
 
CHAPTER 12 TWO-DEGREE- OF-FREEDOM-SYSTEMS 

 
Introduction to two degree of freedom systems: 
 

• The vibrating systems, which require two coordinates to describe its motion, are 
called two-degrees-of –freedom systems. 

• These coordinates are called generalized coordinates when they are independent 
of each other and equal in number to the degrees of freedom of the system. 

• Unlike single degree of freedom system, where only one co-ordinate and hence 
one equation of motion is required to express the vibration of the system, in two-
dof systems minimum two co-ordinates and hence two equations of motion are 
required to represent the motion of the system. For a conservative natural system, 
these equations can be written by using mass and stiffness matrices.  

• One may find a number of generalized co-ordinate systems to represent the 
motion of the same system. While using these co-ordinates the mass and stiffness 
matrices may be coupled or uncoupled. When the mass matrix is coupled, the 
system is said to be dynamically coupled and when the stiffness matrix is coupled, 
the system is known to be statically coupled. 

• The set of co-ordinates for which both the mass and stiffness matrix are 
uncoupled, are known as principal co-ordinates. In this case both the system 
equations are independent and individually they can be solved as that of a single-
dof system. 

• A two-dof system differs from the single dof system in that it has two natural 
frequencies, and for each of the natural frequencies there corresponds a natural 
state of vibration with a displacement configuration known as the normal mode. 
Mathematical terms associated with these quantities are eigenvalues and 
eigenvectors. 

• Normal mode vibrations are free vibrations that depend only on the mass and 
stiffness of the system and how they are distributed. A normal mode oscillation is 
defined as one in which each mass of the system undergoes harmonic motion of 
same frequency and passes the equilibrium position simultaneously. 

• The study of two-dof- systems is important because one may extend the same 
concepts used in these cases to more than 2-dof- systems. Also in these cases one 
can easily obtain an analytical or closed-form solutions.  But for more degrees of 
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freedom systems numerical analysis using computer is required to find natural 
frequencies (eigenvalues) and mode shapes (eigenvectors). 

 
The above points will be elaborated with the help of examples in this lecture. 

Few examples of two-degree-of-freedom systems 
 
Figure 1 shows two masses  with three springs having spring stiffness 

 free to move on the horizontal surface. Let 
1 2and m m

1 2,  and k k k3 1 2and x x be the displacement of 

mass   respectively.1  andm 2m

1m 3k  1k  
 2m  2k  

2x  1x   
 
    
 
 
 

Figure 1 
 
As described in the previous lectures one may easily derive the equation of motion by 
using d’Alembert principle or the energy principle (Lagrange principle or Hamilton’s 
principle) 

1 1m x  
 

1 1k x
1m  

2 1 2( )k x x−   
Using d’Alembert principle for mass , from the 1m

free body diagram shown in figure   1(b) 

1 1 1 2 1 2 2( )m x k k x k x+ + − = 0

0

                (1) 

and similarly for mass m  2

2 2 1 1 2 3 2( )m x k x k k x− + + =                 (2) 
2 2m x  

2 2 1( )k x x−  3 2k x  
2m  

 
Important points to remember  
 
• Inertia force acts opposite to the 
 direction of acceleration, so in both the  
free body diagrams inertia forces are shown  

Figure 1 (b), Free body diagram 
towards left. 

• For spring , assuming 2k 2 1x x> ,  
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The spring will pull mass  towards right by 1m 2 2 1(k x x )−  and it is stretched by 2 1x x−  

(towards right) it will exert a force of 2 2 1(k x x )− towards left on mass . Similarly 

assuming 
2m

1 2x x> , the spring get compressed by an amount 2 1x x−  and exert tensile force 

of . One may note that in both cases, free body diagram remain unchanged. 2 1 2(k x x− )

 
Now if one uses Lagrange principle, 

The Kinetic energy = 2
1 1 2 2

1 1
2 2

T m x m x= + 2  and                                               (3)         

Potential energy = 2 2
1 1 2 1 2 3 2

1 1 1( )
2 2 2

U k x k x x k= + − + 2x                                     (4) 

So, the Lagrangian  
 

2 2 2 2
1 1 2 2 1 1 2 1 2 3 2

1 1 1 1 1( )
2 2 2 2 2

2L T U m x m x k x k x x k x⎛ ⎞ ⎛= − = + − + − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

                 (5) 

The equation of motion for this free vibration case can be found from the Lagrange 
principle  
 

0
k k

d L L
dt q q
⎛ ⎞∂ ∂

− =⎜ ⎟∂ ∂⎝ ⎠
,                                                                                     (6) 

 
and noting that the generalized co-ordinate 1 1 2 and q x q x2= =  

 
which yields 

1 1 1 2 1 2 2( )m x k k x k x+ + − = 0

0

=

                                                                          (7) 

2 2 1 1 2 3 2( )m x k x k k x− + + =                                                                            (8) 

Same as obtained before using d’Alembert principle. 
 
