Proposta de Teste [maio - 2018]

Nome:

Ano / Turma: _____ N.º: ____ Data: ___ - ___ - ___

- Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
- A prova inclui um formulário.
- As cotações dos itens encontram-se no final do enunciado da prova.

CADERNO 1 (É permitido o uso de calculadora gráfica)

1. Numa caixa há 16 bolas numeradas de 1 a 16.

As bolas com número ímpar são azuis. As bolas com número par, umas são vermelhas e as restantes são pretas.

1.1. As bolas azuis são colocadas, lado a lado, constituindo uma sequência numérica, com 8 termos.

Quantas sequências diferentes é possível representar se os termos formados pelos números de dois algarismos ocuparem ordens consecutivas?

1.2. Da caixa, com as 16 bolas, ao acaso, são retiradas sucessivamente, sem reposição duas bolas.

Considera os acontecimentos:

A: "a primeira bola extraída é azul"

B: "a segunda bola extraída é preta"

Sabe-se que P(B|A) = 0, 2.

Determina o número de bolas vermelhas.

2. Oito amigos, entre eles o casal Silva, jantam num restaurante ocupando uma mesa com oito lugares. Tal como é sugerido pela figura, quatro lugares ficam de um dos lados da mesa e os outros quatro ficam do lado oposto.

De quantas maneiras diferentes é possível distribuir os oito lugares de modo que o casal Silva ocupe dois lugares opostos (frente a frente)?

(A) 2880

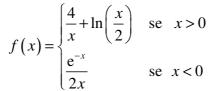
(B) 1440

(C) 5760

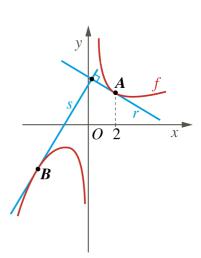
(D) 1152

3. No desenvolvimento de $(\sqrt{x}-x)^9$, pela fórmula do binómio de Newton, há um termo de grau 6. O coeficiente desse termo é:

- (A) -84
- **(B)** 126
- (C) -36
- **(D)** 36
- **4.** Considera a função f, de domínio $\mathbb{R} \setminus \{0\}$, definida por:



Na figura estão representados, em referencial o.n. xOy, as retas r e s e



Sabe-se que:

o gráfico de f.

- a reta r é tangente ao gráfico de f no ponto A de abcissa 2;
- a reta s é tangente ao gráfico de f no ponto B de abcissa negativa;
- as retas *r* e *s* são perpendiculares.

Determina a abcissa do ponto B, arredondada às centésimas, percorrendo as seguintes etapas:

- por processos exclusivamente analíticos, determina:
 - o na forma reduzida, uma equação da reta r;
 - o uma expressão de f'(x), para x < 0;
- indica a equação cuja solução é a abcissa do ponto B;
- recorre às capacidades gráficas da calculadora e determina a abcissa de B, reproduzindo o gráfico ou gráficos de funções utilizadas, incluindo o referencial.

FIM (Caderno 1)

	Total						
Questões – Caderno 1	1.1.	1.2.	2.	3.	4.	Total	
Pontos	10	10	10	10	20	60	

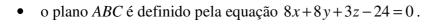
CADERNO 2

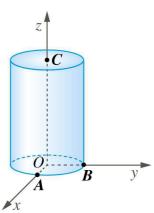
(Não é permitido o uso de calculadora)

1. Na figura, em referencial o.n. Oxyz, está representado um cilindro reto.

Sabe-se que:

- os pontos O e C são os centros das bases do cilindro;
- a base de centro O está contida no plano xOy;
- os pontos A e B são as interseções da circunferência que limita a base de centro O com os semieixos positivos das abcissas e das ordenadas, respetivamente;

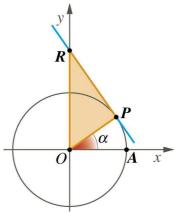




- **1.1.** Seja r a reta que passa no ponto D(1,-2,-1) e é perpendicular ao plano ABC. Representa a reta r através de uma equação na forma vetorial.
- **1.2.** Determina o volume do cilindro.
- **2.** Na figura estão representados o círculo trigonométrico e um triângulo [OPR].

