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a b s t r a c t

A new class of Intelligent and Autonomous Vehicles (IAVs) has been designed in the frame-
work of Intelligent Transportation for Dynamic Environment (InTraDE) project funded by
European Union. This type of vehicles is technologically superior to the existing Automated
Guided Vehicles (AGVs), in many respects. They offer more flexibility and intelligence in
maneuvering within confined spaces where the logistic operations take place. This includes
the ability of pairing/unpairing enabling a pair of 1-TEU (20-foot Equivalent Unit) IAVs
dynamically to join, transport containers of any size between 1-TEU and 1-FFE (40-foot
Equivalent) and disjoin again. Deploying IAVs helps port operators to remain efficient in
coping with the ever increasing volume of container traffic at ports and eliminate the need
for deploying more 40-ft transporters in the very confined area of ports. In order to accom-
modate this new feature of IAVs, we review and extend one of the existing mixed integer
programming models of AGV scheduling in order to minimize the makespan of operations
for transporting a set of containers of different sizes between quay cranes and yard cranes.
In particular, we study the case of Dublin Ferryport Terminal. In order to deal with the
complexity of the scheduling model, we develop a Lagrangian relaxation-based decompo-
sition approach equipped with a variable fixing procedure and a primal heuristics to obtain
high-quality solution of instances of the problem.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The ever increasing volume of international trade of which up to 90% is fully containerized, demanded appropriate solu-
tions for several other issues arising within the logistics operations across the entire supply chain network.

The circulation of this huge number of containers is currently taking place on three main routes: (1) Asia–Europe, (2)
Trans-Pacific, and (3) Trans-Atlantic. In total more than 500 ports and tens of liner shipping companies are involved in
the global maritime logistics.

Due to the intensive interaction and global-wide spatial distribution of components of the containerized transport sys-
tem, inefficiencies in individual elements of the system (both from liner service providers and also from the port authority’s
point of views) propagate their negative impacts, locally and temporally, across the entire network of systems.

From the liner shipping industry point of view, larger vessels are needed to help the service providers benefit from the
economies of scale in transporting the growing volumes. Deploying such vessels is very expensive (often more than several
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(a) An IAV for a 20-ft containers. (b) Paired IAVs for larger than 20-ft 
(e.g. 40-ft.) containers.

Fig. 1. Intelligent and Autonomous Vehicles (IAVs).
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million dollars per day) and in fact, this is only during the sailing time that vessels generate profit for the owners. The part of
voyage time spent at different port calls on a route is referred to as turnaround time of a complete voyage and is actually the
unprofitable part of the service. Therefore, economies of scale may not be exploited unless in long-haul transport. This means
that the Liner Service Providers (LSPs) usually do not find it profitable to call too many ports along a service rotation (the so
called ‘string’). Consequently, some major transshipment hubs, which are consolidation and distribution ports came into
play, and in turn proxy service for other smaller ports in their region. The selection of such ports depends on several different
factors. The most important ones are efficiency and infrastructure—of course assuming that a port has the potential to be-
come a hub port, i.e., it has enough draught for accepting larger vessels, and it fulfils many more eco-political criteria.

From the port (equivalently terminal) operators’ point of view, their competitiveness is essentially dependent on their
ability to minimize the turnaround time of vessels while maximizing the port throughput. In this way, they can compete
with other neighboring ports and survive in such a highly competitive market. Due to the dynamism and scale of competi-
tion, the goal is not reached unless some strategic, tactical and operational aspects of terminals are being constantly re-
viewed and addressed in better ways. This includes three main aspects: (i) the layout and equipment, (ii) the routing
decisions and (iii) the scheduling of machines and resource allocation.

Since the beginning of containerization and containerized transport, several different types of port equipments have been
developed. This includes various classes of cranes (for quay side and yard side) and carriers (e.g. single and multiple carriers,
with and without the ability to lift) with very different physical and mechanical characteristics.

Along with the enhancements in Information and Communication Technologies (ICTs), the concept of automated and
semi-automated infrastructures emerged and the port authorities started to gradually incorporate ICT tools to improve their
efficiencies. Nowadays, the European Container Terminal (ECT), Ports of PSA in Singapore, Kaoshiung in Taiwan, Pusan in
Korea, Kawasaki and Kajima in Japan, Thamesport in the UK, Bremerhafen and Hamburg in Germany, and Antwerp in Bel-
gium are among the most automated container terminals in the world.

Similar trend is being observed all around the globe, and several projects are funded to develop new technologies for
ports. Among them, vehicles with a certain degree of intelligence and autonomy—at the same time—which also exploit
ICT and are equipped with several kinds of sensors as well as Geographical Information System (GIS) tools (see InTraDE1

as an example) are of special interest.
Although there exist a fierce competition between the hub ports in attracting more customers by improving their efficien-

cies, but such a competition is not only limited to them. The smaller ports (e.g. Dublin Ferryport Terminal (DFT) in our case)
are concerned with the efficiency of operation under the current trend of the import/export volume increase. This becomes
even more serious when knowing that DFT (as many other ports in that region) has almost no possibility for any expansion of
its terminal due to several reasons, including political ones and those related to the land-use and infrastructures in the
neighborhood. This suggests investing on advanced technological development that would eventually lead to more efficient
facilities (both transporters and stacking/unstacking machines).

Intelligent and Autonomous Vehicles (IAVs) (see Fig. 1) belong to a new class of transporters designed in the framework of
InTraDE which generalize the concept of AGVs. Some distinguishing characteristics of IAVs are listed in the sequel:

– In contrast to AGVs, IAVs do not need to follow signed segments of the road to reach a destination and do not have to
follow particular itineraries. Rather, they are MIMO (Multi-Input Multi-Output) systems equipped with several sensors
enabling them to benefit from Geographical Positioning Systems (GPSs) based navigation systems and several other sen-
sors to detect the distance to other vehicles, etc.
1 Intelligent Transportation for Dynamic Environment (InTraDE) (http://www.intrade-nwe.eu/).

http://www.intrade-nwe.eu/


S. Gelareh et al. / Transportation Research Part C 33 (2013) 1–21 3
– Unit capacity of an IAV is one TEU and for transporting any container size between 1-TEU and 1-FFE, two IAVs can couple
(pair) in a leader–follower manner resulting in a 40-ft capacity able to transport the containers of relevant size. There is
no limit on how many times IAVs can pair and unpair again during a loading/unloading operation time horizon (Fig. 1a
depicts a 20-ft single IAV and Fig. 1b a 40-ft paired IAVs).

– IAVs can form platoons based on a leader–follower manner, and every IAV is conceived in such a way as it can become
leader or follower at any point in time during operations.

– All four wheels are equipped with actuators and a failure in any of the individual wheels, does not stop the vehicle from
operation. Rather, it runs into a degraded mode of operation in which the operation continues with a lower performance.

– IAVs move laterally and longitudinally. Contrary to the normal transporters (such as AGVs and trucks), IAVs do not need
larger spaces in order to maneuver. The wheels offer a 360-degree rotation flexibility.

– Finally, an IAV system should adapt itself to its surrounding environment. While in the case of AGV systems, this is the
existing environment that must be adapted to them.

While in total, hundreds of ports all around the globe appear on the liner transport network, there are only few major LSPs
serving major ports. This makes it quite natural that as far as the professional and academic literatures are concerned, there
has been a larger corpus of studies on the optimization and simulation of operations at the port terminals.
1.1. Objective and contribution

This paper exploits the model presented in Ng et al. (2007) for AGVs (with further technical revision. See Appendix A for
explanations.) and shows that it can be generalized to accommodate in both AGVs and IAVs cases. We then examine the im-
pact of a class of valid inequalities on the computational performance of a general-purpose solver for solving instances of the
problem. As an intrinsic property of most of the scheduling problems, only instances of very small size are efficiently solvable
by general-purpose solvers. Therefore, we propose a Lagrangian relaxation-based decomposition approach equipped with a
variable fixing and primal bound generation heuristic (exploiting information about the dual of the problem) to solve prac-
tical instances for high-quality solutions in reasonable time. Several classes of violated valid inequalities are identified and
relaxed in Lagrangian fashion to accelerate convergence. As a case study, we apply the model on Dublin Ferryport Terminal
in Ireland—one of the InTraDE’s partner terminals for which IAVs are designed.
1.2. Literature review

As mentioned earlier, IAVs are technologically superior but very similar to the AGVs. Many differences such as indepen-
dency from detecting signs on the ground surface in order to follow a path, the ability of in-place 90� rotation of wheels,
leader–follower behavior, etc., are more relevant in the routing problems. However, the ability to join and cooperate in per-
forming tasks is of interest in scheduling and makespan minimization. The literature of Operations Research is aware of sev-
eral contributions dealing with scheduling of AGVs in container terminals and in manufacturing systems.

