrito no quadrado.

Sabe-se que $\overline{DB} = 6$ cm.

Determina, em cm², a área da região colorida na figura.

Apresenta o resultado aproximado por excesso, com erro inferior a uma décima.

Se procederes a arredondamentos nos cálculos intermédios, considera, pelo menos, três casas decimais.

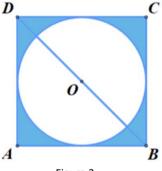


Figura 2

- 4. Apresenta um exemplo de um número que satisfaça a condição:
 - **4.1** número racional, na forma de fração irredutível, entre $\sqrt{10}$ e $\sqrt{11}$.
 - **4.2** número irracional entre $\frac{16}{5}$ e $\frac{17}{5}$.

Fim do Caderno 1

Cotações (Caderno 1)

1.	2.	3.	4.1	4.2
3	3	12	4	4

Total: 26 pontos

CADERNO 2: 70 minutos

(Não é permitido o uso de calculadora.)

5. Na figura 3 estão representados parte da reta real, o triângulo retângulo isósceles [ABC] e o semicírculo de diâmetro [AC].

Sabe-se que:

- a área do semicírculo é $\frac{5}{2}\pi$;
- a abcissa do ponto $A \in \sqrt{10}$.

Mostra que a abcissa do ponto $D \in 3\sqrt{10}$.

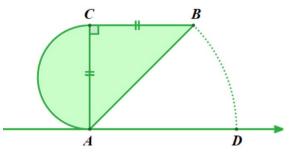


Figura 3

6. Considera os conjuntos de números reais seguintes.

$$A = \left[-\sqrt{5}, 1 \right] \qquad \qquad D = \{x \in \mathbb{R} : -\frac{1}{2} \ge x\} \qquad D = \{x \in \mathbb{R} : x + 5 > 1\}$$

- **6.1** Escreve os conjuntos $B \in C$ na forma de intervalo de números reais.
- **6.2** Escreve todos os números do conjunto \mathbb{Z} pertencentes ao conjunto A.
- **6.3** Qual dos conjuntos seguintes está contido no conjunto *B*?

(A)
$$\{-1, 0, 1\}$$

(B)
$$\left\{-\frac{1}{2}, 0, 1\right\}$$

(A)
$$\{-1,0,1\}$$
 (B) $\left\{-\frac{1}{2},0,1\right\}$ (C) $\left\{-\frac{3}{2},0,1\right\}$ (D) $\{-1,0,1,2\}$

(D)
$$\{-1,0,1,2\}$$

- **6.4** Representa na forma de intervalo de números reais:
 - **6.4.1** *A* ∪ *C*
 - **6.4.2** $B \cap C$
 - **6.4.3** $D \cap \mathbb{R}^-$
- 7. Considera as expressões numéricas seguintes.

$$A = \left(\frac{2^{-3} \times 2^{10}}{16}\right)^{-1} \qquad e \qquad B = \frac{\left[\left(\frac{1}{2}\right)^{2}\right]^{3} : \left(\frac{3}{2}\right)^{6}}{3^{-5}}$$

Calcula o valor de cada uma das expressões e averigua se alguma delas representa um número pertencente ao intervalo de números reais $\left[\frac{1}{10}, \frac{3}{10}\right]$?

8. Considera a inequação $-3x + \frac{1}{7} > -5$.

Qual das seguintes inequações é equivalente à inequação dada?

(A)
$$-3x + 1 > -35$$

(B)
$$3x - 1 < 35$$

(C)
$$21x - 1 > 35$$

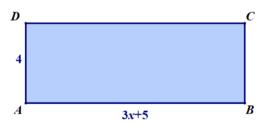
(D)
$$21x - 1 < 35$$

9. Resolve a seguinte inequação e indica o conjunto-solução na forma de intervalo de números reais.

$$3(4-2x) - \frac{4-x}{2} \le -1$$

10. Seja A =]0, 3[eB =]-1, 1[.

Em qual das seguintes opções está representado o conjunto $A \cup B$?


(A)
$$\{x \in \mathbb{R} : x > 0 \land x < 1\}$$

(B)
$$\{x \in \mathbb{R} : x > -1 \land x < 3\}$$

(C)
$$\{x \in \mathbb{R} : x > 0 \lor x < 1\}$$

(D)
$$\{x \in \mathbb{R} : x > -1 \lor x < 3\}$$

11. Na figura 4 estão representados o retângulo [ABCD] e o trapézio [EFGH].

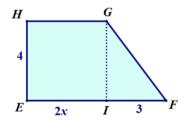


Figura 4

Determina o conjunto dos valores de x, sabendo que a soma das áreas do retângulo e do trapézio é inferior a 86 cm^2 . Apresenta a resposta na forma de intervalo de números reais.

Sugestão: começa por traduzir o problema através de uma inequação.

FIM

Cotações (caderno 2)

5.	6.1	6.2	6.3	6.4.1	6.4.2	6.4.3	7.	8.	9.	10.	11.
10	6	3	3	4	4	4	10	3	12	3	12

Total: 74 pontos

Total (Caderno 1 + Caderno 2): 100 pontos