Sabe-se que:

- o ponto A tem coordenadas (1,0);
- o ponto P pertence à circunferência trigonométrica, sendo $A\hat{O}P = \alpha$, com $\alpha \in \left[0, \frac{\pi}{2}\right]$;
- a reta *PR* é tangente à circunferência trigonométrica no ponto *P*, sendo *R* o ponto de interseção dessa reta com *Oy*.



2.1. Seja f a função que $\alpha \in \left[0, \frac{\pi}{2}\right]$ faz corresponder a área do triângulo [POR].

3

Mostra que
$$\forall \alpha \in \left] 0, \frac{\pi}{2} \right[, f(\alpha) = \frac{\cos \alpha}{2 \sin \alpha}.$$

2.2. Resolve, em $\left]0, \frac{\pi}{2}\right[$, a equação $f(\alpha) = \frac{3}{2}\tan \alpha$.

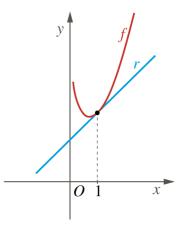
2.3. Seja
$$]a,b[\subset]0,\frac{\pi}{2}[e \quad k=f\left(\frac{a+b}{2}\right).$$

Mostra que a equação $f(\alpha) = k$ tem uma e uma só solução.

3. Para cada número real k, considera a função f definida por:

$$f(x) = x^2 - \ln(x) + k \quad ; k \in \mathbb{R}$$

3.1. Na figura, em referencial o.n. xOy, estão representadas uma das funções f e uma reta r tangente ao gráfico de f no ponto de abcissa 1.



A reta r é definida pela equação 2x-2y+3=0.

O valor de *k* é:

- **(A)** 2,5
- **(B)** 3
- **(C)** 3,5
- **(D)** 1,5

3.2. Considera k=2 e a sucessão (u_n) de termo geral $u_n = \left(1 + \frac{2}{n}\right)^n$.

Pode-se concluir que $\lim f(u_n)$ é igual a:

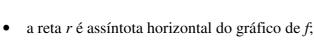
- $(\mathbf{A}) e^4$
- **(B)** 0
- **(C)** $+\infty$ **(D)** $e^2 + 2$

4. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = e^{-2x} - \frac{5 - 6e^x}{e^x}$$

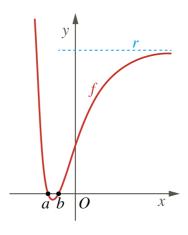
Na figura, em referencial cartesiano xOy, estão as representações gráficas da função f e de uma reta r.

Sabe-se que:



• os zeros da função f são representados por a e b;

•
$$\forall x \in \mathbb{R}$$
, $f'(x) = -2e^{-2x} + 5e^{-x}$



- **4.1.** Determina uma equação da reta *r*.
- **4.2.** Estuda a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.
- **4.3.** Mostra que $a + b = -\ln(6)$.

5. Considera as funções f e g de domínio \mathbb{R} , definidas por:

$$f(x) = e^{3x} - 3x$$
 e $g(x) = \cos^2 x$.

5.1. Seja $h = f \circ g$.

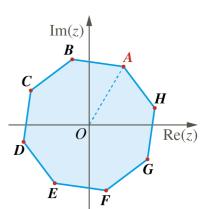
O valor de $h'(\pi)$ é igual a:

- (A) $\frac{1}{4}$
- **(B)** $\sqrt{e} 3$ **(C)** $\frac{1}{2}$
- **(D)** 0

5.2. Calcula
$$\lim_{x\to 0} \frac{f'(x)}{g'(x)}$$
.

6. Na figura, no plano complexo, está representado um octógono regular [ABCDEFGH] de centro no ponto O.

Sabe-se que o vértice A é a imagem geométrica do número complexo $z_A = 2e^{i\frac{\pi}{3}}.$



6.1. O vértice C é o simétrico do vértice A em relação a um eixo r. O eixo *r* é definido pela condição:

(A)
$$|z-1+\sqrt{3}i| = |z+1-\sqrt{3}i|$$

ao:

$$(\mathbf{B}) \left| z - 1 - \sqrt{3} \, \mathbf{i} \right| = \left| z + \sqrt{3} - \mathbf{i} \right|$$

$$(\mathbf{D}) \left| z + \sqrt{3} - \mathbf{i} \right| = \left| z - \sqrt{3} - \mathbf{i} \right|$$