Meersmans and Wagelmans (2001b,a) proposed a heuristic algorithm for combined AGV and crane allocation problems.
Grunow et al. (2004) proposed an online logistics operation control using a priority-based approach which is compared

against an offline approach. A simulation study of AGVs in an automated container terminal is proposed by Grunow et al.
(2007) to examine the efficiency of different dispatching strategies.

Similarly, we can refer to Bish et al. (2001) for AGV dispatching and yard allocation; Bish (2003) extended this work to
also take into account loading and unloading scheduling at quay cranes. Bish et al. (2005) extended the work in Bish
(2003) and added some analytical performance studies on the proposed algorithm.

Cao et al. (2010) proposed an MIP formulation for an integrated yard truck and yard crane scheduling problems while
only import containers were taken into account. They developed a combinatorial Benders decomposition to solve instances
of their model.

Lee et al. (2010) studied a transshipment port where both loading and discharging containers were considered. While it
has been often simplified by other authors, Lee et al. (2010) consider the delays at yard crane as well. The objective is to
minimize the makespan of quay side operations as to reduce the turnaround time of vessels as a vessel can leave as soon
as the last job of quay cranes is done. They proposed an MIP formulation but two heuristic approaches were used to solve
the problem. Lee et al. (2010) work is based on Chen et al. (2007) but they consider loading and unloading simultaneously.

Ng et al. (2007) proposed a MIP model for scheduling a fleet of trucks at a container terminal while the fleet size is as-
sumed to be given exogenously.

They compared several variants of genetic algorithms and showed that their variant outperforms all others.
While it must be emphasized that their proposed MIP model is not a basis for their solution method (except for solution

quality evaluation), however, as shown in Appendix A using an intuitive example, the model in Ng et al. (2007) does not al-
ways produce a feasible solution to the problem of scheduling AGVs.

Other works on dispatching different equipments at container terminals can be found in Kim and Bae (1999, 2004) for
AGV dispatching problem; Kim and Bae (2004) that employ a look-ahead strategy which considers local and temporal infor-
mation of future tasks and assumes a dual cycle operation of AGVs; Nguyen and Kim (2009) as an extension of Kim and Bae



4 S. Gelareh et al. / Transportation Research Part C 33 (2013) 1–21
(2004) for Automated Lifting Vehicles (ALVs); Hartmann (2004) for a wider range of equipments and Narasimhan and Pale-
kar (2002) where every truck is dedicated to a particular quay crane as opposed to that of Kim and Bae (2004).

2. Problem statement

As mentioned earlier, IAVs are intelligent vehicles which can work in groups. That means, given a set of individual IAVs, it
is possible that anyone plays the role of a leader and the rest perform as followers to form a platoon. This resembles the
behavior of locomotive and wagons of a train (however, in this article we restrict the size of such a train of IAVs to 2, i.e.
the size of a 1-FFE container).

Given such a property, in order to perform a job of a 1-FFE container, two single IAVs must join together and perform the
task. That is, should a 35-ft container be imported/exported, (1) two IAVs are chosen to move towards the corresponding
crane, (2) do the pairing (join), (3) set the leader/follower designations, and (4) receive the container from the crane.

Except for the concept of cooperations in IAVs, the problem description of IAV scheduling is very similar to that of AGV
scheduling as discussed in Ng et al. (2007):

At the earliest ready-time for vehicle m 2 {1, . . . ,M}, i.e. tm, the vehicle m is at location Lm. There are N tasks and to every
task n 2 {1, . . . ,N} a pick-up Pn and a delivery Dn location is associated. There is an approximate travel time tll0 between every
two locations l 2 L = {L1, . . . ,LM, Pi, . . . ,PN, Di, . . . ,DN} and l0 2 L0 = {Pi, . . . ,PN, Di, . . . ,DN} and tll0 – tl0 l, in general. The duration of
job i (process time), Ti, is the time elapsed from the moment that IAV(s) arrive(s) at the pick-up location of task i, Pi, until
the moment that IAV(s) leave(s) the drop-off location of task i, Di (the average waiting times both at quay crane and yard
crane are implicitly included). Then, Ti plus the maximum between (1) the time that the first IAV needs to travel empty from
Di1�1 (the preceding job on the first IAV) to Pi, and (2) the time that the second IAV needs to travel empty from Di2�1 (the
preceding job on the second IAV) to Pi (in the case that only one IAV is needed then it becomes: Ti plus the time that IAV
needs to travel empty from Di�1 to Pi), accounts for the processing time of task i. There is a time at which a crane can generate
task i (not earlier than that) and expect one or two IAVs to arrive at that location. This is referred to as ‘‘ready-time’’ ai and
ai 6 ai+1, "i 2 {1, . . . ,N � 1}. IAV scheduling problem seeks to minimize makespan such that the turnaround time of the cor-
responding vessel is minimized.

3. Mathematical model

The model is a mixed integer programming with objective function of minimizing the makespan. This means that we are
minimizing completion time of the last task before the vessel is ready to depart.

We employ a similar notation as Ng et al. (2007).

Note 1. In the following, we use: (1) container, task and job, (2) machine, vehicles and IAV, interchangeably.
Note 2. Throughout this study, it is assumed that the time needed for two IAVs to physically join (once they both arrived at a
certain pick-up location) is so small (few seconds) that can be safely ignored.
3.1. Parameters

The parameters are listed in Table 1:

3.2. Decision variables

The decision variables are listed Table 2:
Table 1
Model parameters.

rm The earliest time that the IAVm will be available
Lm The initial location of IAVm at rm

Tj The process time of task j. The elapsed time between the arrival of an IAV to the location of pick up of task j and the time that its container being
unloaded at the destination

tij The travel time between locations i and j in terminal
ai The ready time of task i, i.e., the time when this task becomes available
N The total number of tasks
M The total number of available vehicles
I The set of all tasks I = {i:1 6 i 6 N}
I0 The set of all tasks I0 = {i:0 6 i 6 N + 1} where 0, N + 1th tasks are dummy source and dummy sink tasks, respectively,
V The set of all IAVs V = {m:1 6m 6M}
Si The size of container task i in terms of number of IAVs required
K A sufficiently big constant (based on known upper bound on optimal solution)
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The AGV scheduling problem in Ng et al. (2007) follows:
AGV-Scheduling (AGVS)
min W ð1Þ
s:t: Ci 6W 8i 2 I ð2Þ

XM

1

yim ¼ 1 8i 2 I ð3Þ
X

j2fI[fNþ1gg:j–i

xijm 6 yim 8i 2 I; m 2 V ð4Þ

XN

i¼1:j–i

xijm 6 yjm 8j 2 I; m 2 V ð5Þ

1 P xijm þ xjim P yim þ yjm � 1 8i; j 2 I : j – i; m 2 V ð6Þ
Ci þ tDi ;Pj

þ Tj 6 Kð1� xijmÞ þ Cj 8i; j 2 I : j – i; m 2 V ð7Þ
ai þ Ti 6 Ci 8i 2 I; m 2 V ð8Þ
rm þ tLm ;Pi

þ Ti 6 Ci 8i 2 I; m 2 V ð9Þ
xijm; yim 2 f0;1g; i 2 I; j 2 I0; m 2 V ð10Þ
W P 0; Cj P 0; j 2 I: ð11Þ
It has been observed that the variable xijm needs to be more precisely redefined in order to avoid issues of infeasibility that
are explained in Appendix A. Henceforward, we use the following definition for xijm:

xijm: 1, if the task j is performed immediately after task i on the vehicle m, 0 otherwise.

3.3. Intelligent and Autonomous Vehicle (IAV) Scheduling

We also needed to introduce one extra dummy task, Source (0th task), in addition to those introduced in the original AGVS
model (N task and N + 1th dummy task). The source task is the starting task on every IAV.

