	Teste de Matemática A		
	2016 / 2017		
Teste N.º 5			
Matemática A			
Duração do Teste: 90 minutos			
11.º Ano de Escolaridade			
Nome do aluno:		N.º:	Turma:

Grupo I

- Os cinco itens deste grupo são de escolha múltipla.
- Em cada um deles, são indicadas quatro alternativas de resposta, das quais **só uma** está correta.
- Escreva na sua folha de respostas **apenas o número de cada item e a letra** correspondente à alternativa que selecionar para responder a esse item.
- Se apresentar mais do que uma alternativa, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos nem justificações.
- 1. Na figura está representado um paralelogramo [ABCD].

Sabe-se que:

- $\overline{AB} = 5$ u.c.
- $\overline{BC} = 3.2 \text{ u.c.}$
- $\overline{BD} = 3.8 \text{ u.c.}$

Seja α a amplitude do ângulo BAD ($\alpha \in]0^{\circ}, 90^{\circ}[)$.

Qual das afirmações seguintes é verdadeira?

(A)
$$\sin(90^{\circ} - \alpha) = -\frac{13}{20}$$

(B)
$$\cos(180^{\circ} + \alpha) = -\frac{13}{20}$$

(C)
$$\sin(180^{\circ} - \alpha) = \frac{13}{20}$$

(D)
$$\cos(90^{\circ} + \alpha) = \frac{13}{20}$$

- **2.** De dois vetores \vec{u} e \vec{v} , sabe-se que:
 - $\|\vec{u}\| = 3$ u.c.
 - $\|\vec{v}\| = 5$ u.c.
 - $\vec{u} \cdot \vec{v} = -1$

Qual é o valor de $||\vec{u} - \vec{v}||$?

- (A) 8 u.c.
- (B) 6 u.c.
- (C) 4 u.c.
- (D) 2 u.c.

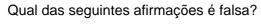
- **3.** Considere uma sucessão (u_n) tal que:
 - (u_n) é uma progressão geométrica de razão positiva;
 - $u_3 = 8 e u_9 = 64$.

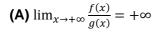
Qual é a soma dos 10 primeiros termos desta sucessão?


- **(A)** $124(1+\sqrt{2})$
- **(B)** $120(1+\sqrt{2})$
- **(C)** $66(1+\sqrt{2})$
- **(D)** $248(1+\sqrt{2})$
- **4.** Na figura está desenhada parte da representação gráfica de uma função racional f, cujo domínio é $\mathbb{R}\setminus\{2\}$. A reta de equação x=2 é assíntota vertical ao gráfico de f.

Considere a sucessão de termo geral $x_n = \frac{2n-1}{n}$. Seja $u_n = f(x_n)$.

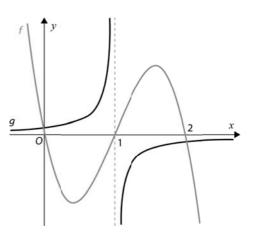
Qual dos seguintes é o valor de $\lim u_n$?




- **(B)** 0
- **(C)** +∞
- **(D)** −∞

5. Na figura está representada parte dos gráficos de duas funções f e g, sendo f uma função polinomial de grau 3 e g uma função racional.

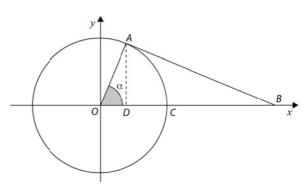
O gráfico de f interseta o eixo Ox nos pontos de abcissas 0, 1 e 2. As retas de equações x=1 e y=0 são assíntotas ao gráfico de g.



(B)
$$\lim_{x \to 1} \frac{f(x)}{g(x)} = 0$$

(C)
$$\lim_{x\to 0} \frac{g(x)}{f(x)} = +\infty$$

(D)
$$\lim_{x \to 2^{-}} \frac{g(x)}{f(x)} = -\infty$$


Grupo II

Nas respostas aos itens deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efetuar e **todas as justificações** necessárias.