(C)
$$|z - \sqrt{3} + i| = |z + 1 - \sqrt{3}i|$$

(D)
$$|z + \sqrt{3} - i| = |z - \sqrt{3} - i|$$

- **6.2.** Sejam z_B e z_H os números complexos que têm imagens geométricas, respetivamente, os pontos B e H.
- a) Representa z_B na forma trigonométrica.

b) Mostra que
$$\frac{\sqrt{2} + \sqrt{6}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2}i$$
 é a representação de z_H na forma algébrica.

7. Em C, conjunto dos números complexos, considera a condição

$$z.\overline{z} + 4 \operatorname{Re}(z) = 2 \operatorname{Im}(z)$$

No plano complexo, a condição dada corresponde ao mesmo conjunto de pontos definido pela condição $|z-z_0|=r$, com $r \in \mathbb{R}^+$.

Determina z_0 e r.

FIM (Caderno 2)

Novo Espaço – Matemática A 12.º ano Proposta de Teste [maio – 2018]

Cotações																		
	Caderno 1 (com calculadora)													_				
Questões	1.1.	1.2.	2.	3.		4.									_			
Pontos	10	10	10	10		20						Tot	al					60
	Caderno 2 (sem calculadora)																	
Questões	1.1.	1.2.	2.1.	2.2.	2.3.	3.1.	3.2.	4.1.	4.2.	4.3.	5.1.	5.2.	6.1.	6.2.a)	6.2.b)	7.		
Pontos	5	8	10	10	8	10	10	8	8	10	10	10	10	5	8	10	Total	140
	Total										200							

FORMULÁRIO

GEOMETRIA

Comprimento de um arco de circunferência: αr

(α – amplitude, em radianos, do ângulo ao centro;

r-raio)

Áreas de figuras planas

Polígono regular: Semiperímetro × Apótema

Setor circular: $\frac{\alpha r^2}{2}$

(α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone: πrg

 $(r - raio\ da\ base;\ g - geratriz)$

Área de uma superfície esférica: $4\pi r^2$

(r-raio)

Volumes

Pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Esfera: $\frac{4}{3} \pi r^3 (r - raio)$

PROGRESSÕES

Soma dos n primeiros termos de uma progressão (u_n):

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

TRIGONOMETRIA

 $\sin (a+b) = \sin a \cos b + \sin b \cos a$

 $\cos (a+b) = \cos a \cos b - \sin a \sin b$

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

 $a^2 = b^2 + c^2 - 2bc\cos A$

COMPLEXOS

 $(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis}(n\theta) \operatorname{ou} (\rho \operatorname{e}^{\mathrm{i}\theta})^n = \rho^n \operatorname{e}^{\mathrm{i}n\theta}$

 $\sqrt[p]{\rho \operatorname{cis} \theta} = \sqrt[p]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \operatorname{ou} \sqrt[n]{\rho \operatorname{e}^{\mathrm{i}\theta}} = \sqrt[p]{\rho} \operatorname{e}^{\frac{\theta + 2k\pi}{n}}$

 $(k \in \{0, \dots, n-1\} \in n \in \mathbb{N})$

PROBABILIDADES

 $\mu = p_1 x_1 + \ldots + p_n x_n$

 $\sigma = \sqrt{p_1 (x_1 - \mu)^2 + ... + p_n (x_n - \mu)^2}$

Se $X \in N(\mu, \sigma)$, então:

 $P(\mu-\sigma < X < \mu+\sigma) \approx 0,6827$

 $P(\mu-2\sigma < X < \mu+2\sigma) \approx 0.9545$

 $P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,9973$

REGRAS DE DERIVAÇÃO

(u+v)'=u'+v'

(u v)' = u' v + u v'

