

CADERNO 1 (É permitido o uso de calculadora gráfica)

1. No intervalo $\left[-\frac{\pi}{6}, 2\pi\right]$ a equação $\cos x = k$ tem três soluções se $k > \cos\left(-\frac{\pi}{6}\right)$.

Com $\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ e $\frac{\sqrt{3}}{2} \approx 0.8660254$, conclui-se que o valor de k deve ser 0,87.

Resposta: A opção correta é a (C) 0,87.

2.

$$\cos\left(x - \frac{\pi}{2}\right) + 2\sin\left(\pi + x\right) = \frac{1}{3} \Leftrightarrow \sin x - 2\sin x = \frac{1}{3} \Leftrightarrow \sin x = -\frac{1}{3}$$

No intervalo $]-\pi,0[$ uma das soluções é $\arcsin\left(-\frac{1}{3}\right)$ e a outra é $-\pi-\arcsin\left(-\frac{1}{3}\right)$.

Recorrendo à calculadora tem-se:

$$\arcsin\left(-\frac{1}{3}\right) \approx -0.340$$
 e $-\pi - \arcsin\left(-\frac{1}{3}\right) \approx -2.802$

Resposta: -0.340 e -2.802

3. A amplitude do ângulo orientado, em radianos, com lado origem o semieixo positivo Ox e lado extremidade a semirreta $\dot{O}B$ é igual a $\arctan(-2,7) + \pi$.

A abcissa do ponto B é igual a $\cos(\arctan(-2,7) + \pi)$.

Recorrendo à calculadora, tem-se: $\cos(\arctan(-2,7) + \pi) \approx -0.35$

Resposta: A opção correta é a (A) -0,35.

4.

4.1. A inclinação da reta $BC \in \pi - \alpha$ e o declive da reta $BC \in -\frac{1}{2}$.

Então, $\tan(\pi - \alpha) = -\frac{1}{2}$. Daqui resulta que $\tan(-\alpha) = -\frac{1}{2}$, ou seja, $\tan \alpha = \frac{1}{2}$.

Resposta: $\frac{1}{2}$

Novo Espaço – Matemática A 11.º ano

Proposta de Resolução [novembro - 2017]

4.2. A reta *BC* é definida pela equação $y = -\frac{x}{2} + 3$.

Se x = 0, tem-se y = 3. Daqui resulta que C(0,3).

Se y = 0, tem-se x = 6. Daqui resulta que B(6,0).

$$\overrightarrow{BA} = B - A = (8,0)$$
 e $\overrightarrow{BC} = C - B = (-6,3)$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \|\overrightarrow{BA}\| \|\overrightarrow{BC}\| \cos \alpha$$
 (1)

Sabe-se que $\tan \alpha = \frac{1}{2}$ e que $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$. Daqui resulta que $\cos^2 \alpha = \frac{4}{5}$.

Como α é um ângulo agudo, tem-se $\cos \alpha = \frac{2\sqrt{5}}{5}$.

Substituindo em (1) $\|\overline{BA}\| = 8$; $\|\overline{BC}\| = \sqrt{36+9} = \sqrt{45} = 3\sqrt{5}$ e $\cos \alpha = \frac{2\sqrt{5}}{5}$, tem-se:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \|\overrightarrow{BA}\| \|\overrightarrow{BC}\| \cos \alpha = 8 \times 3\sqrt{5} \times \frac{2\sqrt{5}}{5} = 48$$

Resposta: $\overrightarrow{BA} \cdot \overrightarrow{BC} = 48$

FIM (Caderno 1)

Cotações								
Questões - Caderno 1	1.	2.	3.	4.1.	4.2.	Total		
Pontos	15	18	15	12	20	80		

Novo Espaço – Matemática A 11.º ano

Proposta de Resolução [novembro - 2017]

CADERNO 2 (Não é permitido o uso de calculadora)

5.

5.1.
$$f(x) = \sin(2x) + \sin x$$

$$f\left(\frac{\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) + \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{3} = \sqrt{3}$$

A medida do lado do quadrado $\sqrt{3}$, conclui-se que a área é 3.

Resposta: A opção correta é a (B) 3.

5.2. Zeros da função f.

$$f(x) = 0 \Leftrightarrow \sin(2x) + \sin x = 0 \Leftrightarrow \sin(2x) = -\sin x$$

$$\Leftrightarrow \sin(2x) = \sin(-x) \Leftrightarrow 2x = -x + 2k\pi \lor 2x = \pi + x + 2k\pi , k \in \mathbb{Z}$$

$$3x = 2k\pi \lor x = \pi + 2k\pi$$
, $k \in \mathbb{Z} \Leftrightarrow x = \frac{2k\pi}{3} \lor x = \pi + 2k\pi$, $k \in \mathbb{Z}$

As soluções pertencentes ao intervalo $\left[0,2\pi\right]$ são: $0;\frac{2\pi}{3};\frac{4\pi}{3};\pi e 2\pi$.