The dummy source node is required to model the cases where a larger than 1-TEU task is the first task of an IAV.
IAV Scheduling (IAVS)
min W ð12Þ
s:t: ð2Þ; ð7Þ; ð8Þ; ð9Þ; ð11Þ;X

m2V

yim ¼ Si 8i 2 I ð13Þ

x0im þ
XN

j¼1;j–i

xjim ¼ yim 8i 2 I; m 2 V ð14Þ

xjNþ1m þ
XN

j¼1;j–i

xijm ¼ yim 8j 2 I; m 2 V ð15Þ

xijm þ xjim 6 1 8i; j 2 I : j – i; m 2 V ð16ÞX
i

x0im ¼ 1 8m 2 V ð17Þ
X

i

xiNþ1m ¼ 1 8m 2 V ð18Þ

xijm 2 f0;1g; ði; j;mÞ 2 ðI0 � I0 � VÞ; yim 2 f0;1g; ði;mÞ 2 ðI � VÞ ð19Þ
The objective function (12) minimizes the makespan as the earliest possible time to complete the mission.
Constraints (2) are minimax constraints to determine the completion time of the last event. If a task j is performed after a

task i – j on machine m then the completion time of task j is no earlier than the completion time of task i, plus the travel time
from the drop-off location of task i to the pick-up location of task j, plus the process time of task j (we say at least because one
IAV might need to wait for another one before starting a task). Constraints (7) indicate this. Constraints (8) state that the com-
pletion time of task i cannot be earlier than its ready time, plus its process time. If task i is the first task assigned to machine
m then it cannot be completed before the earliest time that the machine becomes ready, plus the travel time of machine from
its initial location to the pick-up location of task i, plus the process time of task i as stated in constraints (9). Constraints (13)
indicate that the number of IAVs allocated to the task i must be equal to the size of tasks. On the same machine, every task
(including the source task and excluding the sink) is followed by a subsequent task. In the graph sense, from every node rep-
resenting a task, one arc is encompassed for every machine assigned to complete that task. This is considered in (14). Sim-
ilarly, on the same IAV, every task (represented by a node in the network) is carried out after another task (including sink and



Table 2
Decision variables.

xijm 1, if task j is performed after task i – j on vehicle m, 0 otherwise
yim 1, if task i is performed on vehicle m
Ci The completion time of task i
W The makespan, i.e. the completion time of the last task
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excluding source). Constraints (15) stand for this. If both tasks i and j – i are carried out by the same machine m then one
precedes the other as stated by constraints (16). Constraints (17) and (18) ensure that the dummy source and sink tasks are
performed as the first and the last tasks on every IAV.

Fig. 2 depicts an optimal solution of an instance with jVj = 3 and jIj = 20. Three IAVs are deployed (IAV1, the solid line;
IAV2, the dashed line; and IAV3, the dotted line). The optimal schedule starts by a cooperation between IAV1 and IAV2 to
perform tasks 1 and 3, while IAV3 alone performs task 2 as it is a 1-TEU container. Then IAV1 and IAV2 unpair (decouple)
after completing task 3 and IAV2 performs task 4. Afterwards, IAV1 and IAV2 ally to perform task 5. The process continues
following a similar manner until the final task which is the task 20 is completed at time 1400.67 via cooperation between
IAV2 and IAV3.

3.3.1. Valid inequalities
If the machines were working alone (all the tasks were 1-TEU containers), then we could calculate the accumulated time-

in-service of every machine independently, and take the maximum as the objective value. This can be done by simply follow-
ing the arcs related to the machine on a graph similar to Fig. 2, starting from source and terminating at the sink. However,
since in our model some IAVs may cooperate with each other at some points in time to accomplish some tasks, a number of
dynamic pairings/unpairings takes place, which must be taken into account in order to calculate the makespan. In this coop-
erative environment, once the first IAV between the two assigned to a particular task arrives at the pick-up location, it must
also wait for the second one to arrive (wait-for-pairing) before being able to pair and start a task of larger than 1-TEU. There-
fore, unless a machine m is exclusively operating on the 1-TEU containers, all the way throughout the horizon, the value of
following terms:
X

i;j–i

X
m

ðtDi ;Pj
þ TjÞxijm; 8m
would not exactly coincide with the actual time-in-service of that particular machine. Because the wait-for-pairing times
corresponding to the tasks of larger than 1-TEU are not taken into account. However, this is still a valid lower bound on
the makespan of machine m.

Let /i ¼maxfai þ Ti; rm þ tLmPi
þ Ti : 8m 2 Vg; 8i 2 I:
W P
X
i2I

/ix0im þ
X
i;j–i

ðtDiPj
þ TjÞxijm; 8m 2 V : ð20Þ
Constraints (20) state that in a network representation of problem as in Fig. 2, the length of path from the source to the node
preceding the sink node of every machine is a lower bound on W.

We show in the numerical section that these inequalities can have a significant impact on the performance of state-of-
the-art general-purpose solvers such as CPLEX.

4. Solution method

IAVS is a challenging model for which even very small size instances with a few number of vehicles and 20 tasks could
become relatively time-consuming and inefficient to solve by the general-purpose solvers. A major part of contributions in
the literature has adopted (meta-) heuristic strategies, often without any indication of quality of their resulting solutions.

Ng et al. (2007) has proposed an efficient genetic algorithm for solving instances of the problem.
As the problem description of Ng et al. (2007) is based on AGVs whose operations are different from IAVs, their GA algo-

rithm cannot be directly applied to the IAV scheduling problem. Unless we assume that all the tasks are 1-TEU containers
which is neither realistic nor consistent with the ideas behind developing IAVs.

Here, we exploit some of the mathematical properties of our MIP model and propose a decomposition approach based on
a Lagrangian relaxation (lower bound). It is equipped with an efficient local search approach and a variable fixing phase in
order to produce upper bound on the optimal solution and obtain an indication of optimality.

4.1. Lagrangian decomposition for IAVS

Lagrangian relaxation for solving (mixed) integer programming problem was first proposed in Fisher (1981, 2004). The
idea behind this method is to relax complicating constraints by penalizing the objective function upon violation of these con-
straints. The relaxed problem is expected to be easier to solve than the original problem and provides a dual bound on the
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optimal value of the problem as well as valuable information about the dual (see Guignard (2003) for a comprehensive sur-
vey of the method.).

Three well-known methods are commonly used in the literature for solving Lagrangian relaxation problems. The oldest
and most well-known one is subgradient method as an iterative method for solving convex minimization problems. Subgra-
dient was originally proposed in the 1960s in the former Soviet Union. Very similar method has also been proposed in Held
and Karp (1971) for solving traveling salesman problem. Later, Lemarechal (1975) proposed the well-known bundle methods
as an extension of subgradient. The volume algorithm was proposed in Barahona and Anbil (2000) as a method which simul-
taneously produces a primal feasible solution for the problem. Further analysis of volume algorithm and its relationship with
the bundle method is studied in Bahiense et al. (2002).

Several variants of the subgradient method have been proposed in the literature. Here, based on some observations from
the performance of bundle and volume algorithms in presence of big-M, we choose to employ the variant proposed by (Lars-
son et al., 1999) where an Ergodic sequence of subproblem solutions converges to the primal solution set.

A clever relaxation is the one applied in such a way as the resulting relaxed model can be further decomposed into some
subproblems for which more efficient solution methods than only using general-purpose MIP solvers can be found. This is
often referred to as Lagrangian Decomposition.

Michelon and Maculan (1991) proposed a Lagrangian decomposition for integer nonlinear programs with linear con-
straints. Reinoso and Maculan (1992) proposed a class of Lagrangian decomposition for integer linear programming. Gelareh
et al. (2012b) has also developed an efficient Lagrangian decomposition for a network design problem in liner shipping. Sev-
eral techniques in Lagrangian decomposition are surveyed in Guignard (2003).

We chose to relax constraints (14), (15) and henceforward we use a prefix LRX to indicate that a model is either a Lagran-
gian RelaXation problem or one of its decomposed parts.

(LRX-IAVS)’
min W þ
X
i;m

u1
im x0im þ

XN

j¼1;j–i

xjim � yim

 !
þ
X
i;m

u2
im xjNþ1m þ

XN

j¼1;j–i

xijm � yim

 !
ð21Þ

s:t: ð2Þ; ð13Þ; ð16Þ—ð18Þ;
ð7Þ—ð9Þ; ð19Þ; ð11Þ
In this relaxation, Lagrangian multipliers are chosen to be u1
im 2 R; u2

im 2 R; 8i;m.

4.2. More constraints to relax

From Fig. 3, one observes that in a solution of a given iteration of subgradient for the above relaxation, there are no arcs
arriving at nodes 5, 6, 7 and 8 and no arc leaves 1, 3 and 4 as it is not enforced by any constraint. Moreover, there is no con-
straint to enforce that there must be one task (including the dummy source and sink, wherever applies) before and after
every (non-dummy) task.

In order to encourage this and improve convergence of subgradient, we additionally dualize the following constraints:
X
m

x0im þ
X
j–i;m

xjim ¼
X

m

xiNþ1m þ
X
j–i;m

xijm; 8i ð22Þ
using u3
i 2 R; 8i.

In this particular example shown in Fig. 4, three tasks namely 2, 6 and 8 are 2-TEU tasks, and the rest are 1-TEU. Never-
theless, no arc is arriving at any of these three. Therefore, we also consider dualizing the following constraints:
X

j–i;m

xjim P Si; 8i ð23Þ
However, extensive computational experiment revealed that the following less tight constraints provide better results
from the bound quality point of view:
X

j–i;m

xjim P 1; 8i ð24Þ
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Similarly, the following constraints:
X
j–i;m

xijm P 1; 8i ð25Þ
are dualized using u4
i ; u5

i 2 R�; 8i multipliers:

Theorem 3. The total number of arcs (between two non-dummy tasks), jEj, (xijm = 1, i, j R {i,0,N + 1}) in an optimal solution is
bounded by: maxfN �M;0g 6 jEj 6

P
iSi � 1

� �
.