 $\left(\frac{u}{v}\right)' = \frac{u' \ v - u \ v'}{v^2}$

 $(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$

 $(\sin u)' = u' \cos u$

 $(\cos u)' = -u' \sin u$

 $(\tan u)' = \frac{u'}{\cos^2 u}$

 $(e^u)' = u' e^u$

 $(a^u)' = u' a^u \text{ In } a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$

 $(\ln u)' = \frac{u'}{u}$

 $(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$

LIMITES NOTÁVEIS

 $\lim \left(1 + \frac{1}{n}\right)^n = e \qquad (n \in \mathbb{N})$

 $\lim_{x\to 0}\frac{\sin x}{x}=1$

 $\lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1$

 $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$

 $\lim_{x\to+\infty}\frac{\mathrm{e}^x}{x^p}=+\infty\quad (p\in\mathbb{R})$

CADERNO 1

(É permitido o uso de calculadora gráfica)

1.1. Números das bolas azuis: 1; 3; 5; 7; 9; 11; 13; 15.

- 1, 3, 5, 7, 9, 11, 13, 15
- 6! (permutações dos seis elementos, sendo um deles constituído por 11, 13 e 15)
- 3! (permutações dos três números que ocupam ordens consecutivas)

Número de sequências diferentes das bolas azuis em que as que têm número com dois algarismos ocupam ordens consecutivas: $6!\times3!=4320$

Resposta: 4320

1.2. Se a primeira bola a sair é azul, então saiu um número ímpar.

Ficam 15 bolas, sendo 8 com número par, umas vermelhas e outras pretas, sendo as restantes 7 azuis com número ímpar.

Seja x o número de bolas pretas. Então, $P(B|A) = 0, 2 \Leftrightarrow \frac{x}{15} = 0, 2 \Leftrightarrow x = 3$.

Das 8 bolas com número par, 3 são pretas e as restantes são vermelhas.

Assim, o número de bolas vermelhas é 5.

Resposta: 5 bolas vermelhas.

2. Há 4 pares de lugares opostos (frente a frente) que o casal Silva pode ocupar. Para cada um desses 4 pares de lugares os elementos do casal Silva podem trocar entre si.

Os restantes 6 elementos podem ser distribuídos pelos restantes 6 lugares.

Assim, o número total de maneiras diferentes, nas condições apresentadas é dado por: $(4\times2!)\times6!$, ou seja, 5760.

Resposta: Opção (C) 5760

3.

$$\left(\sqrt{x} - x\right)^9 = \sum_{k=0}^{9} {}^{9}C_k \left(\sqrt{x}\right)^{9-k} \left(-x\right)^k = \sum_{k=0}^{9} \left(-1\right)^{k} {}^{9}C_2 x^{\frac{9+k}{2}}$$

O termo de grau 6 resulta quando $\frac{9+k}{2} = 6$, ou seja, k = 3.

O coeficiente desse termo é dado por $(-1)^{3}$ ${}^{9}C_{3}$, ou seja, -84.

Resposta: Opção (A) -84

4. Para
$$x > 0$$
, tem-se $f'(x) = -\frac{4}{x^2} + \frac{1}{x}$, ou seja, $f'(x) = \frac{-4 + x}{x^2}$.

Seja m_r o declive da reta r e m_s o da reta s.

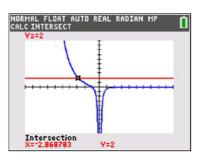
Tem-se
$$m_r = f'(2) = -\frac{1}{2}$$
. Então, $m_s = -\frac{1}{m_r} = 2$.

Para
$$x < 0$$
, tem-se $f'(x) = \frac{-e^{-x} \times 2x - 2e^{-x}}{x^2} = \frac{-e^{-x}(2x+2)}{x^2}$.

A abcissa de *B* é solução da equação $\frac{-e^{-x}(2x+2)}{x^2} = 2$.

Inserindo na calculadora as expressões $f'(x) = \frac{-e^{-x}(2x+2)}{x^2}$ e g(x) = 2, podem visualizar-se as seguintes representações gráficas na janela indicada e identificar o ponto de interseção cuja

abcissa é a do ponto B.



A abcissa do ponto B é, aproximadamente, -2.87.

Resposta: A abcissa do ponto *B*, arredondada às centésimas, é –2,87.