Atenção: Quando para um resultado não é pedida a aproximação, pretende-se sempre o **valor exato**.

1. Na figura encontra-se representada a circunferência trigonométrica e um triângulo [*ABO*].

O ponto A pertence à circunferência e o ponto \mathcal{C} é o ponto de interseção da circunferência com o semieixo positivo $\mathcal{O}x$. A reta AB é tangente à circunferência no ponto A.

Seja α a amplitude do ângulo $COA\left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$.

- **1.1.** Mostre que a área do triângulo [ABO] é dada, em função de α , por $A(\alpha) = \frac{1}{2} \tan \alpha$.
- **1.2.** Considere o ponto A que se obtém para $\alpha \in \left]0, \frac{\pi}{2}\right[$ tal que $\cos \alpha = \frac{3}{4}$. Determine uma equação reduzida da reta AC.
- **2.** Considere, num referencial o.n. Oxyz, os pontos A(1,2,-2), B(2,-3,-1) e C(-1,-2,3).
 - **2.1.** Determine os valores de k tais que o vetor $(k^2 1, k, 1 k)$ é perpendicular ao vetor \overrightarrow{AB} .
 - **2.2.** Mostre que os pontos *A*, *B* e *C* definem um plano e escreva uma equação vetorial desse plano.
- 3. Considere a sucessão (u_n) definida por $\begin{cases} u_1=2\\ u_{n+1}=u_n+2^n, \forall n\in\mathbb{N} \end{cases}$
 - **3.1.** Recorrendo ao método de indução matemática, mostre que $u_n=2^n, \forall n\in\mathbb{N}.$
 - **3.2.** Considere a sucessão de termo geral $v_n=\frac{u_n}{3^n}$. Prove que (v_n) é uma progressão geométrica e indique a sua razão.
 - **3.3.** Estude a sucessão (v_n) quanto à monotonia.
 - **3.4.** Seja $S_n = \sum_{i=1}^n v_i$. Determine $\lim S_n$.

4. Seja f a função de domínio $\mathbb{R}\setminus\{2\}$ definida por:

$$f(x) = \begin{cases} k + \frac{2}{x - 1} & se \quad x \le 0\\ \frac{x^2 - 5x + 6}{(x - 2)^2} & se \quad x > 0 \land x \ne 2 \end{cases}$$

- **4.1.** Determine k, sabendo que a função f é contínua em x = 0.
- **4.2.** Considere agora k = 0. Estude a função f quanto à existência de assíntotas horizontais ao seu gráfico.
- **4.3.** Resolva, em $\mathbb{R}^+ \setminus \{2\}$, a inequação f(x) > 0.
- **4.4.** A equação f(x) = 3x tem exatamente duas soluções no intervalo]0,2[. Utilizando a calculadora, determine-as graficamente. Apresente os valores arredondados às centésimas. Apresente o(s) gráfico(s) visualizado(s) na calculadora.
- **5.** Seja f uma função, de domínio e contradomínio \mathbb{R}^+ , tal que a reta de equação y=3x-2 é assíntota ao seu gráfico. Seja g a função, de domínio \mathbb{R}^+ , definida por $g(x)=\frac{x^2}{f(x)}$. Mostre que a reta de equação $y=\frac{1}{3}x+\frac{2}{9}$ é assíntota ao gráfico de g.

- FIM -

COTAÇÕES

Grup	00 I	5
	Cada resposta certa	10
	Cada resposta errada	0
	Cada questão não respondida ou anulada	
Grup	oo II	15
	1	25
	1.1 15	
	1.2 10	
	2	20
	2.1	
	2.2 10	
	3	40
	3.1 10	
	3.2 10	
	3.3	
	3.4	
	4	50
	4.1	00
	4.2	
	4.3	
	4.4	
	5	15
	J	13