	Teste de Matemática A
	2021 / 2022
Teste N.º 4	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Na resposta aos itens de escolha múltiprespostas, o número do item e a letra q	pla, selecione a opção correta. Escreva, na folha de
•	sente todos os cálculos que tiver de efetuar e todas

as justificações necessárias. Quando, para um resultado, não é pedida a aproximação,

apresente sempre o valor exato.

1. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = (1 - \cos x \sin x) \left(\cos \left(-\frac{\pi}{2} + x \right) + \sin \left(\frac{\pi}{2} + x \right) \right)$$

- **1.1.** Prove que $f(x) = \cos^3 x + \sin^3 x$.
- **1.2.** Determine, recorrendo a processos exclusivamente analíticos, os valores de x que satisfazem a condição $f(x) = 2\cos^3 x$.
- **1.3.** No intervalo $[0, \pi]$, o gráfico da função f tem um ponto A, cuja distância à origem é igual a 2. Recorrendo às capacidades gráficas da calculadora, determine as coordenadas do ponto A, apresentando os valores aproximados às centésimas.

Na sua resposta deve:

- equacionar o problema;
- reproduzir num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver o problema, devidamente identificado(s), incluindo o referencial;
- indicar as coordenadas do ponto A, com a aproximação pedida.

Se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

2. Considere, num referencial o.n. x0y, uma reta r de inclinação α .

Sabe-se que sen $\alpha = \frac{1}{2}$.

Qual pode ser a equação reduzida da reta r?

(A)
$$y = \frac{\sqrt{2}}{4}x$$

(B)
$$y = 2\sqrt{2}x$$

(B)
$$y = 2\sqrt{2}x$$
 (C) $y = -\sqrt{3}x$

(D)
$$y = -\frac{\sqrt{3}}{3}x$$

3. Considere, num referencial o.n. x0y, a circunferência definida pela equação:

$$x^2 + (y - 1)^2 = 2$$

Sejam:

- A o ponto de interseção da circunferência com o semieixo positivo das abcissas;
- B o ponto de interseção da circunferência com o semieixo positivo das ordenadas;
- *r* a reta tangente à circunferência no ponto *A*;
- s a reta tangente à circunferência no ponto B;
- C o ponto de interseção das retas r e s.

Determine o valor exato da área do trapézio [OACB].

4. Considere, num referencial o.n. 0xyz, a superfície esférica de equação:

$$x^2 + 2x + v^2 - 4v + z^2 - 2z = 4$$

Seja C o centro da superfície esférica.

- **4.1.** Qual das equações seguintes define uma reta perpendicular ao plano x0y e que passa no ponto C?
 - **(A)** $(x, y, z) = (-1, 2, 1) + k(1, 0, 0), k \in \mathbb{R}$
 - **(B)** $(x, y, z) = (-1, 2, 1) + k(0, 1, 0), k \in \mathbb{R}$
 - (C) $(x, y, z) = (1, -2, -1) + k(0, 0, 1), k \in \mathbb{R}$
 - **(D)** $(x, y, z) = (-1, 2, 3) + k(0, 0, -1), k \in \mathbb{R}$
- **4.2.** Seja P o ponto da superfície esférica de abcissa negativa, ordenada 3 e cota 1. Determine uma equação do plano que é tangente à superfície esférica no ponto P.
- **4.3.** Seja A o simétrico do ponto C relativamente ao plano xOz. Determine a amplitude do ângulo AOC. Apresente o resultado em graus, arredondado às décimas.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

5. Considera a sucessão (u_n) definida por:

$$u_n = \frac{(-1)^n}{n + 2022}$$

Qual das seguintes proposições é verdadeira?

- (A) (u_n) é monótona.
- **(B)** (u_n) não é limitada.
- **(C)** (u_n) é convergente para 0.
- **(D)** $\lim u_n = +\infty$
- **6.** O limite da sucessão de termo geral $u_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{2} + \dots + \frac{1}{(\sqrt{2})^n}$ é:
 - **(A)** +∞
- **(B)** 0
- **(C)** $\sqrt{2} + 2$ **(D)** $\sqrt{2} 1$
- **7.** Sabe-se que (u_n) é uma progressão aritmética de razão 3.

Mostre que a sucessão definida por $v_n=10^{2u_n}$ é uma progressão geométrica e indique a razão.

8. Considere as sucessões (a_n) e (b_n) definidas por:

$$a_n = \frac{6n^3 + 2n^2 - 1}{n - 2n^3}$$
 e $b_n = \sqrt{n^2 + 1} - n$

Seja $A = \lim a_n e B = \lim b_n$.

Qual das seguintes afirmações é verdadeira?

- (A) $A \times B = +\infty$
- **(B)** $A \times B = -\infty$
- (C) $\frac{A}{B} = +\infty$
- **(D)** $\frac{B}{A} = 0$

- FIM -

COTAÇÕES

Item												
	Cotação (em pontos)											
1.1	1.2.	1.3.	2.	3.	4.1.	4.2.	4.3.	5.	6.	7.	8.	
20	20	25	10	25	10	20	20	10	10	20	10	200