CADERNO 2

(Não é permitido o uso de calculadora gráfica)

1.1. Um vetor com a direção da reta r é, por exemplo, $\vec{u}(8,8,3)$.

Uma equação vetorial da reta r: $(x, y, z) = (1, -2, -1) + k(8, 8, 3); k \in \mathbb{R}$.

Resposta: Por exemplo, (x, y, z) = (1, -2, -1) + k(8, 8, 3); $k \in \mathbb{R}$.

1.2. As coordenadas do ponto A são do tipo: (x,0,0).

O ponto A é a interseção do plano ABC com o eixo Ox.

$$8x + 0 + 0 - 24 = 0 \iff x = 3$$
.

A(3,0,0).

As coordenadas do ponto C são do tipo: (0,0,z).

O ponto C é a interseção do plano ABC com o eixo Oz.

$$0+0+3z-24=0 \Leftrightarrow z=8.$$

C(0,0,8).

Raio da base do cilindro: $\overline{OA} = 3$

Altura do cilindro: $\overline{OC} = 8$

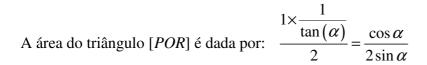
Volume do cilindro: $V = \pi \times 3^2 \times 8 = 72\pi$

Resposta: O volume do cilindro é 72π .

2.

2.1.
$$P\hat{O}R = \frac{\pi}{2} - \alpha$$
; $O\hat{R}P = \alpha$

$$\overline{OP} = 1$$
 e $\tan(\widehat{ORP}) = \tan(\alpha) = \frac{1}{\overline{PR}}$. Daqui resulta que: $\overline{PR} = \frac{1}{\tan(\alpha)}$



Assim, tem-se: $f(\alpha) = \frac{\cos \alpha}{2\sin \alpha}$



 α

Proposta de Resolução [maio - 2018]

2.2.
$$f(\alpha) = \frac{3}{2} \tan \alpha \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{\cos \alpha}{2 \sin \alpha} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha \in \left[0, \frac{\pi}{2}\right] \Leftrightarrow \frac{1}{2} = \frac{3 \sin \alpha}{2 \cos \alpha} \wedge \alpha = \frac{3 \sin \alpha}{2$$

$$\Leftrightarrow \cos^2 \alpha = 3\sin^2 \alpha \land \alpha \in \left]0, \frac{\pi}{2} \right[\Leftrightarrow 1 = 4\sin^2 \alpha \land \alpha \in \left]0, \frac{\pi}{2} \right[$$

$$\Leftrightarrow \left(\sin\alpha = \frac{1}{2} \vee \sin\alpha = -\frac{1}{2}\right) \wedge \alpha \in \left]0, \frac{\pi}{2}\right[\Leftrightarrow \alpha = \frac{\pi}{6}\right]$$

Resposta: $\frac{\pi}{6}$

2.3.
$$f(\alpha) = \frac{\cos \alpha}{2\sin \alpha}$$
 e $]a,b[\subset]0,\frac{\pi}{2}[$.

A função f é contínua em [a,b]; é o quociente entre funções contínuas em que $2\sin\alpha \neq 0$.

$$f'(\alpha) = \left(\frac{\cos \alpha}{2\sin \alpha}\right)' = \frac{-\sin \alpha (2\sin \alpha) - 2\cos \alpha \cos \alpha}{4\sin^2 \alpha} = \frac{-2(\sin^2 \alpha + \cos^2 \alpha)}{4\sin^2 \alpha} = \frac{-1}{2\sin^2 \alpha}$$

 $\forall \alpha \in \left]0, \frac{\pi}{2}\right[, f'(\alpha) < 0$. Daqui resulta que a função f é estritamente decrescente em $\left]0, \frac{\pi}{2}\right[$.

Assim, tem-se:

- fé contínua em [a,b];
- f é estritamente decrescente em $\left[0, \frac{\pi}{2}\right]$, em particular em [a, b];
- $a < \frac{a+b}{2} < b$ e f decrescente, então $f(a) > f\left(\frac{a+b}{2}\right) > f(b)$, ou seja, f(a) > k > f(b).