Proof. If there is no job i where Si > 1, then we have:

a. If the total number of tasks is equal to the total number of machines (N = M) and every machine does only one task, the
total number of arcs is equal to 0. The lower bound is obtained because we also have N �M = 0 (see Fig. 5a).

b. If all the tasks are carried out by one single machine, the only tree contains N � 1 arcs. Since every node corresponds to
one task, the upper bound is obtained (see Fig. 5b).

On the other hand if there is at least one task i with Si = 2 then:

a. If the total size of tasks (total with respect to the size) is equal to the total available capacity, i.e. jMj ¼
P

iSi, such that
every machine does only one task (perhaps two IAVs cooperate on a single task but no IAV contributes in more than
one task) then M > N and max{N �M,0} = 0 and the lower bound is valid (see Fig. 5d).

b. If for all the tasks i we have Si > 1 and only two IAVs, say IAV1 and IAV2, cooperate in performing them, then the total
number of arcs would be

P
iSi � 2 ¼ 2ðN � 1Þ (N � 1 arcs are needed to make the tree for every IAV). Therefore, the

upper bound still remains valid
P

iSi � 2 <
P

iSi � 1
� �

(see Fig. 5d).

The aforementioned cases were extreme ones which hit (or approach) the bounds. Under any other condition, the total
number of arcs remains between the two bounds. h

The Theorem 3 can be presented by the following constraint:
X
i;j–i;m

xjim P q ¼ maxfN �M; 0g ð26Þ
This constraint is added to the model.

4.2.1. Decomposition
To facilitate resolution of larger instances, we decompose the (LRX � IAVS) into two sub-problems by taking into account

that the sequencing part and the scheduling parts are linked only by the big-M constraints. Therefore, we add a set of copy
constraints and dualize them using u6

ijm 2 R; 8m; i – j:
xijm ¼ x0ijm 8i; j;m ð27Þ
x0ijm 2 f0;1g ð28Þ
By doing so, we separate the sequencing part (LRX-IAVS-Seq in the space of binary x,y) from the scheduling part
(LRX-IAVS-Sch in the space of continuous W,C and binary x0).

The resulting relaxation follows:
(LRX-IAVS)
source

1

2

4sink3

56 78

Fig. 3. There is no arc arriving at nodes 5, 6, 7 and 8 and no arc departing from 1, 3 and 4.
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min W þ
X
i;m

u1
im x0im þ

XN

j¼1;j–i

xjim � yim

 !
þ
X
i;m

u2
im xiNþ1m þ

XN

j¼1;j–i

xijm � yim

 !

þ
X

i

u3
i

X
m

x0im þ
X
j–i;m

xjim �
X

m

xiNþ1m �
X
j–i;m

xijm

 !
þ
X

i

u4
i 1�

X
j–i;m

xjim

 !

þ
X

i

u5
i 1�

X
j–i;m

xjim

 !
þ
X
i;j;m

u6
ijmðxjim � x0jimÞ ð29Þ

s:t: ð2Þ; ð13Þ; ð16Þ—ð18Þ;
Ci þ tDi ;Pj

þ Tj 6 Kð1� x0ijmÞ þ Cj 8i; j 2 I : j – i; m 2 V ð30Þ
ð8Þ; ð9Þ; ð26Þ; ð11Þ;
xijm; x0ijm 2 f0;1g; ði; j;mÞ 2 ðI0 � I0 � VÞ; yim 2 f0;1g; ði;mÞ 2 ðI � VÞ ð31Þ
The problem decomposes into four independent problems:

(a) Scheduling subproblem of LRX-IAVS:
(LRX-IAVS-Sch)
min W �
X
i;j;m

u6
ijmx0jim ð32Þ

s:t: ð2Þ; ð8Þ; ð9Þ; ð11Þ;

Ci þ tDi ;Pj
þ Tj 6 K 1� x0ijm

� �
þ Cj 8i; j 2 I : j – i; m 2 V ð33Þ

x0ijm 2 f0;1g; ði; j;mÞ 2 ðI � I � VÞ ð34Þ
(b) A semi-knapsack subproblem:
(LRX-IAVS-Seq)
min
X
i;m

u1
im

XN

j¼1;j–i

xjim þ
X
i;m

u2
im

XN

j¼1;j–i

xijm þ
X

i

u3
i

X
j–i;m

xijm �
X

i

u3
i

X
j–i;m

xjim �
X

i

u4
i

X
j–i;m

xjim �
X

i

u5
i

X
j–i;m

xjim þ
X
i;j;m

u6
ijmxjim

þ
X

i

u4
i ð1Þ þ

X
i

u5
i ð1Þ ð35Þ

s:t: ð16Þ; ð26Þ;
xijm 2 f0;1g; ði; j;mÞ 2 ðI � I � VÞ ð36Þ
(c) A semi-assignment subproblem only in the space of dummy source and sink variables which is again decomposable
for the source and the sink variables:
(LRX-IAVS-SourceSink)
min
X
i;m

u1
imx0im þ

X
i;m

u2
imxiNþ1m þ

X
i;m

u3
i x0im �

X
i;m

u3
i xiNþ1m ð37Þ

s:t: ð17Þ; ð18Þ;
xiNþ1m; x0im 2 f0;1g; ði; j;mÞ 2 ðI � I � VÞ; yim 2 f0;1g; ði;mÞ 2 ðI � VÞ ð38Þ
(d) A knapsack problem in the space of y variables:
(LRX-IAVS-y)
source

3 sink 1

2

5 7

4 6 8

Fig. 4. The total number of arc arriving at a task node is at least equal to the size of the task.
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min �
X
i;m

u1
imyim �

X
i;m

u2
imyim ð39Þ

s:t: ð13Þ;
yim 2 f0;1g; ði;mÞ 2 ðI � VÞ ð40Þ
where V⁄(LRX � IAVS) = V⁄(LRX � IAVS � Sch) + V⁄(LRX � IAVS � Seq) + V⁄(LRX � IAVS � SourceSink) + V⁄(LRX � IAVS � y)
and V⁄(�) stands for the optimal value.

4.2.2. Algorithms for solving subproblems
The problems (LRX-IAVS-Seq), (LRX-IAVS-SourceSink) and (LRX-IAVS-y) are binary problems, which can be solved by

inspection without any need to resort to a general-purpose LP/MIP solver. The only different problem is (LRX-IAVS-Sch),
which does not show any trivial exploitable structure to help in solving it by inspection. Still, it can be relatively efficiently
solved using a state-of-the-art solver.

In the following, we outline specialized algorithms for each subproblem.
Algorithm for (LRX-IAVS-Seq). Let aijm be the coefficient of xijm in (LRX-IAVS-Seq) after re-ordering the terms. The problem

does not have too many constraints:

Algorithm 1. Inspection algorithm for (LRX � IAVS � Seq).
Except for the function argmin(), this algorithm terminates in linear time.

Algorithm for (LRX-IAVS-SourceSink). Let b0im be the coefficient of x0im and bi N+1m be the coefficient of xi N+1m. Then let
(i0,m0) = argmin{b0im: i 2 I,m 2 V}, we set x0i0m0 ¼ 1 and x0i�m� ¼ 0; 8i� – i0; m� – m0. Also let (i00,m00) = argmin{bi N+1m:-
i 2 I,m 2 V}, we set x0i00m00 ¼ 1 and x0i��m�� ¼ 0; 8i�� – i00; m�� – m00.



Algorithm 2. Inspection algorithm for (LRX � IAVS � SourceSink).
This algorithm terminates in OðVÞ.

Algorithm for (LRX-IAVS-y). Let cy
im be the cost of variable yim. If Si = 1 then ði;m0Þ ¼ argmin cy

im : m 2 V
� �

; yim0 ¼ 1. If Si = 2
then ði;m00Þ ¼ argmin cy

im : m – m0
� �

and yim0 ¼ yim00 ¼ 1. Set yim� ¼ 0; 8i;m� R fm0;m00g.

Algorithm 3. Inspection algorithm for (LRX � IAVS � y).
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This algorithm terminates in OðNÞ.
4.3. Variable fixing

During iterations of subgradient optimization, after a few steps, when the multipliers are stabilized, we have lower bound
obtained from the Lagrangian relaxation, LBLRX, and also an upper bound, UBheur, using a heuristic which we describe as
follows.

Given the reduced cost (in terms of Lagrangian multipliers) of a binary variable var, (where currently var = 0), if the re-
duced cost RCvar > UB � LB then this variable will not take 1 in any optimal solution. Because by setting it to 1 the lower
bound would exceed the upper bound (best solution found by the heuristic) which is impossible. Therefore, we can exclude
its column from further computations and obtain a reduced size problem.

We give priority to yim,"i 2 I,m 2 V variables for this elimination test. Because, eliminating one yim implies a reduction of
all variables xijm and xjim, "j 2 I0,m 2 V which is quite significant and makes the problem size iteratively smaller and resolu-
tion becomes easier.

