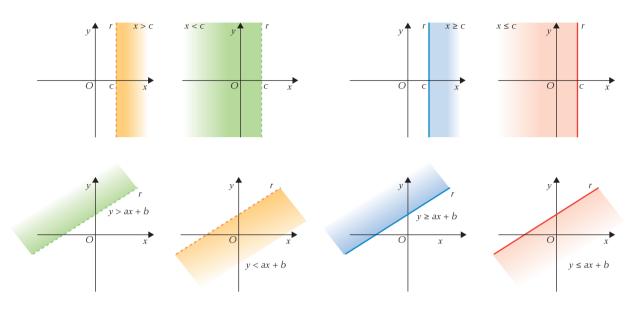
☑ SÍNTESE

1. Geometria analítica no plano

Inequações cartesianas de semiplanos



Sejam $A(a_1, a_2)$ e $B(b_1, b_2)$ dois pontos do plano:

Distância entre <i>A</i> e <i>B</i> .	$\sqrt{(b_1-a_1)^2+(b_2-a_2)^2}$
Ponto médio do segmento de reta [AB].	$\left(\frac{a_1+b_1}{2},\frac{a_2+b_2}{2}\right)$
Mediatriz do segmento de reta [AB].	$(x - a_1)^2 + (y - a_2)^2 = (x - b_1)^2 + (y - b_2)^2$
Circunferência de centro A e raio r.	$(x - a_1)^2 + (y - a_2)^2 = r^2$

Equação cartesiana da elipse de semieixo maior *a* e semieixo menor *b*: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

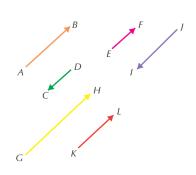
Distância focal: 2*c*, onde $c = \sqrt{a^2 - b^2}$.

2. Cálculo vetorial no plano

Um vetor é definido por:

- um comprimento;
- uma direção;
- um sentido.

Vetores colineares são vetores que têm a mesma direção.



SÍNTESE

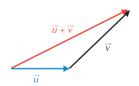
Vetores simétricos são vetores que têm a mesma direção, o mesmo comprimento e sentidos opostos.

O ponto Q é a soma do ponto P com o vetor \overrightarrow{u} , e escreve-se $Q = P + \overrightarrow{u}$, quando dado um ponto P e um vetor \overrightarrow{u} , existe um único ponto Q tal que $\overrightarrow{u} = \overrightarrow{PQ}$.

A **norma de um vetor** \vec{v} é a medida do comprimento de um segmento orientado representante de \vec{v} e representa-se por $||\vec{v}||$.

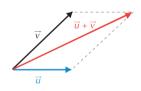
Adição de vetores

Regra do triângulo



Regra do paralelogramo

(só para vetores não colineares)



Propriedade comutativa: $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$, para quaisquer vetores $\overrightarrow{u} \in \overrightarrow{v}$.

Propriedade associativa: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$, para quaisquer vetores \vec{u} , \vec{v} e \vec{w} .

Existência de elemento neutro: $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$, para qualquer vetor \vec{u} .

Existência de elemento simétrico para cada vetor: $\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$, para qualquer vetor \vec{u} .

Multiplicação de um vetor por um escalar

O produto de \vec{v} por λ ($\lambda \neq 0$) é o vetor $\lambda \vec{v}$ com:

- a direção de \vec{v} ;
- sentido de \vec{v} se $\lambda > 0$ ou sentido contrário ao de \vec{v} se $\lambda < 0$;
- norma igual a $|\lambda| \times ||\overrightarrow{v}||$.

Dado um vetor \overrightarrow{v} , não nulo, um vetor \overrightarrow{u} é colinear a \overrightarrow{v} se e somente se existir um número real λ tal que $\overrightarrow{u} = \lambda \overrightarrow{v}$ e, nesse caso, λ é único.

