

1.º TESTE DE MATEMÁTICA A - 12.º 5

1.º Período

15/10/2025

Duração: 90 minutos

Nome:

N.º:

Classificação:

O professor:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Sejam A e B subconjuntos num universo U, onde se sabe que $B \subseteq A$.

Pode concluir-se que $A \backslash \left(A \cap \overline{B}\right)$ é igual a:

(A) *B*

- (B) A
- (C) U
- (D) Ø
- **2.** No triângulo de Pascal, a soma do segundo com o terceiro elementos de uma certa linha n é igual a dez vezes o segundo elemento da linha seguinte (n > 1).

Calcule o maior elemento dessa linha n.

3. Considere o desenvolvimento de $\left(\sqrt{x}+2\right)^{10}$, onde $x\geqslant 0$.

Sobre o coeficiente do termo em x^3 :

- (A) não existe;
- **(B)** é igual a 3360;
- **(C)** é igual a 13 440;
- **(D)** é igual a 11 520.
- **4.** O Efigénio tem uma coleção de doze copos de cerveja diferentes, quatro deles belgas. Considere as proposições seguintes.
 - I. Ao colocar os copos numa mesa, lado a lado, há $967\,680$ maneiras de os copos belgas ficarem juntos.
 - II. Há 4095 maneiras de o Efigénio colocar os doze copos em duas prateleiras, pelo menos dois copos em cada prateleira.

Justifique que as proposições I e II são falsas.

Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

5. Considere todos os números de seis algarismos.

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com as condições dadas.

Escreva, na folha de respostas, apenas cada um dos números, I, II, III e IV, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

Considerando todos os números de seis algarismos, existem <u>I</u> com os algarismos todos diferentes e, quanto aos números pares, capicuas e com os três primeiros algarismos diferentes, existem <u>II</u>. Além disso, pode concluir-se que existem <u>III</u> números com pelo menos um algarismo par.

Sabendo que $324\ 000 = 2^5 \times 3^4 \times 5^3$, conclui-se que $324\ 000$ tem **IV** divisores naturais ímpares.

I	II	III	IV		
a) 151 200	a) 3600	a) 884 375	a) 20		
b) 60 480	b) 288	b) 993 421	b) 32		
c) 136 080	c) 144	c) 1 000 012	c) 48		

6. Para uma palavra-passe de um sítio na internet, são necessários dez caracteres: os primeiros três caracteres (os mais à esquerda) são compostos por três letras (de entre 26) e os outros sete, por algarismos.

Determine quantas dessas palavras-passe têm exatamente duas vogais e quatro algarismos 4.

7. De 12 a 28 de setembro deste ano realizou-se o Campeonato do Mundo de Voleibol Masculino em Manila, capital das Filipinas.

Portugal esteve presente com catorze jogadores e seis elementos da equipa técnica.

7.1. Depois de vencer a Colômbia, todos os vinte elementos de Portugal posaram para uma fotografia no campo, ficando nove pessoas atrás, cinco no meio e seis à frente.

De quantas maneiras diferentes se podiam dispor as vinte pessoas para a fotografia se os elementos da equipa técnica ficassem atrás, todos à esquerda ou todos à direita?

(A)
$$14! \times 6!$$

(B)
$$14! \times 6! \times 2$$

(C)
$$^{14}A_3 \times 6! \times 5!$$

(D)
$$^{14}A_3 \times 6! \times 2$$

7.2. De entre os catorze jogadores, havia três distribuidores.

Suponha-se que os catorze jogadores alinharam lado a lado para uma outra fotografia.

De quantas maneiras se podiam ter disposto os jogadores se não houvesse distribuidores juntos? Apresente o resultado na forma $a \times 10^n$, com a arredondado às milésimas e $n \in \mathbb{N}$.

8. Uma associação de estudantes tem 32 sócios, entre os quais um casal de namorados.

Vai ser constituída uma comissão com oito estudantes. Nessa comissão, há um líder, um vice-líder, um tesoureiro e cinco vogais.

Determine o número de comissões diferentes que se podem formar, ou com o casal de namorados ou sem o casal de namorados.

9. A Ilvécia vai quardar os cinco bombons com recheio de frutos secos que restaram depois de uma festa: um de amêndoa, um de avelã, um de noz, um de pistácio e um de pinhão. Ela só tem uma caixa com dezasseis compartimentos, numerados de 1 a 16, para

colocar, aleatoriamente, os cinco bombons, um bombom em cada compartimento. Os dezasseis compartimentos estão dispostos em quatro linhas por quatro colunas.

A expressão seguinte permite determinar o número de maneiras diferentes de os cinco bombons ficarem em apenas duas linhas, onde cada linha tem pelo menos dois bombons.

$^{5}C_{2}\times$	$^4C_2 \times$	$^4A_2 \times$	$^4A_3 \times 2$
			3

como se ilustra na figura.

Explique, no contexto descrito, a expressão anterior.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

10. Considere, num dado plano, as retas paralelas $r \in S$.

> Assinalam-se, na reta r, n pontos distintos ($n \ge 2$) e, na reta s, nove pontos, igualmente distintos.

10.1. Quantos quadriláteros convexos é possível definir com todos os n+9 pontos?

(A)
$$12n^2 + 12n$$
 (B) $36n^2 - 36n$ **(C)** $6n^2 + 6n$

(B)
$$36n^2 - 36n$$

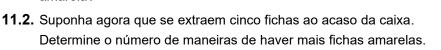
(C)
$$6n^2 + 6n$$

(D)
$$18n^2 - 18n$$

10.2. Suponha que n = 21.

Determine o número de triângulos que têm vértices em três dos trinta pontos.

- **11.** Uma caixa tem dez fichas amarelas e dez fichas verdes, só distinguíveis pela cor.
 - **11.1.** Pretende-se dispor todas as fichas numa mesa, lado a lado. De quantas maneiras o podemos fazer começando e acabando com uma ficha amarela?



12. Resolva, em \mathbb{N} , a equação $5! \times (n+2)! \times {n+5 \choose n} = 812 \times {n+5 \choose 2} \times (n+3)!$.

FIM

COTAÇÕES

ltem															
Cotação (em pontos)															
1.	2.	3.	4.	5.	6.	7.1	7.2.	8.	9.	10.1.	10.2.	11.1.	11.2.	12.	
8	16	8	16	8	16	8	16	16	16	8	16	16	16	16	200