We perform this test whenever lower bound improves during the subgradient iterations.

4.4. Primal bound

A computationally inexpensive heuristic algorithm is needed in order to exploit the information obtained from the LR
model and produce high-quality feasible solutions. For every given solution to the LR, the assignment of jobs to the machines
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is determined in (LRX-IAVS-y) while the sequencing part (LRX-IAVS-Seq) may not produce a complete description or even a
partial feasible solution.

The basic idea behind this heuristic is to do the following:

� accepting the assignment reported by (LRX-IAVS-y) and optimizing the sequence by taking into account the tasks which
need to be done by cooperation between two machines,
� optimizing for the assignment, which inevitably leads to a sequence optimization as well.

We employ a local search approach which performs a re-assignment of jobs among IAVs in a systematic way aiming at
minimizing the makespan for every machine.

4.4.1. Initial solution
We start by distributing the tasks (xi,"i 2 I) between the machines in such a way that ai of the first tasks be close to each

other. We follow the same pattern for all other tasks. Let A = {1,4,7,11,15,16,17,19,21} and M = 3. We distribute the jobs as
follows:
x1ða1 ¼ 1Þ ! x4ða4 ¼ 11Þ ! x7ða7 ¼ 17Þ
x2ða2 ¼ 4Þ ! x5ða5 ¼ 15Þ ! x8ða8 ¼ 19Þ
x3ða3 ¼ 7Þ ! x6ða6 ¼ 16Þ ! x9ða9 ¼ 21Þ
Let assume that S(x4) = S(x8) = 2. The following pattern applies:
x1ða1 ¼ 1Þ ! x4ða4 ¼ 11Þ ! x6ða6 ¼ 16Þ ! x8ða8 ¼ 19Þ
x2ða2 ¼ 4Þ ! x4ða4 ¼ 11Þ ! x7ða7 ¼ 17Þ ! x9ða9 ¼ 21Þ
x3ða3 ¼ 7Þ ! x5ða5 ¼ 15Þ ! x8ða8 ¼ 19Þ
where duplicate copies of every job with size >1 is present in the representation. By doing so, we aim at more evenly dis-
tributing the jobs among the machines such that the variances of completion times of the last tasks on the machines is
minimized.

4.4.2. Neighborhood structure and move strategies
We employ two kinds of move: Temporal and Spatial. In temporal moves, the sequence of tasks performed on the same

machine is modified while in the spatial moves, a job is assigned to different machine(s).

4.4.2.1. Temporal move. A temporal move is a move which transforms the current solution to another solution by putting for-
ward or postponing a job by only one step on the same machine, if feasible. That is, if job xi is the jth job on the machine m
then the temporal moves results in a solution having xi the (j � 1)th or (j + 1)th job on the same machine.

4.4.2.2. Spatial move. A spatial move is a move which transforms the current solution to another solution by changing the
machine to which it is assigned. That is, if job xj is the jth job on machine m then applying temporal moves results in a solu-
tion having xi as the j0th job on another machine m0 (the choice of j0 is rather biased towards a greedy approach) minimizing
the possible increase in the completion time of the last task on m0.

4.4.2.3. Search strategy. Our main emphasis is on distributing jobs on the machines such that the machines finish their final
tasks as early as possible and also very close to each other. This helps to avoid having a few machines of heavily loaded with
long makespan and the rest being less utilized with significantly shorter makespans. In order to achieve this goal, we must
first ensure that—given our neighborhood structures and a greedy search—there is no other sequence better than the current
one, which makes the makespan shorter for a given machine. This means that we employ a two-level search. In the first level,
we only employ temporal moves for each machine in order to obtain high-quality sequences for a given assignment pattern.
We try to greedily re-sequence the jobs on every machine by finding the best place of each job starting from the first to the
last one in the current solution. It must be mentioned that for the jobs with S(xi) > 1, any re-sequencing may result in change
of makespans of its both collaborating machines. Therefore, except for the machines which are not cooperating at all with
any other machine, the rest of machines are treated lexicographically to avoid any tie and confusion. In the second phase,
spatial moves are performed in which we start from the machines with the longest makespans and try to re-assign some
of their tasks to other machines with shorter makespans and subsequently perform some iterations of temporal moves.
Of course, the issues related to the tasks of larger than 1-TEU are taken into account.
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4.4.2.4. Tabu list. We employ a tabu list which keeps track of moves in the search space. A spatial or temporal move becomes
forbidden for gl, gm iterations, respectively. That is, if a move has caused a job on machine m being postponed or put forward,
then the reverse move will become forbidden for gt iterations. This analogously applies to the spatial moves.

4.4.2.5. Escape strategies. The greedy approaches are often in danger of being trapped in local optima and encounter a pre-
mature convergence. In order to avoid that, we incorporate some degrees of randomness in our approach. In moving from
one solution to a neighboring one, we accept even the degrading solutions if the value of e

� Df
log iteration

� �
is larger than htr and

reject it, otherwise.

4.4.2.6. Termination criteria. The termination criterion is set to reaching a total number of consecutive non-improving
iterations.
5. Numerical results

We generated instances based on the perturbed data of Dublin Ferryport Terminal (DFT). Instances range from very few
up to a few hundreds of jobs, and the number of deployed IAVs are chosen to be in {2, . . . ,6}. Through an extensive exper-
iments on the instances of the problem, we have observed that our heuristic is quite robust against possible changes in gl and
gm. Therefore, we have fixed these two values to gl = gm = 10. The same applies to the choice of htr. For htr, the best value be-
tween {0,0.2,0.4,0.6,0.8,1} turned out to be 0.8.

As for termination criteria, we stopped the search as soon as a consecutive N
M unsuccessful iterations being observed.

As mentioned earlier there is a minimal level of perturbation in the real data in order to respect the confidentiality. A part
of this perturbation is to linearly translate the time unit. That means, the time unit we present here is none of the second,
minute or hour—rather, a linearly transformed one.

There are in general 16 drop-off/pick-up locations. The terminal yard is composed of 12 stacks—6 import and 6 export
stacks. For the sake of simplicity and to avoid excessive computational efforts, we have considered that every stack has only
one drop-off/pick-up point along its length.

All the numerical results have been carried out on an Intel(R) Core(TM)2 Duo CPU 2.93 Ghz with 4.00 GB RAM.

5.1. CPLEX and efficiency of the valid inequalities

In Table 3 we report the impact of valid inequalities on the performance of CPLEX. The table reports statistics of initial
model, which includes the valid inequalities (20).

In Table 3, the first column represents the instance name. The rest of table is divided into two blocks—a block for the ini-
tial model and another one for the model with the additional inequalities. The first column of each block represents the num-
ber of branch-and-bound nodes. The second one represents CPU time taken by CPLEX before termination. The third column
reports the termination status observed by CPLEX, and the last column of the block represents the MIP relative gap, if any,
observed upon termination of CPLEX.

Wherever an improvement has been observed, we highlighted it by a bold-faced entry in the table. The italic entries are
those cases for which the added inequalities deteriorated performance of CPLEX in the sense that the optimality has been
lost or a similar solution quality has been obtained in a longer computational time compared to the initial model.

Instance names are written in mX_nY format, where X is the number of machines and Y is the number of tasks. We restrict
the instance sizes to those which CPLEX could accommodate on our machine. Usually, on our machine M = 6 and N = 100 is
the size limit that we could use CPLEX for resolution (still many instances within this range are not solvable on our machine,
and we had to use CPLEX parameters to set some algorithmic limits).

We used CPLEX 12.1, a time limit (tiLim) of 1200 s and a limit on the maximum number of branch-and-bound node
(nodeLim) 500,000.

In Table 3, we use the same status codes which are used by CPLEX to report the status of solver upon termination of MIP
algorithm. Optimal is reported when CPLEX terminates with optimality, NodeLimFeas indicates that the solver terminated
by hitting the user-defined node limit in the branch-and-bound tree and a feasible solution has been found. NodeLimInfeas
states that the user-defined node limit has been reached but no feasible solution detected and AbortTimeLim indicates that
CPLEX terminated when a user-defined time limit of 1200 s has been reached without any feasible solution being found.

After adding those valid inequalities, for some instances the number of branch-and-bound nodes were reduced by almost
half a million nodes. In fact, whenever an improvement was observed the reduction (by some hundreds of thousand nodes)
in the branch-and-bound tree size as well as the CPU time was very significant. There were of course cases where no
improvement occurred or even the solver performance has deteriorated.

There were instances for which CPLEX reported NodeLimFeas (the node limit was reached) such as m2_n8 and m3_n12.
Here, the improved formulation proved optimality and reduced the branch-and-bound tree by almost half a million nodes to
5613 and 63,367 nodes, respectively.