Recorrendo ao teorema de Bolzano, conclui-se que a equação $f(\alpha) = k$ tem solução pertencente a a . Como a função é decrescente, conclui-se que a solução é única.

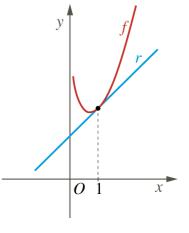
Proposta de Resolução [maio - 2018]

3.1.
$$2x-2y+3=0 \Leftrightarrow y=x+\frac{3}{2}$$

A ordenada do ponto da reta $y = x + \frac{3}{2}$ de abcissa 1 é igual à ordenada do ponto do gráfico de f de abcissa 1.

Assim,
$$f(1) = 1 + \frac{3}{2}$$
, ou seja, $1^2 - \ln(1) + k = \frac{5}{2} \iff k = \frac{5}{2} - 1 \iff k = \frac{3}{2}$

Resposta: opção (D) 1,5



3.2. Se
$$k = 2$$
, então $f(x) = x^2 - \ln(x) + 2$

$$\lim u_n = \lim \left(1 + \frac{2}{n}\right)^n = e^2.$$

$$\lim_{n \to \infty} f(u_n) = \lim_{n \to \infty} \left((u_n)^2 - \ln(u_n) + 2 \right) = \left(e^2 \right)^2 - \ln(e^2) + 2 = e^4 - 2 + 2 = e^4$$

Resposta: Opção (A) e⁴

4.1.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(e^{-2x} - \frac{5 - 6e^x}{e^x} \right) = \lim_{x \to +\infty} \left(e^{-2x} - \frac{5}{e^x} + 6 \right) = 0 - 0 + 6 = 6$$

A reta de equação y = 6 é assíntota horizontal ao gráfico de f, quando $x \to +\infty$.

4.2.
$$\forall x \in \mathbb{R}, \quad f'(x) = -2e^{-2x} + 5e^{-x}$$

$$f''(x) = (-2e^{-2x} + 5e^{-x})' = 4e^{-2x} - 5e^{-x}$$

$$f''(x) = 0 \Leftrightarrow 4e^{-2x} - 5e^{-x} = 0 \Leftrightarrow e^{-x}(4e^{-x} - 5) = 0 \Leftrightarrow 4e^{-x} - 5 = 0$$

$$\Leftrightarrow$$
 $e^{-x} = \frac{5}{4} \Leftrightarrow -x = \ln\left(\frac{5}{4}\right) \Leftrightarrow x = \ln\left(\frac{4}{5}\right)$

X	-∞	$\ln\left(\frac{4}{5}\right)$	+∞
f''(x)	+	0	-
f			

Proposta de Resolução [maio - 2018]

Se $x \in \left[-\infty, \ln\left(\frac{4}{5}\right) \right]$ a concavidade é "voltada para cima".

Se $x \in \left[\ln \left(\frac{4}{5} \right), +\infty \right]$ a concavidade é "voltada para baixo".

O gráfico de f tem um ponto de inflexão que é o ponto de abcissa $\ln\left(\frac{4}{5}\right)$.

4.3.
$$f(x) = 0 \Leftrightarrow e^{-2x} - \frac{5 - 6e^x}{e^x} = 0 \Leftrightarrow e^{-x} - 5 + 6e^x = 0 \Leftrightarrow 6e^{2x} - 5e^x + 1 = 0$$

$$\Leftrightarrow e^x = \frac{5 \pm \sqrt{25 - 24}}{12} \Leftrightarrow e^x = \frac{1}{2} \lor e^x = \frac{1}{3} \Leftrightarrow x = \ln\left(\frac{1}{2}\right) \lor x = \ln\left(\frac{1}{3}\right).$$

Assim,
$$a+b = \ln\left(\frac{1}{2}\right) + \ln\left(\frac{1}{3}\right) = \ln\left(\frac{1}{6}\right) = -\ln(6)$$
.