Now writing the equation of motion in matrix form  
 

1 2 21 1 1

2 2 32 2 2

0 0
0 0

k k km x x
k k km x x
+ −⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ − + ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
.                                             (9) 

 
Here it may be noted that for the present two degree-of-freedom system, the system is 
dynamically uncoupled but statically coupled.  
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Example 2. 
 
Consider a lathe machine, which can be modeled as a rigid bar with its center of mass not 
coinciding with its geometric center and supported by two springs, .  1 2,k k

 
 
 
 
 
 
 
 
 
 
 
                                               
 
In this example, it will be shown, how 
static and or dynamic coupled or uncoup
degree-of freedom system and one may e
ways.  Figure 3 shows the free body diagr
mass. Point C represents a point on the ba
this system. This point is at a distance f

between points C and G is . Assuming 
1l

e

the rotation about point C, the equation of
d’Alember’s principle. Now summation 
inertia forces must be equal to zero leads 

1 1 2 2( ) ( )c c c c c cmx me k x l k x lθ θ θ+ + − + + =

 
Again taking moment of all the forces abo

1 1 1 2( ) ( ) (G c c c c cJ mx me e k x l l kθ θ θ+ + − − +

Noting 2
c GJ J me= + , the above two equa

1 2 2 2 1 1
2 2

2 2 1 1 1 1 2 2

c

c c

m me x k k k l k l
me J k l k l k l k lθ

+ −⎡ ⎤ ⎛ ⎞ ⎛⎡ ⎤
+⎜ ⎟ ⎜⎢ ⎥ ⎢ ⎥− +⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝

 

1k  
k

2k  

cx  

cθ  

1 1( )c ck x lθ−  

2 2( )c ck x l θ+  
G 

2l  

e  

c cJ θ  

C 

( )c cm x eθ+  

1l  

      Figure  2 

 

Figure  3: Free body diagram of the system 
the use of different coordinate systems lead to 
led equations of motion. Clearly this is a two-
xpress the co-ordinate system in many different 
am of the system where point G is the center of 
r at which we want to define the co-ordinates of 
rom the left end and  from right end. Distance 2l

cx  is the linear displacement of point C  and cθ   

 motion of this system can be obtained by using 
of all the forces, viz. the spring forces and the 
to the following equation.  
0

0

                                                             (10) 

ut point C 

2 2)c cx l lθ+ =                                          (11) 

tions in matrix form can be written as 

0
0c

x ⎞ ⎛ ⎞
⎟ ⎜ ⎟

⎝ ⎠⎠
c

θ
=                                                  (12) 

212



Now depending on the position of point C, few cases can are studied below. 
 
Case 1 :  Considering , i.e., point C and G coincides, the equation of motion can be 
written as 

0e =

 
 x

θ  

1 1( )k x lθ−
2 2( )k x l θ+  

 

 
 
 
 

1 2 2 2 1 1
2 2

2 2 1 1 1 1 2 2

0 0
0 0G

m k k k l k lx x
J k l k l k l k lθ θ

+ −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

=                                             (13) 

 
So in this case the system is statically coupled and if 1 1 2 2k l k l= , this coupling disappears, 

and we obtained uncoupled  and x θ  vibrations. 
 
Case 2 :  If, , the equation of motion becomes 2 2 1 1k l k l=

 

1 2
2 2

1 1 2 2

0 0
0 0

c

c c c

m me x xk k
me J k l k lθ θ

+⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝ ⎠

c = .                                             (14) 

 
Hence in this case the system is dynamically coupled but statically uncoupled. 
 
Case 3: If we choose , i.e. point C coincide with the left end,  the equation of 

motion will become 
1 0l =

 .                                                   (15) 1 2 2 2
2

2 2 2 2

0
0

c

c c c

m me x xk k k l
me J k l k lθ

+⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎝ ⎠⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝ ⎠
c

θ
=

0

Here the system is both statically and dynamically coupled. 
 