There were instances such as m2_n40, m2_n50, m3_n50, m4_n40, m4_n50, m5_n50, m6_n36, m6_n40, m6 n50 for which
the initial model reported AbortTimeLim. For those instances the tightened model proved the optimality at the root node



Table 3
The impact of valid inequalities (20) on the performance of CPLEX.

Instance Initial model Model with (20)

nbNodes CPUTime CplexStatus MIPRelativeGap nbNodes CPUTime CplexStatus MIPRelativeGap

m2_n4 541 0.34 Optimal 0.00 60 0.09 Optimal 0.00
m2_n8 500001 118.00 NodeLimFeas 18.11 5613 2.81 Optimal 0.00
m2_n12 500001 204.58 NodeLimFeas 1.95 500002 356.14 NodeLimFeas 10.91
m2_n16 0 0.17 Optimal 0.00 500001 576.85 NodeLimFeas 23.06
m2_n20 500002 424.68 NodeLimInfeas – 500001 602.24 NodeLimInfeas –
m2_n24 485382 1430.86 AbortTimeLim – 500002 1190.63 NodeLimFeas 17.63
m2_n28 0 0.64 Optimal 0.00 500001 1241.77 NodeLimFeas 58.92
m2_n32 379179 1427.03 AbortTimeLim – 388520 1411.86 AbortTimeLim –
m2_n36 277723 1406.96 AbortTimeLim – 373301 1435.74 AbortTimeLim –
m2_n40 379774 1385.73 AbortTimeLim – 0 1.45 Optimal 0.00
m2_n50 186465 1430.03 AbortTimeLim – 0 2.93 Optimal 0.00
m2_n60 500001 1865.13 NodeLimInfeas – 500001 1836.03 NodeLimFeas 33.00
m2_n80 500001 1867.12 NodeLimInfeas – 500001 2010.20 NodeLimFeas 24.00
m2_n100 500001 2556.10 NodeLimInfeas – 500001 2785.94 NodeLimFeas 29.00
m3_n4 671 0.50 Optimal 0.00 20 0.25 Optimal 0.00
m3_n8 0 0.22 Optimal 0.00 0 0.08 Optimal 0.00
m3_n12 500001 518.22 NodeLimFeas 20.69 63367 51.39 Optimal 0.00
m3_n16 500001 966.22 NodeLimFeas 0.30 500002 772.81 NodeLimFeas 45.51
m3_n20 0 0.81 Optimal 0.00 0 0.76 Optimal 0.00
m3_n24 500002 1360.42 NodeLimFeas 18.08 500002 1337.47 NodeLimFeas 19.60
m3_n28 509 3.96 Optimal 0.00 500001 1177.17 NodeLimFeas 0.20
m3_n32 0 1.28 Optimal 0.00 0 1.40 Optimal 0.00
m3_n36 9671 42.93 Optimal 0.00 482 9.67 Optimal 0.00
m3_n40 0 2.17 Optimal 0.00 0 2.78 Optimal 0.00
m3_n50 112378 1412.29 AbortTimeLim – 0 3.85 Optimal 0.00
m3_n60 500001 1972.34 NodeLimInfeas – 500001 NodeLimFeas 16.00
m3_n80 500001 2228.63 NodeLimInfeas – 500001 NodeLimFeas 24.00
m3_n100 500001 2882.55 NodeLimInfeas – 500001 NodeLimFeas 12.00
m4_n4 42 0.31 Optimal 0.00 97 1.11 Optimal 0.00
m4_n8 238 0.33 Optimal 0.00 75 0.41 Optimal 0.00
m4_n12 0 0.41 Optimal 0.00 500001 698.87 NodeLimFeas 9.93
m4_n16 0 0.48 Optimal 0.00 500001 885.35 NodeLimFeas 66.08
m4_n20 0 0.78 Optimal 0.00 0 0.70 Optimal 0.00
m4_n24 0 1.95 Optimal 0.00 0 1.39 Optimal 0.00
m4_n28 0 2.56 Optimal 0.00 86060 274.09 Optimal 0.00
m4_n32 0 2.23 Optimal 0.00 3 3.76 Optimal 0.00
m4_n36 545 22.59 Optimal 0.00 2847 37.92 Optimal 0.00
m4_n40 106152 1413.60 AbortTimeLim 3.52 0 4.77 Optimal 0.00
m4_n50 140954 1403.62 AbortTimeLim – 0 9.20 Optimal 0.00
m4_n60 500001 1800.58 NodeLimInfeas – 500001 1777.01 NodeLimFeas 10.00
m4_n80 500001 2206.94 NodeLimInfeas – 500001 1866.89 NodeLimFeas 35.00
m4_n100 500001 2602.40 NodeLimInfeas – 500001 2893.39 NodeLimFeas 38.00
m5_n4 31 0.36 Optimal 0.00 37 0.25 Optimal 0.00
m5_n8 538 1.51 Optimal 0.00 61 0.51 Optimal 0.00
m5_n12 0 0.39 Optimal 0.00 3061 9.67 Optimal 0.00
m5_n16 21162 52.18 Optimal 0.00 500001 756.45 NodeLimFeas 14.76
m5_n20 12626 52.01 Optimal 0.00 0 1.26 Optimal 0.00
m5_n24 0 2.89 Optimal 0.00 0 2.18 Optimal 0.00
m5_n28 488 6.43 Optimal 0.00 482 7.77 Optimal 0.00
m5_n32 – – – 0.00 497 19.84 Optimal 0.00
m5_n36 0 6.07 Optimal 0.00 0 4.74 Optimal 0.00
m5_n40 0 9.03 Optimal 0.00 0 6.13 Optimal 0.00
m5_n50 82710 1446.27 AbortTimeLim 0.00 0 35.12 Optimal 0.00
m5_n60 500001 1668.49 NodeLimInfeas – 500001 1516.95 NodeLimFeas 36.00
m5_n80 500001 2119.25 NodeLimInfeas – 500001 2190.70 NodeLimFeas 17.00
m5_n100 500001 2675.28 NodeLimInfeas – 500001 2410.12 NodeLimFeas 10.00
m6_n8 156 0.59 Optimal 0.00 18 0.36 Optimal 0.00
m6_n4 39 0.19 Optimal 0.00 0 0.11 Optimal 0.00
m6_n12 359 1.65 Optimal 0.00 0 0.45 Optimal 0.00
m6_n16 0 0.80 Optimal 0.00 0 1.45 Optimal 0.00
m6_n20 0 1.09 Optimal 0.00 18 2.79 Optimal 0.00
m6_n24 9689 46.27 Optimal 0.00 339680 1324.03 Optimal 0.00
m6_n28 0 3.14 Optimal 0.00 0 4.85 Optimal 0.00
m6_n32 46305 421.70 Optimal 0.00 220828 1523.63 AbortTimeLim 0.07
m6_n36 123198 1439.56 AbortTimeLim – 0 7.58 Optimal 0.00
m6_n40 141421 1410.61 AbortTimeLim – 0 8.97 Optimal 0.00
m6_n50 10633 1515.78 AbortTimeLim – 0 23.21 Optimal 0.00
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Table 3 (continued)

Instance Initial model Model with (20)

nbNodes CPUTime CplexStatus MIPRelativeGap nbNodes CPUTime CplexStatus MIPRelativeGap

m6_n60 500001 1914.72 NodeLimInfeas – 500001 1535.65 NodeLimFeas 22.00
m6_n80 500001 2136.14 NodeLimInfeas – 500001 1842.02 NodeLimFeas 32.00
m6_n100 500001 2720.65 NodeLimInfeas – 500001 2882.80 NodeLimFeas 40.00
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with no branching (but perhaps with the primal/dual reduction, preprocessing and the cuts added by CPLEX at the root
node).

Several instances such as m2_n60, m2_n80, m2_n100, m3_n60, m3_n80, m3_n100, m4_n60, m4_n80, m4_n100, m5_n60,
m5_n80, m5_n100, m6_n60, m6_n80, m6_n100 initially reported NodeLimInfeas while after adding the new inequalities,
they turned to NodeLimFeas and the solution qualities were relatively good, in general.

For m5_n32, CPLEX was unable to report any status using the initial model, while after the tightening, it was solved to
optimality in 19.84 s and used only 497 branch-and-bound nodes.

In one instance of the initial model, m2_n24, we observed AbortTimeLim status without any feasible solution while after
adding those valid inequalities CPLEX terminated to NodeLimFeas with a relatively good quality feasible solution being
found.

On the other hand, there were also cases where adding inequalities (20) deteriorated CPLEX performance (mainly due to
introducing degeneracy) such as m2_n16, m3_n28, m4_n12, m4_n16, m5_n16, m6_n32. For these instances CPLEX has ini-
tially reported Optimal while introducing the new inequalities has caused CPLEX to terminate by NodeLimFeas.