Sendo \vec{u} e \vec{v} dois vetores e λ e μ números reais:

Distributividade em relação à adição de números reais.	$(\lambda + \mu)\overrightarrow{v} = \lambda \overrightarrow{v} + \mu \overrightarrow{v}$
Distributividade em relação à adição de vetores.	$\lambda(\overrightarrow{u} + \overrightarrow{v}) = \lambda \overrightarrow{u} + \lambda \overrightarrow{v}$
Associatividade mista.	$\lambda(\mu\overrightarrow{v})=(\lambda\mu)\overrightarrow{v}$

Fixado um plano munido de um referencial ortonormado de origem O e dado um ponto A, chama-se **vetor posição do ponto** A ao vetor \overrightarrow{OA} .

Sejam $\vec{u}(u_1, u_2)$ e $\vec{v}(v_1, v_2)$ dois vetores do plano e λ um número real:

- $\overrightarrow{u} = \overrightarrow{V} \Leftrightarrow u_1 = v_1 \wedge u_2 = v_2$
- $\bullet \ \overrightarrow{u} + \overrightarrow{v} = (u_1 + v_1, u_2 + v_2)$
- $\vec{u} \vec{v} = (u_1 v_1, u_2 v_2)$
- $\lambda \overrightarrow{u} = (\lambda u_1, \lambda u_2)$
- $\bullet \ -\overrightarrow{u} = (-u_1, -u_2)$

Sejam $\overrightarrow{u}(u_1, u_2)$ e $\overrightarrow{v}(v_1, v_2)$ dois vetores do plano, não nulos. \overrightarrow{u} e \overrightarrow{v} são **colineares** se e somente se u_1 , u_2 , v_1 , $v_2 \neq 0$ e $\frac{u_1}{v_1} = \frac{u_2}{v_2}$ ou as primeiras coordenadas de ambos forem nulas ou as segundas coordenadas de ambos forem nulas.

Dados os pontos $A(a_1, a_2)$ e $B(b_1, b_2)$ e um vetor $\overrightarrow{v}(v_1, v_2)$, tem-se:

- $\overrightarrow{AB} = B A = (b_1 a_1, b_2 a_2)$
- $A + \overrightarrow{v} = (a_1 + v_1, a_2 + v_2)$
- $||\vec{v}|| = \sqrt{v_1^2 + v_2^2}$

Um vetor \vec{v} , não nulo, **tem a direção da reta** \vec{r} se as retas suporte dos representantes de \vec{v} têm a direção de \vec{r} .

Designa-se por **vetor diretor** de uma dada reta r qualquer vetor não nulo com a mesma direção de r.

Considera a reta que passa no ponto $A(a_1, a_2)$ e tem a direção do vetor $\vec{v}(v_1, v_2)$. Então:

Equação vetorial da reta

$$(x, y) = (a_1, a_2) + k(v_1, v_2), k \in \mathbb{R}$$

Sistema de equações paramétricas da reta

$$\begin{cases} x = a_1 + kv_1 \\ y = a_2 + kv_2 \end{cases}, k \in \mathbb{R}$$

Equações cartesianas

$$\frac{x - a_1}{v_1} = \frac{y - a_2}{v_2} \text{ se } v_1, \ v_2 \neq 0$$

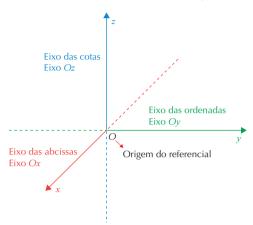
$$y - a_2 = \frac{v_2}{v_1} (x - a_1) \text{ se } v_1 \neq 0$$

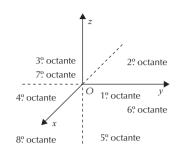
 $y = mx + b \longrightarrow$ Equação reduzida da reta, onde $m = \frac{V_2}{V_1}$, se $V_1 \ne 0$, e b é a ordenada do ponto de interseção da reta com o eixo Oy.

SÍNTESE

3. Geometria analítica no espaço

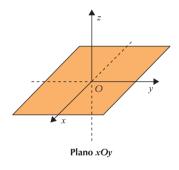
Referencial cartesiano Oxyz

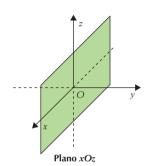


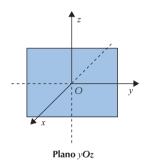


Os eixos ortogonais dividem o espaço em oito regiões: os **octantes**.