Normal Mode Vibration  
Again considering the problem of the spring-mass system in figure 1 with , 

, , the equation of motion (9) can be written as 
1m m=

2 2m m= 1 2 3k k k k= = =

1 1 2 1

2 1 2 2

( ) 0
2 ( )
mx k x x kx

mx k x x kx
+ − + =
− − + =

                                                                             (16) 
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We define a normal mode oscillation as one in which each mass undergoes harmonic 
motion of the same frequency, passing simultaneously through the equilibrium position. 
For such motion, we let 

1 1 2 2,i t i tx A e x A eω ω= =                                                                                      (17) 

Hence, 
2

1 2
2

1 2

(2 ) 0

(2 2 ) 0

k m A kA

kA k m A

ω

ω

− − =

− + − =
                                                                              (18) 

or, in matrix form 
2

1
2

2

02
02 2

Ak m k
Ak k m

ω
ω

⎡ ⎤− − ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠⎣ ⎦

                                                           (19) 

Hence for nonzero values of   (i.e., for non-trivial response) 1  and A 2A
2

2

2
0

2 2
k m k

k k m
ω

ω
− −

=
− −

.                                                                            (20) 

Now substituting 2ω λ= , equation 6.1. yields 

2 3(3 ) ( ) 0
2

k k
m m

λ λ− + 2 =                                                                                   (21) 

Hence, 1
3 1( 3) 0.634
2 2

k k
m m

λ = − =  and 2
3 1( 3) 2.366
2 2

k k
m m

λ = + =      

So, the natural frequencies of the system are 1 1 20.634  and 2.366k k
m m

ω λ ω= = =  

Now from equation (1)., it may be observed that for these frequencies, as both the 
equations are not independent,  one can not get unique value of . So one should 

find a normalized value. One may normalize the response by finding the ratio of . 
1 and A 2A

1 2 to A A

From  the first equation (19)  the normalized value can be given by 

1
2

2 2 2
A k k
A k m k mω λ

= =
− −

                                                                                (22) 

and from the second equation of (19), the normalized value can be given by 
2

1

2

2 2 2 2A k m k m
A k k

ω λ− −
= =                                                                             (23) 

Now, substituting 2
1 1 0.634 k

m
ω λ= =  in equation (22) and   (23) yields the same values, 

as both these equations are linearly dependent. Here, 
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1

1

2

0.732
1

A
A

λ λ=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
                                                                                           (24) 

and similarly for  2
2 2 2.366 k

m
ω λ= =  

2

1

2

2.73
1

A
A

λ λ=

⎛ ⎞ −
=⎜ ⎟

⎝ ⎠
                                                                                            (25) 

 
It may be noted 
 

• Equation (19) gives only the ratio of the amplitudes and not their absolute values, 
which are arbitrary. 

• If one of the amplitudes is chosen to be 1 or any number, we say that amplitudes 
ratio is normalized to that number.  

• The normalized amplitude ratios are called the normal modes and designated 
by ( )n xφ . 

From equation (24) and  (25), the two normal modes of this problem are: 
 

1 2

0.731 2.73
( )            ( )

1.00 1.00
x xφ φ

−⎧ ⎫ ⎧
= =⎨ ⎬ ⎨
⎩ ⎭ ⎩

⎫
⎬
⎭

2

 

 
In the 1st normal mode, the two masses move in the same direction and are said to be in 
phase and in the 2nd mode the two masses move in the opposite direction and are said to 
be out of phase. Also in the first mode when the second mass moves unit distance, the 
first mass moves 0.731 units in the same direction and in the second mode, when the 
second mass moves unit distance; the first mass moves 2.73 units in opposite direction.   
 
Free vibration using normal modes 
 
When the system is disturbed from its initial position, the resulting free-vibration of the 
system will be a combination of the different normal modes. The participation of 
different modes will depend on the initial conditions of displacements and velocities. So 
for a system the free vibration can be given by 
  

1 1 1 2 2sin( ) sin( )x A t B tφ ω ψ φ ω ψ= + + +              (27) 
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Here A and B are part of participation of first and second modes respectively in the 
resulting free vibration and 1 and 2ψ ψ  are the phase difference. They depend on the 

initial conditions.  This is explained with the help of the following example. 
 
Example: Let us consider the same spring-mass problem (figure 4) for which the natural 
frequencies and normal modes are determined. We have to determine the resulting free 
vibration when the system is given an initial displacement 1 2(0) 5, (0) 1x x= =  and initial 

velocity . 1 2(0) (0) 0x x= =

m  2m
k  k  k  

1x
2x    

 
 
 
 
 

Figure  4 
Solution: 
Any free vibration can be considered to be the superposition of its normal modes. For 
each of these modes the time solution can be expressed as: 
 

1
1

2 1

1
2

2 2

0.731
sin

1

2.731
sin

1.00

x
t

x

x
t

x

ω

ω

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭
−⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭

 

 
The general solution for the free vibration can then be written as: 
 

1
1 1 2 2

2

0.731 2.73
sin( ) sin( )

1.00 1
x

A t B t
x

ω ψ ω
−⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭

ψ+

2

 

 
where A and B allow different amounts of each mode and 1 and ψ ψ  allows the two 

modes’ different phases or starting values. 
 