In general, in 28 cases improvements and in 6 cases deterioration in CPLEX performance has been observed.
For every fleet size and on larger instances, namely instance with 60, 70, 80, 100 tasks, while CPLEX was unable to find

any feasible solution, employing valid inequalities (20) helped CPLEX to find feasible solutions with relatively good qualities.
5.2. Lagrangian relaxation vs. local search

DFT is a rather small terminal and Dublin port is mostly a non-transshipment port. It is not expected that the terminal
authority deploys more than 6 IAVs in the initial pilot phase.

In our generated instances, 2-TEU (i.e. 1-FFE) containers comprising approximately 60% of the total discharged/uploaded
containers for every vessel call. As a result, we know a priori that it is almost impossible that enlarging the fleet of IAVs by a
factor of, say, two would reduce the makespan to 1

2 of the current value. These are not proportional because of collaborations
on larger than 1-TEU containers.

We use the subgradient algorithm to solve our Lagrangian relaxation-based decomposition (LRX) problem and every 10
iterations we invoke the heuristic algorithm to produce a feasible solution as a primal bound. The algorithm terminates
whenever either the average subgradient size drops below a certain threshold depending on the size of instance or there
was not a sufficient improvement in the last 20 iterations—even after adjusting the step size of the sub-gradient algorithm.
The big-M constraints are modeled using the notion of indicators in CPLEX to avoid numerical instability in cases that the big-
M constraints are not removed at the preprocessing phase of CPLEX.

The variable fixing procedure is invoked every five iterations, if there has been any improvement in either bounds.
In Table 4, the values are chosen as n 2 {20,30,40,50,100,150,200,250,300,350,400} and m 2 {2,3,4,5,6} and for each m

there is a corresponding block in the table. For each block, we have the following structure:
The first column represents the number of machines, and the second one reports the number of tasks. The computational

time spent in LR resolution is reported in the subsequent column which is followed by the column representing the number
of subgradient iterations. We then report the computational time spent in the heuristic algorithm in the next column. The
following column reports the gap between the best solution of heuristic, and the LR bound. The subsequent column reports
the best-found makespan in its modified time unit. Finally, in the last column, we report a performance comparison against
CPLEX when it is directly applied to the IAVS model.

Due to the numerical difficulties in solving (LRX-IAVS-Sch) MIP model in our Lagrangian relaxation model, the number of
subgradient iterations is fairly small, except in cases where Lagrangian problem to an instance becomes rather easy. The
computational times of Lagrangian relaxation ranges from roughly 35 s to about 14,902. This time also includes the time
spent in the heuristic search and variable fixing procedures during the resolution process.

Yet, the computational times of heuristic are very small when compared to the CPU time spent in the overall algorithm.
The gap between the heuristic and the LR bound are practically acceptable for this application, and the quality of solutions

are confirmed. The maximum average gap is 16.72%, which is practically good and acceptable.
A fair comparison of approach with a direct application of CPLEX to IAVS model (with additional constraints) would be to

allow CPLEX run until it finds a solution with a similar quality (regarding GAPs) as the solution found by the LR. We also set a
time limit to twice the maximum time needed for LR approach for the same jVj (same block) and among all its jIjs. Moreover,
we set a branch-and-bound node limit to 1,000,000 nodes.



Table 4
Lagrangian decomposition numerical results.

jVj = m jIj = n Lagrangian Relaxation Local Search Makespan CPLEX jVj = m jIj = n Lagrangian Relaxation Local Search Makespan CPLEX

Time (s) # Iteration Time (s) GAP (%) Time (s) Time (s) # Iteration Time (s) GAP (%) Time (s)

2 20 208.53 81 21.19 28.72 134.40 0.00 5 20 751.29 71 13.81 2.93 99.48 0.00
30 441.13 36 18.58 13.86 393.71 0.00 30 234.07 47 17.22 5.96 272.42 0.00
40 132.90 49 13.14 16.50 815.27 36.20 40 185.25 33 13.82 2.50 564.10 0.92
50 758.25 35 48.20 8.34 2409.73 35.91 50 420.68 84 48.30 28.18 1587.21 28.18

100 820.60 46 78.97 25.54 6384.74 nodeLim 100 3812.05 37 17.00 8.24 4448.04 nodeLim

150 35.95 59 208.29 6.59 11680.89 nodeLim 150 6303.94 14 450.62 26.58 8646.29 nodeLim

200 95.29 77 28.47 29.00 26687.28 nodeLim 200 9316.84 46 586.58 18.31 17261.11 tiLim

250 1053.25 42 321.45 27.05 64034.56 tiLim 250 11517.96 21 29.96 23.09 42228.12 tiLim

300 3460.36 52 111.83 10.17 127765.75 tiLim 300 11587.74 83 515.69 0.87 89414.73 tiLim

350 4676.58 82 525.20 0.75 227634.73 tiLim 350 901.47 81 74.06 2.34 147232.25 tiLim

400 4988.63 53 60.46 3.01 439510.88 tiLim 400 8413.12 27 126.56 11.35 325677.56 tiLim

Avg. 15.41 Avg. 11.85
3 20 515.30 16 39.70 15.36 123.20 0.00 6 20 145.11 14 22.99 10.53 87.88 0.00

30 879.88 19 88.01 28.97 301.85 0.00 30 716.34 20 71.37 19.81 248.81 0.00
40 816.33 24 18.68 9.83 625.04 45.46 40 234.54 35 32.51 5.72 515.21 159.22
50 593.26 64 79.13 6.34 2088.44 33.61 50 1015.63 67 18.36 7.60 1449.65 112.55

100 2596.86 41 235.69 17.26 5852.68 nodeLim 100 1262.78 89 95.09 28.76 3929.10 nodeLim

150 3837.04 99 84.63 15.58 10707.48 nodeLim 150 456.43 48 109.62 12.46 7896.95 tiLim

200 2087.99 97 198.90 12.27 19125.88 nodeLim 200 2706.71 64 124.87 10.64 15247.31 tiLim

250 2135.31 46 506.60 23.82 52294.89 tiLim 250 953.77 74 72.62 15.74 38568.35 tiLim

300 1911.92 89 528.74 13.15 110730.31 tiLim 300 7798.86 95 407.25 29.48 81665.45 tiLim

350 5167.25 46 475.29 27.63 163138.22 tiLim 350 3987.62 36 658.41 12.00 130055.15 tiLim

400 10404.03 41 1124.90 13.74 380909.43 tiLim 400 7273.53 41 881.28 14.02 287681.85 tiLim

Avg. 16.72 Avg. 15.16
4 20 98.01 53 32.01 0.09 104.72 0.00

30 170.59 24 34.22 8.79 286.76 0.00
40 1263.83 35 138.95 7.94 593.79 81.27
50 249.93 40 150.46 25.30 1670.75 152.33

100 2215.72 41 238.49 11.34 4682.14 nodeLim

150 3515.87 42 165.68 9.55 9101.36 nodeLim

200 2766.83 60 186.66 9.84 18169.59 tiLim

250 984.18 69 54.35 15.73 49680.15 tiLim

300 9476.48 67 192.11 1.39 94120.77 tiLim

350 7519.82 36 836.61 25.16 154981.31 tiLim

400 14902.79 46 1184.40 6.35 361863.96 tiLim

Avg. 11.04
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The numerical values of this column represent the time needed by CPLEX to find a similar solution quality. Although the
results can be instance-dependent, however, starting from jIj = 100 for all jVj, CPLEX always runs either into node limit or
time limit without being able to obtain a solution with a similar quality as the one found by our LR approach. This is due
to the fact that the LP is still easy for jIj = 100 and jIj = 200 and allows many branch-and-bound nodes to be processed.
But, even that becomes challenging in larger jIj.

The results also confirm that: while the increase in the makespan is not linearly proportional to the number of tasks, de-
crease in the length of makespan is not proportional to the size of the fleet of IAVs, either. This is justified by the fact that
most of the discharged containers actually lead to cooperation between IAVs, which in turn results in a significant waiting
time spent by IAVs awaiting each other to start a task.

5.3. Comparison with the current practice of port

The present practice in the port is comprised of a fleet of man-driven vehicles (called shunters) each of which transports a
1-TEU or 1-FFE container. A precise performance comparison between the on-going practice and the IAV-based logistics is
not very straightforward as a fair comparison is rather difficult. That is, comparing output of a deterministic model against
the real practice, including several sources of uncertainties, failure, etc. might not be fair.

In this work we do not compare IAVs against AGVs due to two reasons: (1) AGVs are not currently in service at DFT,
and therefore, we do not have any relevant statistics. (2) The main issue of DFT (and those port of North-West Europe
involved in InTraDE) is the shortage of space for the manoeuvre of 40-ft transporters (including 40-ft AGVs) and their
resulting bottleneck in traffic flow, which demands an alternative solution such as IAVs with pairing/unpairing
capability.

A generic simulation platform has been used to develop a model and simulate the output of our optimization algorithm in
terms of the sequence of jobs on every IAV as well as the pairing/unpairing plan reported in the output.