Dado um referencial ortonormado do espaço, a todo o ponto *P* está associado um e um só terno ordenado de números (*a*, *b*, *c*) a que chamamos **coordenadas**, sendo *a* a abcissa, *b* a ordenada e *c* a cota.







Equações de planos paralelos aos planos coordenados

Condição: $x = a$, $a \in \mathbb{R}$	Condição: $y = b, b \in \mathbb{R}$	Condição: $z = c, c \in \mathbb{R}$
x = a	y = b	z = c 0 y
 Plano paralelo a yOz. Passa pelo ponto A(a, 0, 0). Perpendicular ao eixo Ox. 	 Plano paralelo a <i>xOz</i>. Passa pelo ponto <i>B</i>(0, <i>b</i>, 0). Perpendicular ao eixo <i>Oy</i>. 	 Plano paralelo a <i>xOy</i>. Passa pelo ponto <i>C</i>(0, 0, <i>c</i>). Perpendicular ao eixo <i>Oz</i>.
Caso particular: $x = 0$ define o plano yOz .	Caso particular: $y = 0$ define o plano xOz .	Caso particular: $z = 0$ define o plano xOy .

Equações de retas paralelas aos eixos coordenados

Condição: $x = a \land y = b, a, b \in \mathbb{R}$	Condição: $y = b \land z = c, c, b \in \mathbb{R}$	Condição: $x = a \land z = c, a, c \in \mathbb{R}$
$x = a \land y = b$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	z $z = c$ $x = a \land z = c$ y $x = a$
 Reta paralela a <i>Oz</i> e perpendicular ao plano <i>xOy</i>. Interseta o plano <i>xOy</i> no ponto (<i>a</i>, <i>b</i>, 0). 	 Reta paralela a <i>Ox</i> e perpendicular ao plano <i>yOz</i>. Interseta o plano <i>yOz</i> no ponto (0, b, c). 	 Reta paralela a <i>Oy</i> e perpendicular ao plano <i>xOz</i>. Interseta o plano <i>xOz</i> no ponto (<i>a</i>, 0, <i>b</i>).
Caso particular: $x = 0 \land y = 0$ define o eixo Oz .	Caso particular: $y = 0 \land z = 0$ define o eixo Ox .	Caso particular: $x = 0 \land z = 0$ define o eixo Oy .

Sejam $A(a_1, a_2, a_3)$ e $B(b_1, b_2, b_3)$ dois pontos do espaço:

Distância entre A e B.	$\sqrt{(b_1-a_1)^2+(b_2-a_2)^2+(b_3-a_3)^2}$
Ponto médio do segmento de reta [AB].	$\left(\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}\right)$
Plano mediador do segmento de reta [AB].	$(x-a_1)^2 + (y-a_2)^2 + (z-a_3)^2 = (x-b_1)^2 + (y-b_2)^2 + (z-b_3)^2$
Superfície esférica de centro A e raio r .	$(x - a_1)^2 + (y - a_2)^2 + (z - a_3)^2 = r^2$

4. Cálculo vetorial no espaço

Dois segmentos orientados do espaço dizem-se **equipolentes** quando são complanares e equipolentes num plano que os contenha.

No espaço, segmentos orientados equipolentes determinam o mesmo vetor.

Depois de definirmos um vetor no espaço, estendem-se do plano ao espaço as definições de **norma de um vetor** (fixada uma unidade de comprimento), de **adição de um ponto com um vetor**, de **translação de um dado vetor** e as operações de **subtração de dois pontos**, de **adição** e **subtração de vetores**, de **multiplicação de um vetor por um escalar** e as respetivas propriedades geométricas e algébricas.

Consideremos a reta que passa no ponto $A(a_1, a_2, a_3)$ e tem a direção do vetor $\vec{v}(v_1, v_2, v_3)$. Então:

Equação vetorial da reta Sistema de equações paramétricas da reta $(x, y, z) = (a_1, a_2, a_3) + k(v_1, v_2, v_3), \ k \in \mathbb{R}$ $\begin{cases} x = a_1 + kv_1 \\ y = a_2 + kv_2, \ k \in \mathbb{R} \\ z = a_3 + kv_3 \end{cases}$