Substituting: 
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1
1 2

2

1
1 1 2

2

(0) 5 0.731 2.731
sin sin

(0) 1 1 1

(0) 0 0.731 2.731
cos cos

(0) 0 1 1

x
A B

x

x
A B

x

ψ ψ

2ω ψ ω ψ

−⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

−⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 

 
0

1 2 1 2cos cos 0 => 90   ψ ψ ψ ψ= = = =  

 
Substituting in 1st set: 

5 0.731 2.731
1 1 1

A B
−⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 
 
0.731A-2.731B= 5           A= 2.233 
A+B                 = 1           B=-1.233 
 
Hence the resulting free vibration is 
 
 
 
 

1
1 2

2

0.731 2.731
2.233 cos 1.233 cos

1.00 1.000
x

t t
x

ω ω
−⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭

 

 
Normal modes from eigenvalues 
 
The equation of motion for a two-degree-of freedom system can be written in matrix 
form as  
                                     0M x K x+ =                           (28) 
where  and M K  are the mass and stiffness matrix respectively;  is the vector of  
generalized co-ordinates. Now pre-multiplying 

x
1M −  in both side of equation 6.2.  one 

may get 
   1 0I x M K x−+ =               (29) 
or, 0I x A x+ =             (30) 

Here  is known as the dynamic matrix. Now to find the normal modes,  1A M K−=
 

1 1 2 2,i t i tx X e x X eω ω= = , the above equation will reduce to 

[ ] 0A I Xλ− =            (31) 
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where { } 2
1 2  and =TX x x λ ω= . 

From equation (31) it is apparent that the free vibration problem in this case is reduced to 
that of finding the eigenvalues and eigenvectors of the  matrix A. 
 
Example: Determine the normal modes of a double pendulum. 
Solution 
 
Kinetic energy of the system = 

 2 2 2 2 2 2
1 1 1 2 1 1 2 2 1 2 1 2 2 1

1 1 ( 2 cos( ))
2 2

l m l l l lT m θ θ θ θ θ θ= + + + θ−  

Potential energy of the system = 
{ }

{ }
1 1 2 1 1 2

1 2 1 1 2 2 2

(1 cos ) (1 cos ) (1 cos )

( ) (1 cos ) (1 cos )

U m g m g l l

g m m l m l
2θ θ θ

θ θ

= − + − + −

= + − + −
 

So Lagrangian of the system =  

{ }2 2
1 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2

1 1 ( 2 cos( )) ( )(1 cos ) (1 cos )
2 2

L T U

m l m l l l l g m m mθ θ θ θ θ θ θ

= −

= + + + − − + − + −
 

 1θ

Figure 5 

2θ  
1 1lθ  

2 1θ θ−  

1 1lθ  
2 2l θ  

So using Lagrange principle,  and assuming small angle of rotation,  the equation of 
motion can be written in matrix form as 

2
1 2 1 11 2 1 2 1 2 1

2
2 2 22 1 2 2 2 2

( ) 0 0( )
0 0

m m l gm m l m l l
m l gm l l m l

θθ
θθ

⎛ ⎞ +⎡ ⎤+ ⎡ ⎤ ⎛ ⎛ ⎞
+ =⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦ ⎝⎣ ⎦ ⎝ ⎠

⎞

⎠

l

 

 
Now considering a special case when 1 2 1 2andm m m l l= = = =

0⎛ ⎞

⎝ ⎠

mlg
θθ
θθ

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠⎝ ⎠

, the above equation 

becomes 
2 2

11
2 2

22

2 02
0 0

mlgml ml
mlgml ml

θθ
θθ

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤
+ =⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠

 

or, ml  12 1

22

2 1 2 0 0
1 1 0 1 0

 

Now 2

1 1 2 0 2 11
1 2 0 1 2 2

gA mlg
ml l

− −⎛ ⎞ ⎡ ⎤ ⎛
= =⎜ ⎟ ⎜⎢ ⎥− −⎝ ⎠ ⎣ ⎦ ⎝

⎞
⎟
⎠

 

To find eigenvalues of A,  
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2 2
2

2
2

2 2

2
0 0

2 2

Or, 4 4 2 0

Or, 4 2 0

4 4 8
Or, (2 2)

2

g g
l lA I

g g
l l

g g g
l l l

g g
l l

g g g
l l l g

l

λ
λ

λ

λ λ

λ λ

λ

− −
− = ⇒ =

− −

⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞± −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = ±

 

Hence natural frequencies are 1 20.7653 , 1.8478g g
l l

ω ω= =  

The normal modes can be determined from the eigenvalues. 
The corresponding principal modes are obtained as 
 

1

2 1

1

2 2

1
2(2 2 2)

1
2(2 2 2)

g
l

g
l

g
l

g
l

λ λ

λ λ

θ
θ

θ
θ

=

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠ − +

⎛ ⎞
= =⎜ ⎟

⎝ ⎠ − −
−

2

 

It may be noted that while in the first mode  
Both the pendulum moves in the same direction, Figure 6 
In the second mode they move in opposite direction  
One may solve the same problem by taking 1 and  x x as the generalized coordinates. 

