

1.1.
$$-1200 = -3 \times 360 - 120$$

O lado extremidade é o mesmo do ângulo de amplitude -120°.

Opção (A)

1.2.
$$\frac{21\pi}{5} = \frac{20\pi}{5} + \frac{\pi}{5} = 4\pi + \frac{\pi}{5}$$

O lado extremidade é o mesmo do ângulo de amplitude $\frac{\pi}{5}$ radianos.

Opção (C)

2.1.
$$tg\left(-\theta\right) = -\frac{\sqrt{5}}{3}$$
, ou seja, $tg\left(\theta\right) = \frac{\sqrt{5}}{3}$.

$$\frac{1}{\cos^2(\theta)} = 1 + tg^2(\theta) \Leftrightarrow \frac{1}{\cos^2(\theta)} = 1 + \frac{5}{9} \Leftrightarrow \frac{1}{\cos^2(\theta)} = \frac{14}{9}.$$

Então, $\cos^2(\theta) = \frac{9}{14}$ e θ é do 1.º quadrante.

Conclui-se que $\cos(\theta) = \frac{3}{\sqrt{14}} = \frac{3\sqrt{14}}{14}$.

A abcissa de C é igual a $-\cos(\theta)$, ou seja, $-\frac{3\sqrt{14}}{14}$.

Opção (C)

2.2.
$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\sin^2(\theta) = 1 - \cos^2(\theta) \Leftrightarrow \sin^2(\theta) = 1 - \frac{9}{14} \Leftrightarrow \sin^2(\theta) = \frac{5}{14}$$

Como θ é do 1.º quadrante, conclui-se que $\sin(\theta) = \sqrt{\frac{5}{14}}$, sendo $-\sin(\theta) = -\sqrt{\frac{5}{14}}$.

Opção (A)

3. Se [BC] é lado de um quadrado inscrito na circunferência, então $B\hat{O}C = \frac{\pi}{2}$.

A abcissa de C é igual a $\cos\left(\frac{\pi}{2} + \alpha\right)$.

Mas,
$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$
.

Sabe-se ainda que $\cos \alpha = 0.4 = \frac{2}{5}$.

$$\sin^2(\alpha) = 1 - \cos^2(\alpha) \Leftrightarrow \sin^2(\alpha) = 1 - \frac{4}{25} \Leftrightarrow \sin^2(\alpha) = \frac{21}{25}$$

Como α é do 1.º quadrante, conclui-se que $\sin \alpha = \frac{\sqrt{21}}{5}$.

Então, a abcissa de C é $-\frac{\sqrt{21}}{5}$.

4. $\cos\left(x-\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}+x\right)=\sin(x)\cos(x)$

No intervalo $\left| \frac{3\pi}{2}, 2\pi \right|$ (4.º quadrante), tem-se $\sin x < 0$ e $\cos x > 0$.

Conclui-se que, para $x \in \left| \frac{3\pi}{2}, 2\pi \right|$, $\sin(x)\cos(x) < 0$.

Opção (D)

- 5.1. Verdadeira
- **5.2.** Falsa
- 5.3. Verdadeira
- **5.4.** Falsa
- 5.5. Verdadeira
- **6.1.** Se $\theta = \frac{\pi}{3}$ as coordenadas do ponto R são $\left(\cos \frac{\pi}{3}, 1\right)$, ou seja, $\left(\frac{1}{2}, 1\right)$.

As coordenadas do ponto Q são $\left(-\frac{1}{2},-1\right)$

Opção (B)

6.2.

a) A área do trapézio [*OPRS*] é dada por: $\frac{\overline{OS} + \overline{PR}}{2} \times \overline{SR}$

$$\frac{\overline{OS} + \overline{PR}}{2} \times \overline{SR} = \frac{1 + (1 - \sin(\theta))}{2} \times \cos(\theta) = \frac{1}{2} \cos(\theta) (2 - \sin(\theta))$$

Conclui-se que: $f(\theta) = \frac{1}{2}\cos(\theta)(2-\sin(\theta))$

b) A área do triângulo [*OAP*] é dada por: $\frac{\overline{OA} \times \sin(\theta)}{2} = \frac{\sin(\theta)}{2}$

$$\frac{\sin(\theta)}{2} = \frac{\sqrt{2}}{4} \Leftrightarrow \sin(\theta) = \frac{\sqrt{2}}{2}$$

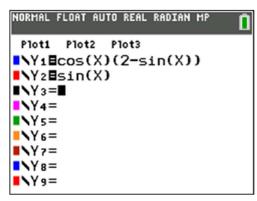
Como $\theta \in \left[0, \frac{\pi}{2}\right[$, conclui-se que $\theta = \frac{\pi}{4}$.

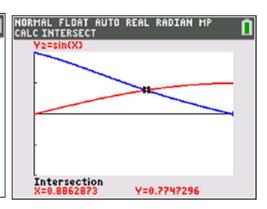
Para este valor de θ , a área do trapézio é dada por $f\left(\frac{\pi}{4}\right)$.

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2}\cos\left(\frac{\pi}{4}\right)\left(2 - \sin\left(\frac{\pi}{4}\right)\right) = \frac{1}{2} \times \frac{\sqrt{2}}{2}\left(2 - \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} - \frac{1}{4} = \frac{2\sqrt{2} - 1}{4}$$

c) A solução do problema é o valor de $\theta \in \left]0, \frac{\pi}{2}\right[$ que é solução da equação:

$$f(\theta) = \frac{\sin(\theta)}{2}$$
, ou seja, $\frac{1}{2}\cos(\theta)(2-\sin(\theta)) = \frac{\sin(\theta)}{2} \Leftrightarrow \cos(\theta)(2-\sin(\theta)) = \sin(\theta)$





 $\theta \approx 0.89 \, \text{rad}$

FIM

Cotações										Total
Questões	1.	2.	3.	4.	5.	6.1.	6.2.a)	6.2.b)	6.2.c)	- Otal
Cotações	(2×15	(2×15	25	15	(5×5) 25	15	20	20	20	200