Novo Espaço – Matemática A, 10.º ano

Proposta de teste de avaliação [março - 2020]

Nome:

N.º: Ano / Turma: _____

Data: _ - ____ - ___

- Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
- As cotações dos itens encontram-se no final do enunciado da prova.
- 1. Seja *f* uma função afim cujo gráfico é representado pela reta de equação:

$$(x, y) = (-1, 2) + k(3, -4), k \in \mathbb{R}$$

Podes concluir que f(1) é igual a:

(B)
$$-\frac{2}{3}$$

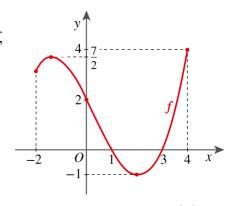
(B)
$$-\frac{2}{3}$$
 (C) $-\frac{4}{3}$ **(D)** $-\frac{1}{2}$

$$(\mathbf{D}) \qquad -\frac{1}{2}$$

- Seja $k \in \mathbb{R}$ e g uma função afim definida por uma expressão do tipo g(x) = (1-2k)x-3. 2.
- Determina os valores de k positivos para os quais a função g é estritamente crescente. 2.1.
- 2.2. Para um dado valor de k, o gráfico de g interseta a reta y = -2 no ponto de coordenadas (2,-2). Determina esse valor de k.
- No referencial da figura está representada uma função f, **3.** de domínio [-2,4].

Sabe-se que:

- o contradomínio é [-1, 4];
- os zeros são 1 e 3.



- 3.1. A partir da informação dada na figura, indica para que valores de k a equação f(x) = ktem uma e uma só solução.
- **3.2.** Indica, em cada caso, o valor de a, tal que:
 - a) o contradomínio da função h definida por h(x) = a + f(x) é [2,7];
 - **b**) os zeros da função g definida por g(x) = f(x+a) são números simétricos.
 - c) o contradomínio da função j definida por $j(x) = a f(x) \notin \left[-\frac{1}{2}, 2 \right]$.

Sejam duas funções afins $f \in g$ tais que $f(x) = ax + b \in g(x) = -2x + 3$. 4.

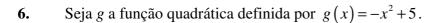
Sabe-se que g(x) = -1 + f(x-2).

- 4.1. Indica a transformação ou a sequência de transformações para obter o gráfico de g a partir do gráfico de f.
- 4.2. O valor de f(-1) é igual a:
 - **(A)** 0
- **(C)**
- 2 **(D)**
- 5. Em casa do Tomás houve uma avaria no sistema elétrico.

Um técnico apresentou o seguinte orçamento para reparar a avaria:

- 20 € para despesas de deslocação;
- 12 € por cada hora de trabalho.
- 5.1. Qual será o preço final a pagar se a duração da reparação for de 1 hora e 45 minutos?
- **5.2.** Seja f a função em que f(x) é o preço final a pagar, em euros, e x é o tempo, em horas, gasto na reparação.

Resolve a equação f(x) = 62 e interpreta a solução no contexto apresentado.



- **6.1.** Determina os zeros e constrói um quadro de sinais da função g.
- Sabe-se que a função h é tal que $h(x) = -g(x + \sqrt{2})$. **6.2.**

O contradomínio da função *h* é:

(A)
$$\left[-5, +\infty\right[$$

(B)
$$\left[-\infty, 5+\sqrt{2}\right]$$

(A)
$$\left[-5, +\infty\right[$$
 (B) $\left]-\infty, 5+\sqrt{2}\right]$ (C) $\left[-5-\sqrt{2}, +\infty\right[$ (D) $\left[-\sqrt{2}, +\infty\right[$

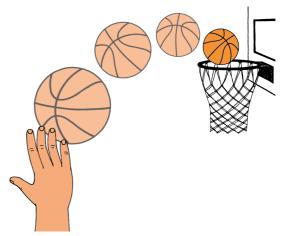
(D)
$$\left[-\sqrt{2}, +\infty \right]$$

Considera a função quadrática f definida por $f(x) = x^2 - 2x - 3$. 7.

> Representa f(x) na forma $f(x) = a(x-h)^2 + k$ e indica as coordenadas do vértice da parábola que representa o gráfico de f e o mínimo da função.

Proposta de teste de avaliação [março - 2020]

- 8. O lançamento de uma bola provoca-lhe um movimento definido pela função f, tal que $f(t) = -0.32t^2 + 1.75t + 2.4.$
 - f(t): representa a altura, em metros, da bola ao solo.
 - *t*: representa o tempo decorrido, em segundos, após o lançamento.



Recorre às capacidades gráficas da calculadora e determina o tempo decorrido, após o lançamento da bola, até que esta tenha atingido a altura máxima.

Na tua resposta deves incluir:

- . a janela escolhida para visualizar a representação gráfica;
- . a representação gráfica;
- . a altura máxima, em metros arredondada às centésimas;
- o tempo decorrido, em segundos, arredondado às décimas, até a bola atingir a altura máxima.

FIM

	Cotações															
Questões	1.	2.1.	2.2.	3.1.	3.2. a)	3.2. b)	3.2. c)	4.1.	4.2.	5.1.	5.2.	6.1.	6.2.	7.	8.	Total
Pontos	12	15	15	12	10	10	10	12	12	15	20	15	12	15	15	200

1. A equação da reta é (x, y) = (-1, 2) + k(3, -4), $k \in \mathbb{R}$, pelo que:

- o seu declive é: $m = -\frac{4}{3}$
- um ponto da reta r é: (-1,2)

Assim, a equação reduzida da reta é dada por: $y = -\frac{4}{3}x + b$

$$2 = -\frac{4}{3} \times (-1) + b \iff b = \frac{2}{3}, \log y = -\frac{4}{3}x + \frac{2}{3}.$$

Então,
$$f(x) = -\frac{4}{3}x + \frac{2}{3}$$
.

$$f(1) = -\frac{4}{3} \times 1 + \frac{2}{3} = -\frac{2}{3}$$

Resposta: (B)
$$-\frac{2}{3}$$

2.