Here 1x  is the horizontal distance moves by mass  and 1m 2x  is the distance move by 

mass . Figure  7 show the  free body diagram of both the masses. 2m

2T

1T

1m g

y  

1θ  

2θ  

 

 

 

 

2 2m x

2m g  

 

2T  
2θ  

y  
 
 

x
 x1 1m x  
 
 

Figure 7  
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From the free body diagram of mass , 2m

2 2 2

2 2 2

cos
sin

T m
T m 2

g
x

θ
θ

=
= −

 

Also from the free body diagram of mass , 1m

1 1 2 2 1

1 1 2 2 1 2

cos cos
sin sin 0

T T m g
T T m x

θ θ
θ θ

− =
− + =

2

 

Assuming 1  and θ θ  to be small, 

 1 1 1 1

2 2 2 2 1

sin tan /
andsin tan ( ) /

x l
x x l

θ θ θ
θ θ θ
= = =

= = = −
 

Hence 

2 2 1 1 2, and ( )T m g T m m g= = +   

1 2 2 2
1 1 1 2

1 2 2

( ) 0m m g m g m gm x x x
l l l

⎛ ⎞⎛ ⎞+ −
+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=  

2 1
2 2 2

2

0x xm x m g
l

⎛ ⎞−
+ =⎜ ⎟

⎝ ⎠
 

Hence in matrix form 

1 2 2 2

1 1 11 2 2

2 2 22 2

2 2

( )
0 0

0 0

m m g m g m g
m x xl l l

m x xm g m g
l l

⎡ ⎤⎛ ⎞⎛ ⎞+ −
+⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠⎢ ⎥⎝ ⎠+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎝⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

⎠

l

 

Considering the case in which 1 2 1 2andm m m l l= = = = , the above equation becomes 

 

1 1

2 2

1 0 3 1 0
0 1 1 1 0

x xg
x xl

−⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎝⎝ ⎠ ⎝ ⎠

⎞

⎠
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Hence 

( ) ( )

2
2

1 2

3 1
1 1

3
and 0 0

Or, 4 2 0

, 2 2 2 2

gA
l

g g
l lA I

g g
l l

g g
l l

g gor and
l l

λ
λ

λ

λ λ

λ λ

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

− −
− = ⇒ =

− −

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

= − = +

 

Same as those obtained by taking 1 and 2θ θ  as the generalized coordinates. 

Now 

1

2
1

1

2
2

1

2

1 1 0.4142
2.41423 2 23

1 1 2.4142
0.41423 2 23

g
X l

gX
l

g
X l

gX
l

λ λ λ

λ λ λ

⎛ ⎞
= = = =⎜ ⎟

− +⎝ ⎠ = −

⎛ ⎞
= = = − = −⎜ ⎟

− −⎝ ⎠ = −

 

 
 

Figure 8 

-0.4142 

1 

2.4142

1

 
 
 
 
 
 
 
 
 
The different modes are as shown in the above figure. 
Example  Determine the equation of motion if the double pendulum is started with initial 
conditions  1 2 1 2(0) (0) 0.5, (0) (0) 0.x x x x= = = =

Solution: 
The resulting free vibration can be considered to be the superposition of the normal 
modes. For each of these modes, the time solution can be written as 

 221



1 1 1 1
1 2

2 2 2 21 1 2 2

sin sin
x X x X

t t
x X x X

ω ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The general solution for the free vibration can be written as  

1
1 1 2 2

2

0.4142 2.4142
sin( ) sin( )

1 1
x

A t B
x

tω ψ ω
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

ψ+  

 
where andA B  are the amounts of first and second  mode’s  participation and 1 2andψ ψ  

are the starting values or phases of the two modes. Substituting the initial conditions in 
the above equation 

1 2

0.5 0.4142 2.4142
sin sin

0.5 1 1
A Bψ ψ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
and  
 

1 1 2

0 0.4142 2.4142
cos cos

0 1 1
A B 2ω ψ ω ψ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

For the second set of equations to be satisfied, 1 2cos cos 0ψ ψ= = , so that 0
1 2 90ψ ψ= = . 