Resposta: Os zeros de f são: 0; $\frac{2\pi}{3}$; $\frac{4\pi}{3}$; π e 2π .

6.
$$\exists x \in \left[0, \frac{\pi}{3}\right[: \sin(2x) < 0$$

Se $x \in \left[0, \frac{\pi}{3}\right]$, então $0 < 2x < \frac{2\pi}{3}$. O seno é positivo no 1.º e 2.º quadrantes.

Assim, tem-se:
$$\forall x \in \left[0, \frac{\pi}{3}\right]$$
, $\sin(2x) > 0$

A opção falsa é a (C).

Resposta: A opção falsa é (C) $\exists x \in \left[0, \frac{\pi}{3}\right] : \sin(2x) < 0$

7.

7.1.
$$\overline{BC} - \overline{AD} = \frac{1}{2} \Leftrightarrow 1 - \cos \alpha = \frac{1}{2} \Leftrightarrow \cos \alpha = \frac{1}{2}$$

Como α é um ângulo agudo conclui-se que $\alpha = \frac{\pi}{3}$.

7.2.
$$\overline{OD} = \sin \alpha = \frac{3}{4}$$
; $\overline{OC} = \tan \alpha$

Como $\cos^2 x + \sin^2 x = 1$ e $\sin \alpha = \frac{3}{4}$, resulta que $\cos \alpha = \frac{\sqrt{7}}{4}$.

Novo Espaço - Matemática A 11.º ano

Proposta de Resolução [novembro - 2017]

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}} = \frac{3}{\sqrt{7}} = \frac{3\sqrt{7}}{7}$$

Conclui-se que $\overline{OC} = \frac{3\sqrt{7}}{7}$.

Resposta: $\overline{OC} = \frac{3\sqrt{7}}{7}$

7.3. Área do trapézio:
$$\frac{\overline{BC} + \overline{AD}}{2} \times \overline{CD} = \frac{1 + \cos \alpha}{2} \times (\tan \alpha - \sin \alpha) = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha \cos \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha - \sin \alpha}{\cos \alpha} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha}{2} \times \frac{\sin \alpha}{2} \times \frac{\sin \alpha}{2} = \frac{1 + \cos \alpha}{2} \times \frac{\sin \alpha}{2} \times \frac{\sin \alpha}{2} = \frac{1 + \cos \alpha}{2} \times \frac{\cos \alpha}{2} = \frac{1 + \cos$$

$$=\frac{(1+\cos\alpha)(1-\cos\alpha)\sin\alpha}{2\cos\alpha}=\frac{(1-\cos^2\alpha)\sin\alpha}{2\cos\alpha}=\frac{\sin^2\alpha\sin\alpha}{2\cos\alpha}=\frac{\sin^3\alpha}{2\cos\alpha}$$

Resposta: A área do trapézio é dada por $\frac{\sin^3 \alpha}{2\cos \alpha}$.

8.

8.1. Retas paralelas têm o mesmo declive. A reta AD é do tipo $y = \frac{4}{3}x + b$ e passa no ponto A(-5,0).

$$0 = -\frac{20}{3} + b$$
, ou seja, $b = \frac{20}{3}$.

Equação, na forma reduzida, da reta *AD*: $y = \frac{4}{3}x + \frac{20}{3}$

Resposta: $y = \frac{4}{3}x + \frac{20}{3}$

8.2. Seja θ a amplitude do ângulo formado pelos vetores \overrightarrow{AO} e \overrightarrow{AD} .

Como θ é a inclinação da reta AD, tem-se que $\tan \theta = \frac{4}{3}$.

Mas, $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$, então $\frac{1}{\cos^2 \theta} = \frac{25}{9}$. Daqui resulta que $\cos \theta = \frac{3}{5}$.

Assim, tem-se \overrightarrow{AO} . $\overrightarrow{AD} = \|\overrightarrow{AO}\| \|\overrightarrow{AD}\| \cos \theta = 5 \times 5 \times \frac{3}{5} = 15$.

Resposta: A opção correta é a (C) 15.

FIM (Caderno 2)

, ,												
Cotações												
	Caderno 1 (com calculadora)											
Questões	1.	2.		3.	4.1.	4.	2.					
Pontos	15	18	8	15	12	2	0		Total	80		
	Caderno 2 (sem calculadora)											
Questões	5.1.	5.2.	6.	7.1.	7.2.	7.3.	8.1.	8.2.				
Pontos	15	20	15	10	15	15	15	15	Total	120		
Total									200			