5.1.
$$h'(x) = (f \circ g)'(x) = f'(g(x)) \times g'(x)$$

$$f'(x) = (e^{3x} - 3x)' = 3e^{3x} - 3$$
 e $g'(x) = (\cos^2 x)' = 2\cos x(-\sin x) = -\sin(2x)$

$$h'(\pi) = (f \circ g)'(\pi) = f'(g(\pi)) \times g'(\pi) = f'(1) \times (-\sin(2\pi)) = 0$$

Resposta: opção (D) 0

5.2.
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{3e^{3x} - 3}{-2\cos x \sin x} = -3\lim_{x \to 0} \frac{e^{3x} - 1}{\sin(2x)} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{\sin(2x)}{2x} \times 2x} = -3\lim_{x \to 0} \frac{\frac{e^{3x} - 1}{3x} \times 3x}{\frac{e^{3x} - 1}{2x} \times 3x} = -3\lim_{x \to 0} \frac{e^{3x} - 1}{\sin(2x)} = -3\lim_{x \to 0} \frac{e^{3x} - 1}{\sin(2x)}$$

$$= -\frac{9}{2} \times \frac{\lim_{3x \to 0} \frac{e^{3x} - 1}{3x}}{\lim_{2x \to 0} \frac{\sin(2x)}{2x}} = -\frac{9}{2} \times \frac{1}{1} = -\frac{9}{2}$$

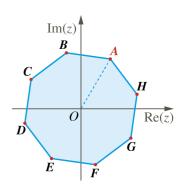
Resposta: $-\frac{9}{2}$

Proposta de Resolução [maio - 2018]

6.1. Eixo de simetria é a mediatriz de [AC].

$$z_A = 2e^{i\frac{\pi}{3}} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + \sqrt{3}i$$

$$z_{C} = 2e^{i\left(\frac{\pi}{3} + 2 \times \frac{\pi}{4}\right)} = 2\left(\cos\left(\frac{\pi}{3} + \frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\sqrt{3} + i$$



A mediatriz de [AC] é definida pela condição:

$$|z - z_A| = |z - z_C| \Leftrightarrow |z - (1 + \sqrt{3}i)| = |z - (-\sqrt{3} + i)| \Leftrightarrow |z - 1 - \sqrt{3}i| = |z + \sqrt{3} - i|$$

Resposta: opção (B)
$$\left|z-1-\sqrt{3}i\right| = \left|z+\sqrt{3}-i\right|$$

6.2.

a)
$$z_R = 2e^{i\left(\frac{\pi}{3} + \frac{\pi}{4}\right)} = 2e^{i\frac{7\pi}{12}}$$

Resposta:
$$z_B = 2e^{i\frac{7\pi}{12}}$$

$$\begin{aligned} \mathbf{b}) \ \ z_{H} &= 2\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{3} - \frac{\pi}{4}\right)} = 2\left(\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + \mathrm{i}\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) \\ &= 2\left(\left(\cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4}\right) + \left(\sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}\right)\mathrm{i}\right) \\ &= 2\left(\left(\frac{1}{2}\times\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\times\frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2}\times\frac{\sqrt{2}}{2} - \frac{1}{2}\times\frac{\sqrt{2}}{2}\right)\mathrm{i}\right) = 2\left(\frac{\sqrt{2} + \sqrt{6}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}\mathrm{i}\right) \\ &= \frac{\sqrt{2} + \sqrt{6}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2}\mathrm{i} \end{aligned}$$

7. Em \mathbb{C} , conjunto dos números complexos, considera a condição $z.\overline{z} + 4\operatorname{Re}(z) = 2\operatorname{Im}(z)$.

No plano complexo, a condição dada corresponde ao mesmo conjunto de pontos definido pela condição $|z-z_0|=r$, com $r\in\mathbb{R}^+$.

Seja z = x + yi.

$$z.\overline{z} + 4\operatorname{Re}(z) = 2\operatorname{Im}(z) \iff x^2 + y^2 + 4x = 2y$$

$$\Leftrightarrow x^2 + 4x + 4 - 4 + y^2 - 2y + 1 - 1 = 0 \Leftrightarrow (x + 2)^2 + (y - 1)^2 = 5$$

A condição dada representa uma circunferência de centro no ponto C(-2,1) e raio $\sqrt{5}$.

$$|z - z_0| = r$$
. Assim, tem-se: $z_0 = -2 + i$ e $r = \sqrt{5}$.