Hence . So the equation for free vibration can be given by 0.6035 0.1036A and B= = −

1
1 2

2

0.4142 2.4142
0.6035 cos 0.1036 cos

1 1
x

t t
x

ω ω
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Damped-free vibration of two-dof systems 
Consider a two degrees of freedom system with damping as shown in figure  
 

1m  2m  

1k  
2k  3k  

3c
2c1c  

2x  1x   
 
 
 
 
 
Now the equation of motion of this system can be given by 

Figure 9 

 

1 2 2 1 2 21 1 1 1

2 2 3 2 2 32 2 2 2

0 0
0 0

k k k c c cm x x x
k k k c c cm x x x
+ − + −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ − + − + ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
=     (32) 
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As in the previous case, here also the solution of the above equations can be written as 

1 1 2 2 and  st stx A e x A e= =            (33) 

1 2where ,  and are constantA A s . Substituting (33) in  (32) , one may write 

 
2

11 1 2 1 2 2 2
2

22 2 2 2 3 2 3

0( )
0( )

Am s c c s k k c s k
Ac s k m s c c s k k

⎡ ⎤+ + + + − − ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − + + + + ⎝ ⎠⎝ ⎠⎣ ⎦

               (34) 

Now for a nontrivial response i.e., for non-zero values of , the determinant of 

their coefficient matrix must vanish. Hence 
1 andA 2A

 
2

1 1 2 1 2 2 2
2

2 2 2 2 3 2 3

( )
0

( )
m s c c s k k c s k

c s k m s c c s k k
+ + + + − −

=
− − + + + +

     (35) 

2 2
1 1 2 1 2 2 2 3 2 3 2 2or, ( ( ) )( ( ) ) ( ) 0m s c c s k k m s c c s k k c s k+ + + + + + + + + + =2

4

4

     (36) 

which is a fourth order equation in s and is known as the characteristic equation of the 
system. This equation is to be solved to get four roots. The general solution of the system 
can be given by  

31 2

31 2

1 11 12 13 14

2 21 22 23 24

s ts t s t

s t

s t

s t s t s t

x A e A e A e A e

x A e A e A e A e

= + + +

= + + +
          (37) 

Here  are four arbitrary constants to be determined from the initial 

conditions and the coefficients 
1 , 1, 2,3,4iA i =

2 , 1, 2,3,4iA i = are related to and can be determined 

from equation (34) as 
2iA

 

1 2 2
2

2 1 1 2 1( )
i i

i i i

A c s k

2A m s c c s k k
+

=
+ + + +

         (38) 

For a physical system with damping, the motion will die out with time. For a stable 
system, all the four roots must be either real negative numbers or complex number with 
negative real parts. It may be recalled that, if the roots contain  complex  conjugate 
numbers, the motion will be oscillatory. 
 
Example: Find the response of the system as shown in figure 9 considering  

 and . 
1 2 ,m m m= =

1 2 3k k k k= = = 1 3 20and c c c c= = =

Solution. 
In this case the characteristics equation becomes 

2 2( 2 )( 2 ) ( )ms cs k ms cs k cs k+ + + + − + =2 0  
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2 2 2

2 4 3 2 2 2 2 2

2 4 3 2 2

2 2 2

2 2

( 2 ) ( ) 0
, 2 (4 ) (4 2 ) 4
, 2 4 2 3 0
, ( 2 3 ) ( 2 3 ) 0
, ( )( 2 3 ) 0

ms cs k cs k
or m s mcs mk c c s kc kc s k k
or m s mcs mks kcs k
or ms ms cs k k ms cs k
or ms k ms cs k

+ + − + =

+ + + − + − + − =

+ + + + =

+ + + + + =

+ + + =

0
 

2 2

2

1,2 3,4

, ( )( 2 3 ) 0
Hence the roots are

and 3

or ms k ms cs k

k c cs i s
m m m

+ + + =

⎛ ⎞= ± = − ± −⎜ ⎟
⎝ ⎠

k
m

⎞
=⎢ ⎥−⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 

So the system has a pair of complex conjugate   
 
SEMI-DEFINITE SYSTEMS 
 
The systems with have one of their natural frequencies equal to zero are known as semi-
definite or degenerate systems. One can show that the following two systems are 
degenerate systems. 
 
 
 
 
 

1m  2m  
k  

1x  2x  

2I1I
1θ 2θ

 

Figure 10 
Figure 11  

From figure 10 the equation of motion of the system is 

 ⎢ ⎥          (39) 1 1 1

2 2 2

0 0
0 0
m x xk k

m x xk k
−⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛

+⎜ ⎟ ⎜ ⎟ ⎜ ⎟

 
Assuming the solution 1 1 2 2 and  i t i tx A e x A eω ω= =        (40) 

 
2

11
2

22

0
0

Ak m k
Ak k m

ω
ω

⎡ ⎤− − ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠⎣ ⎦

       (41) 

 
So for non-zero values of , 1 2,A A
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2
1

2
2

0
k m k

k k m
ω

ω
− −

=
− −

           (42) 