2.1. A função g é crescente se e só se 1-2k > 0.

$$1-2k>0 \Leftrightarrow -2k>-1 \Leftrightarrow k<\frac{1}{2}$$

Como apenas interessam os valores positivos de k, a solução é $\mathbb{R}^+ \cap \left] -\infty, \frac{1}{2} \right[= \left] 0, \frac{1}{2} \right[$.

1

Resposta:
$$k \in \left]0, \frac{1}{2}\right[$$

2.2. O ponto de coordenadas (2, -2) pertence ao gráfico de f.

Então,
$$f(2) = -2$$
.

$$f(2) = -2 \Leftrightarrow (1-2k) \times 2 - 3 = -2 \Leftrightarrow -4k = -1 \Leftrightarrow k = \frac{1}{4}$$

Resposta:
$$k = \frac{1}{4}$$

3.

3.1. A equação f(x) = k tem uma e uma só solução quando a reta y = k interseta o gráfico de f num único ponto. Neste caso, tal acontece quando $k \in \left[\frac{7}{2}, 4\right] \cup \{-1\}$.

Resposta: $k \in \left[\frac{7}{2}, 4\right] \cup \{-1\}$

3.2. a) $D'_h = [-1+a, 4+a] = [2,7]$ $-1+a=2 \land 4+a=7 \Leftrightarrow a=3$

Resposta: a = 3

b) g(x) = f(x+a) = f(x-(-a))Zeros de g: 1+(-a) e 3+(-a)

Como os zeros são simétricos: 1-a+(3-a)=0

$$1-a+(3-a)=0 \Leftrightarrow 1-a+3-a=0 \Leftrightarrow -2a=-4 \Leftrightarrow a=2$$

Resposta: a = 2

 $\mathbf{c}) \qquad j(x) = af(x)$

$$D'_{j} = [-1 \times a, 4 \times a] = [-a, 4a] = \left[-\frac{1}{2}, 2\right]$$

$$-a = -\frac{1}{2} \wedge 4a = 2 \Leftrightarrow a = \frac{1}{2}$$

Resposta: $a = \frac{1}{2}$

4.

- **4.1.** O gráfico de g obtém-se a partir do gráfico de f aplicando-lhe uma translação de vetor $\vec{u}(2,-1)$.
- **4.2.** g(x) = -1 + f(x-2)

Considerando x-2=-1, tem-se x=1.

g(1) = -1 + f(1-2), ou seja, 1 = -1 + f(-1). Daqui resulta que f(-1) = 2.

Resposta: (D)

5.

5.1. O tempo gasto na reparação foi 1 hora e 45 minutos.

Como 45 minutos correspondem a $\frac{3}{4}$ de hora, ou seja, a 0,75 h, conclui-se que o tempo gasto na reparação foi 1,75 h.

O preço final a pagar é dado por: $20+1,75\times12$

$$20+1,75\times12=41$$

Resposta: O preço final foi 41 €.

5.2.
$$f(x) = 20 + 12x$$

$$f(x) = 62 \Leftrightarrow 20 + 12x = 62 \Leftrightarrow 12x = 42 \Leftrightarrow x = 3,5$$

Sendo o custo final de 62 €, o tempo de reparação foi 3 horas e 30 minutos.

6.
$$g(x) = -x^2 + 5$$

6.1.
$$g(x) = 0 \Leftrightarrow -x^2 + 5 = 0 \Leftrightarrow x^2 = 5 \Leftrightarrow x = \sqrt{5} \lor x = -\sqrt{5}$$

Zeros de
$$g: \sqrt{5}$$
 e $-\sqrt{5}$

A concavidade do gráfico da função *g* é voltada para baixo.

х	-∞	$-\sqrt{5}$		$\sqrt{5}$	+∞
g(x)	_	0	+	0	_

6.2. O gráfico de h obtém-se a partir do gráfico de g por uma translação de vetor $\vec{u}\left(-\sqrt{2},0\right)$ (mantém o contradomínio $]-\infty,5]$), seguida de uma reflexão de eixo Ox (contradomínio $[-5,+\infty[$).

Resposta: (A) $\left[-5,+\infty\right[$

7.
$$f(x) = x^2 - 2x - 3 = x^2 - 2x + 1 - 1 - 3 = (x - 1)^2 - 4$$

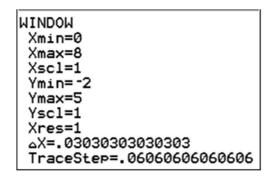
 $f(x) = (x - 1)^2 - 4$

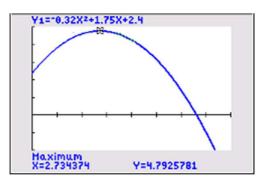
Vértice da parábola: V(1,-4)

Mínimo absoluto de f: -4

8. No menu *Funções*, insere-se a expressão da função $f(t) = -0.32t^2 + 1.75t + 2.4$ e define-se uma janela com $t \ge 0$ (na calculadora, a variável independente t surge representada por x).

Depois de adequar a janela, visualiza-se o gráfico e identifica-se o máximo da função.





Observa-se que a abcissa do ponto onde a função atinge o máximo é $t \approx 2,7$.

A altura máxima atingida foi, aproximadamente, 4,79 metros.

Resposta: Após o lançamento da bola decorreram, aproximadamente, 2,7 segundos até esta ter atingido a altura máxima.