FlexSim2 has been chosen as an extendible platform to develop our simulation model.3

DFT has two berths (see Fig. 6), Eastern berth (180 m long) and Southern berth (300 m long). Three rail-mounted quay
cranes are shared between the two berths. The six stacks closest to the quay side are the export stacks, and those six farthest
ones are the import stacks (shown in Fig. 6).

At the Northwest corner (next to the Eastern berth) of DFT layout, there is a rectangular area reserved for empty container
stacking or a place for temporary stacking of containers for special operations. This is beyond the scope of this work.

The service rate of the quay cranes is approximately 70–90 unit of time for a cycle of (1) collection of a container, (2)
transfer between vessel and IAVs, and (3) release of the container.

Every call discharges roughly between 300–500 containers and loads almost 80% of the discharged quantity. Moreover,
almost 60% of the total number of handled containers in this terminal are 40-ft (1-FFE) containers and very few 45-ft ones
(can be safely ignored).

As the current practice makes use of man-driven shunters as transport means at DFT and is not bound to follow any
special guiding signs on the ground (except that the drivers have to obey some generic traffic rules), the real distance
table can be roughly approximated by the network distance. The network distances are calculated based on a discreti-
zation we have made. The same distances are used in the developed routing engine of IAVs in a software package called
InTraDE-IAV-Router (see Gelareh et al. (2012a) for further details). Fig. 7 illustrates the network structure of DFT
based on the discretization made by InTraDE-IAV-Router. The nodes of this network are chosen to be the center
of gravity of every square in the figure. The dark cells represent the blocked nodes and edges representing non-driving
areas.

Further details of the simulation study can be found in Gelareh et al. (2012a).
The following scenarios were considered based on an analysis of data, which we have collected, and the observations

from the current practice. For every scenario, an output of the optimization algorithm (the profile of loading/discharging,
job sequences of IAVs, etc.) is imported into the simulation model. Doing so helps to observe the system behavior which
is expected to be closer to the reality than the deterministic optimization output:

Scen. (i) Only Eastern berth is engaged with the loading/unloading, and it uses only one quay crane (low season).
Scen. (ii) Only Eastern berth is engaged with the loading/unloading, and it uses two quay cranes.
Scen. (iii) Only Southern berth is engaged with the loading/unloading, and it uses two quay cranes.
Scen. (iv) Only Southern berth is engaged with the loading/unloading, and it uses three quay cranes.
Scen. (v) Both Easter and Southern berths are engaged with the loading/unloading while the southern one uses two quay

cranes and the Eastern one uses one (high/pick season).
2 FlexSim is a discrete-event manufacturing simulation software developed by FlexSim Software Products, Inc.
3 Although, FlexSim CT, as a separate platform for simulation of container terminals is already available, however, due to the complexity of operations (such as

management and synchronization needed to control the whole system) the software producer has decided to trade flexibility for simplicity and offers fewer
possibilities to the users in order to extend FlexSim CT, compared to what has been offered in FlexSim (of course, at the time this article is being written).
Therefore, we were not able to model IAVs collaborative manner in FlexSim CT and we used FlexSim instead.



Fig. 6. Simulation model of Dublin Ferryport Terminal (DFT).

Fig. 7. Discretization—the network structure of DFT layout.
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It must be emphasized that special attention has been paid to capture and incorporate, as much as possible, the real-life
features and uncertainty involved in the system. This includes those related to the service time of cranes (yard and quay),
traffic congestions, etc.

In order to make a fair comparison, we recorded from the real practice the times for completion of
nc 2 {20,30,50,100,150,200,300,400} containers. Such a measured time includes also the marginal time which may be
caused by all the uncertainties, disturbances, etc. that may occur in reality. We then set the parameters of the simulation
model and run the simulation model of IAVs for the same profile of containers (same origin/destinations, almost same ser-
vice rate of equipment, etc.) as the output of our optimization algorithm. The fleet of IAVs, which we have used had the same
capacity as that of existing shunters at the port. We then run the simulation and recorded the time for completion of all



Fig. 8. Improvement over current practice in low and high season.
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Fig. 9. The graph representation of different variable definitions.
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possible values of nc containers from the whole load. The resulting time also includes the time needed for pairing/unpairing
of IAVs. This has been carried out for all the aforementioned scenarios.

The results indicate that starting from nc = 50 the time needed to perform nc tasks using IAVs becomes smaller than that of
the current practice. In Fig. 8, we report the improvement over the current practice of DFT for the low and high seasons. For
the low season, when only the Eastern berth is busy, the improvement over the time needed to complete operations starts
from 0.01% for the first 20 containers and increased to 11.5% after 400 containers. In the high season, when all three quay
cranes and two berths are serving vessels, the current practice of DFT suffers from a space problem encountered when
deploying too many 40-ft (45-ft) trucks. However, when using IAVs, the simulation results show an improvement starting
from 0.01% for the first 20 containers and increases to 22.26% after completing all 400 containers.

6. Summary, conclusion and outlook to future works

The autonomy and intelligence of IAVs promotes their application in different environments—container terminals as the
most important ones.

IAVs, developed in the framework of InTraDE, are expected to be deployed in some of the small container terminals in
North-West Europe. These container terminals are bound to very confined spaces and facing an ever increasing volume of
containerized trade while do not have the possibility for further expansions (even not enough space for installing space-
demanding recent technological port facilities). The space issues are addressed through deploying IAVs of 1-TEU capacity,
which can dynamically expand their capacity up to 40-ft through collaborations among them. This eliminates the need
for deploying too many space-demanding large 40-ft transporters.

We reviewed and extended the model in Ng et al. (2007) to accommodate cases where a sequence of containers
(including 1-TEU and also larger than 1-TEU) needs to be transported using a limited-size fleet of IAVs. Such a collaboration
is realized by dynamic pairing/unpairing of IAVs throughout the planning horizon in order to prepare sufficient capacity for
transporting containers of larger than 1-TEU. Once an IAV arrives at a crane to pick up a container of larger than 1-TEU, it has
to wait for another partner IAV to arrive, pair and do the pick-up and transport jointly. A given IAV may collaborate with
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another IAV on a container during a planning period. However, such a collaboration does not guarantee that the same IAVs
which have collaborated earlier on a container will pair again to serve transporting another container in the same planning
period.

We then developed a Lagrangian relaxation-based decomposition to solve instances of the case of Dublin Ferryport Ter-
minal and simulated the output of Lagrangian algorithm within a discrete-event simulation model of DFT. The numerical
results confirm the efficiency of our solution method and quality of solutions. From a practical point of view, a considerable
improvement has been observed (from the simulation model) on using IAVs instead of the current means of transport at DFT.

IAVs work in three modes: (1) fully-functional, (2) degraded and (3) faulty modes. While in the fully-functional mode, an
IAV works efficiently, in the degraded mode, perhaps part of the system (the system is comprised of 4 independent wheels
and several independent sensors) has encountered a failure, but the system is still able to complete the jobs with less per-
formance. In the third case, the IAV has to declare a break-down and stop operating. In the future, we will take into account
these features and extend the model to accommodate this case in a stochastic modeling framework. Of course, studies on
improving the mathematical model is of high importance and also developing effective solution approaches such as exact
decomposition methods deserve particular attention.
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Appendix A. A short note on mathematical model of Ng et al. (2007)

The definition of xijm is confusing. In Fig. 9a and b we depict an example with 5 tasks and 2 two vehicles (distinguished by
connection style)—excluding the dummy source and sink nodes in this representation. Depending on a precise definition of
xijm, only one of Fig. 9a and b is expected. The issue arises in the definition of x variables. One of the following definitions
should be the correct one for xijm:

� The task j is performed after the task i on the vehicle m: in which case xij0m ¼ 1 for all tasks j0 – i which are completed after
completion of i on the same vehicle m. Therefore the total number of links arriving at any non-first task is more than one
and this contradicts with (5). This is depicted in Fig. 9a (machine 2, with solid connection between tasks) where
x212 = x152 = x252 = 1. In such a case we have y12 = y22 = y52 = 1 and consequently the corresponding constraint (5) is vio-
lated by 2 ¼

PN
i¼1xijm 6 yjm ¼ 1 for j = 5, m = 2.

� The task j is performed immediately after the task i on the vehicle m: in which case xij0m ¼ 0 for all tasks j0 – j which are
completed after completion of i on the same vehicle m. There is no link between two non-consecutive tasks on the same
machine which contradicts with (6). This is depicted in Fig. 9b (machine 2, with solid connection between tasks) where
only x212 = x152 = 1. In such a case we have y12 = y22 = y52 = 1 and consequently the corresponding constraint (6) is violated
by 0 = x252 + x522 P y22 + y52 � 1 = 1.

Under of the aforementioned definitions of xijm, the model seems being infeasible. However, it is still possible to correct it
for use in planning AGVs and also extend it for accommodating joint operations, of handling e.g. an FFE, by pairing IAVs when
$i:S(i) > 1.
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