( )( )2 2 2
1 2or, 0k m k m kω ω− − − =

2

        (43) 
2 2 4

1 2 1 2or, ( ) 0k k m m m m kω ω− + + − =       (44) 
2 2

1 2 1 2or, ( ( )) 0m m k m mω ω − + =         (45) 

1 2
1 2

1 2

(0, and, k m m
m m

ω ω +
⇒ = =

)

2

       (46) 

Hence, the system is a semi-definite or degenerate system. Corresponding to the first 
mode frequency, i.e., 1 10, .A Aω = =  So the system will have a rigid-body motion. For 

the second mode frequency 

1 1 2
2

2 1 1 2 1 1 2 1 1( )
1 2 2

1

A km m km m mk
A k m km m m k m m m km mω

= = = = −
− − + −

    (47) 

amplitude ratio is inversely proportional to the mass ratio the system. 
Similarly one may show for the two-rotor system, 

1

2 1

2I
I

θ
θ

= −           (48) 

the ratio of angle of rotation inversely proportional to the moment of inertia of the rotors. 
 
Forced harmonic vibration, Vibration Absorber 
Consider a system excited by a harmonic force 1 sinF tω expressed by the matrix equation 

11 12 1 11 12 1

21 22 2 21 22 2

sin
0

m m x k k x F
t

m m x k k x
ω

⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠
                                                       (49) 

 
Since the system is undamped, the solution can be assumed as 

1 1

2 2

sin
x X

t
x X

ω
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                                                     (50) 

Substituting equation (50) in equation  (49), one obtains 
2 2

1 111 11 12 12
2 2

221 21 22 22

2 2
111 11 12 12

2 2
221 21 22 22

sin sin
0

,
0

X Fk m k m
t t

Xk m k m

X Fk m k m
or

Xk m k m

ω ω
ω ω

ω ω

ω ω
ω ω

⎡ ⎤− − ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤− − ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠⎣ ⎦

       (51) 
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12 2
1 11 11 12 12

2 2
2 21 21 22 22

2 2
22 22 12 12

2 2
21 21 11 11

2 2
11 11 12 12

2 2
21 21 22 22

0

0

X Fk m k m
X k m k m

Fk m k m
k m k m

k m k m
k m k m

ω ω
ω ω

ω ω
ω ω
ω ω
ω ω

−
⎡ ⎤− −⎛ ⎞ ⎛ ⎞

= ⎢ ⎥⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎣ ⎦
⎡ ⎤− − + ⎛ ⎞
⎢ ⎥ ⎜ ⎟− + − ⎝ ⎠⎣ ⎦=

− −
− −

                                                                   (52) 

Hence 

( )2
22 22

1 ,
( )

k m F
X

Z

ω

ω

−
=                     (53) 

[ ]
2 2

11 11 12 12
2 2

21 21 22 22

where ( )
k m k m

Z
k m k m

ω ω
ω

ω ω
⎡ ⎤− −

= ⎢ ⎥− −⎣ ⎦
 

 ( )2
21 21

2 ( )

k m F
X

Z

ω

ω

−
=         (54) 

Example  Consider the system shown in figure 12 where the mass is subjected to a 

force 
1m

sinF tω . Find the response of the system when 1 2 1 2and .m m k k k3= = =  

 

1m  2m  1k  2k  3k  

1x
tω  F

2x   
sin

 
 
 
 
 
                                                       Figure 12 

Solution: 
  The equation of motion of this system can be written as 
 

1 2 21 1 1

2 2 32 2 2

1 1

2 2

0 sin
0 0

0 2 sin
0 2 0

k k km x x F t
k k km x x

x xm k k F t
x xm k k

ω

ω

+ −⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ − + ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

−⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠

                                                

 
So assuming the solution  
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1 1

2 2

sin
x X

t
x X

ω
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and proceeding as explained before 

[ ]
2

2

2
( )

2
k m k

Z
k k m
ω

ω
ω

⎡ ⎤− −
= ⎢ ⎥− −⎣ ⎦

 

( )
222 2 2 4 2 2 2 4 2
2( ) 2 4 3 ( 4 3 )k kZ k m k m mk k m

m m
ω ω ω ω ω ω= − − = − + = − +  

or, 2 2 2 2 2 2 2 2
1 2( ) ( )( 3 ) ( )( )k kZ m m

m m
ω ω ω ω ω ω= − − = − −ω  

where, 2 2
1 2and 3k

m m
ω ω= =

k  are normal mode frequencies of this system. 

Hence, 

( )2

1 2 2 2 2 2
1 2

2

( )( )

k m F
X

m

ω

ω ω ω ω

−
=

− −
 

2 2 2 2 2 2
1 2( )( )

kFX
m ω ω ω ω

=
− −

 

 
So it may be observed that the system will have maximum vibration 
when 1 ,or 2.ω ω ω ω= =  Also it may be observed that 2

1 0, when 2 /X k mω= = . 

