

3º TESTE DE MATEMÁTICA A − 10º 5

2º Período

07/02/20

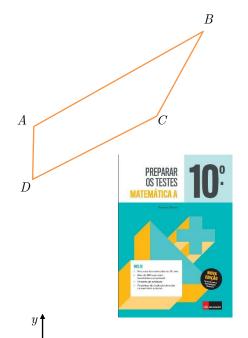
Duração: 90 minutos

Nome:

N.º:

Classificação:

O professor:


Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- **1.** Na figura junta está o quadrilátero [ABCD] num referencial o.n. xOy. Sabe-se que:
 - o ponto A tem coordenadas $(0,2\sqrt{3})$;
 - o ponto B tem coordenadas (8,8);
 - $\overrightarrow{DC} = (4 + \sqrt{3}, 3)$.

Qual é a proposição verdadeira?

- (A) \overrightarrow{AB} e \overrightarrow{DC} não são colineares e $\|\overrightarrow{DC}\| = \sqrt{28 + 8\sqrt{3}}$
- **(B)** \overrightarrow{AB} e \overrightarrow{DC} não são colineares e $\|\overrightarrow{DC}\| = 2\sqrt{7}$
- (C) \overrightarrow{AB} e \overrightarrow{DC} são colineares e $\|\overrightarrow{DC}\| = \sqrt{28 + 8\sqrt{3}}$
- **(D)** \overrightarrow{AB} e \overrightarrow{DC} são colineares e $\|\overrightarrow{DC}\| = 2\sqrt{7}$

2. Considere o trapézio [ABCD] representado no referencial o.n. xOy da figura.

Sabe-se que:

- o ponto A pertencente ao segundo quadrante;
- o ponto B tem coordenadas (5,4);
- o ponto C tem coordenadas (3,-1);
- o ponto D pertencente ao eixo Oy;
- os segmentos [AB] e [CD] são paralelos ao eixo das abcissas.
- **2.1.** Qual das seguintes equações define uma reta paralela à reta BC?

(A)
$$y = -\frac{5}{2}x$$

(B)
$$y = \frac{5}{2}x$$

(C)
$$y = -\frac{2}{5}x$$

(D)
$$y = \frac{1}{5}x$$

2.2. Determine as coordenadas do ponto A sabendo que a área do trapézio [ABCD] é igual a 24.

D

- **3.** Considere, num referencial o.n. Oxyz, a esfera de inequação $x^2 + (y+3)^2 + (z-1)^2 \le 10$.
 - **3.1.** Quais são as equações dos planos paralelos ao plano xOz e tangentes à esfera?
 - **(A)** $x = -3 \sqrt{10}$ e $z = -3 + \sqrt{10}$
- **(B)** $y = 3 \sqrt{10}$ **e** $y = 3 + \sqrt{10}$

(C) y = -13 e y = 7

- **(D)** $y = -3 \sqrt{10}$ e $y = -3 + \sqrt{10}$
- **3.2.** O plano definido por $\,z=3\,$ interseta a esfera segundo um círculo.

Determine o seu centro e o seu raio.

4. No referencial o.n. Oxyz da figura, está representado o prisma quadrangular regular [OPQRSTUV].

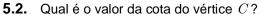
Sabe-se que:

- a face [OPQR] está contida no plano xOy;
- o vértice Q pertence ao eixo Ox e o vértice S pertence ao eixo Oz;
- o vértice T tem coordenadas (1,1,2) e o vértice U tem coordenadas (2,0,2).
- **4.1.** Determine uma condição cartesiana reduzida:
 - **4.1.1.** da reta UQ;
 - **4.1.2.** do plano mediador do segmento de reta [UT], na forma ax+by+cz+d=0 .
 - **4.1.3.** da superfície esférica de diâmetro [QS].
- **4.2.** Os vetores \overrightarrow{PS} e $\overrightarrow{u}(6k,5,-10)$ são colineares. Qual é o valor de k?
 - (A) $\frac{3}{5}$
- **(B)** $-\frac{5}{2}$
- (C) $\frac{5}{6}$
- **(D)** $\frac{6}{5}$

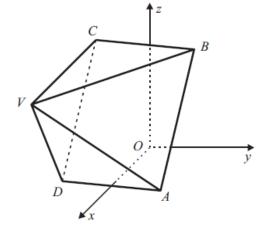
- **4.3.** Determine o volume do prisma [OPQRSTUV].
- **4.4.** Seja A um ponto pertencente ao plano STU e tal que a sua ordenada é igual ao quadrado da sua abcissa x. Sabendo que $\overline{AR}=5$, determine, recorrendo à calculadora gráfica, o(s) valo(es) possíveis de x.

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora e que lhe permite(m) resolver a equação, devidamente identificado(s) (sugere-se a utilização da janela de visualização $[-3,3] \times [0,6]$ ou $[-3,3] \times [0,30]$);
- apresente a(s) abcissa(s) pedida(s) arredondada às centésimas.



- **5.** Na figura, está representada, num referencial o.n. Oxyz, a pirâmide quadrangular regular [ABCDV]. Sabe-se que:
 - o vértice A tem coordenadas (2,1,0);
 - o vértice C tem coordenadas (0,-1,c), onde $c\in\mathbb{R}$;
 - o vértice V tem coordenadas (3,-1,2);
 - $\overrightarrow{CB} = \left(1, \frac{\sqrt{6}}{2} + 1, \frac{\sqrt{6}}{2} 1\right)$
 - A reta $\widehat{A}C$ está definida pela seguinte equação vetorial:


$$(x, y, z) = (2, 1, 0) + k(1, 1, -1), k \in \mathbb{R}$$

5.1. Considere a esfera de centro na origem e que passa no ponto V.

O ponto A pertence a essa esfera? Justifique.

(C)
$$\frac{\sqrt{6}}{2} + 1$$
 (D) $\frac{\sqrt{6}}{2} - 1$

- **5.3.** Determine as coordenadas do ponto de interseção da reta AC com o plano de equação y=5.
- **5.4.** Escreva uma equação vetorial da reta que passa em D e é paralela à reta AV.

Adaptado do Exame Nacional de Matemática A, 1.ª fase de 2019

6. Considere, num referencial o.n. espacial, a reta r definida por $(x, y, z) = (5, -2, 3) + k(1, -3, 0), k \in \mathbb{R}$ e o ponto A, de coordenadas (5,0,0).

Determine as coordenadas do ponto P da reta r, de ordenada positiva, e tal que $\overline{AP} = \sqrt{35}$.

FIM

COTAÇÕES

	ltem															
	Cotação (em pontos)															
1.	2.1.	2.2.	3.1.	3.2.	4.1.1.	4.1.2.	4.1.3.	4.2.	4.3.	4.4.	5.1.	5.2.	5.3.	5.4.	6.	
8	8	17	8	14	11	17	17	8	14	14	11	8	14	14	17	200