Tuned Vibration Absorber 
Consider a vibrating system of mass , stiffness , subjected to a force 1m 1k sinF tω . As 

studied in case of forced vibration of single-degree of freedom system, the system will 
have a steady state response given by 

1m

2m

1k

2k

sinF tω

1x  

2x  

1 12 2

sin , where /
( ) n

n

F tx k m
m

ω ω
ω ω

= =
−          (55)

 

which will be maximum when .nω ω=  Now to absorb this  

vibration, one may add a secondary spring and mass  
system as shown in figure 13. 
 
 
 
 
 
 

Figure 13 
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The equation of motion for this system can be given by 
 

1 1 1 2 2 1

2 2 2 2 2

0 sin
0 0
m x k k k x F t

m x k k x
ω+ −⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥ ⎢ ⎥− ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠
⎟

.

                                   (56) 

Comparing equation  (49) and  (56), 

11 1 12 21 22 2, 11 1 2 12 2 21 2 22, 0, 0, , , , andm m m m m m k k k k k k k k k= = = = = + = − = − =  

Hence, 

 
2

2 2 21 2 1 2
1 2 1 2 1 2 2 2 1 22

2 2 2

( )
k k m k

Z k k m k k m
k k m

ω 4k m m mω ω ω ω
ω

+ − −
= = − − −

− −
ω+

2 )

 

2
1 2 1 2( )(m m λ ω λ ω= − −                                                                             (57)           

where 1 and 2λ λ  are the roots of the characteristic equation  ( ) 0Z ω =  of the free-

vibration of this system., which can be given by 
2

1 2 2 1 2 2 1 2
1,2

1 2 1 1 2 1 1 2

0.5 4k k k k k k k k
m m m m m m m m

λ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + + ± + + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

                     (58) 

Now from equation (53) and (54) 

( ) ( )2 2
22 22 2 2

1 ,
( ) ( )

k m F k m F
X

Z Z

ω ω

ω ω

− −
= =                                                    (59) 

2
2 ( )

k FX
Z ω
−

=                                                                                               (60) 

From equation (59), it is clear that, 2 2
1

2

0, when .kX
m

ω= =  Hence, by suitably choosing 

the stiffness and mass of the secondary spring and mass system, vibration can be 

completely eliminated from the primary system. For 2 2

2

,k
m

ω =  

2 2 2 2
1 2 1 2 1 2 2 2 1 2

2 2 2 2
2 2

2 22 2
1 2 1 1 2 2 1 2

2 2

( ) k k k kZ k k m k k m k m m m
m m m m

k kk k m k k k m k
m m

ω = − − − +

= − − − + = −

2

2

k
m

                  (61) 

and 2
2 2

2 2

k F FX
k k

−
= =

−
                                                                             (62) 
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Centrifugal Pendulum Vibration Absorber 
 
The tuned vibration absorber is only effective when the frequency of external excitation 
equals to the natural frequency of the secondary spring and mass system. But in many 
cases, for example in case of an automobile engine, the exciting torques are proportional 
to the rotational speed ‘n’ which may vary over a wide range. For the absorber to be 
effective, its natural frequency must also be proportional to the speed. The characteristics 
of the centrifugal pendulum are ideally suited for this purpose. 
 
Placing the coordinates through point  O’, parallel and normal to r, the line r rotates with 
angular velocity (θ φ+ ) 
 

ĵ   
î

O′  

r

R

O  

  
 
 
 
 
 
 
 
The acceleration of mass  m

2 2 2ˆ ˆcos sin ( ) sin cos ( )ma R R r i R R rθ φ θ φ θ φ θ φ θ φ θ φ⎡ ⎤ ⎡= − + − + + + + +⎣ ⎦ ⎣
2 j⎤⎦

=

 (63) 

Since the moment about O  is zero, ′
2 2sin cos ( ) 0OM m R R r rθ φ θ φ θ φ′ ⎡ ⎤= + + +⎣ ⎦            (64) 

Assuming φ  to be small, cos 1,sinφ φ φ= = , so 

 2R R r
r r

φ θ φ θ+⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                (65) 

If we assume the motion of the wheel to be a steady rotation plus a small sinusoidal 
oscillation of frequency 

n
ω , one may write 

0 sinnt tθ θ ω= +                (66) 

0 cosnt t nθ ωθ ω= + ≅                (67) 
2

0 sin tθ θ ω ω= −                            (68) 

Substituting the above equations in equation (65) yields, 
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2 2
0 sinR R rn

r r
tφ φ ω θ+⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ω       (69) 

Hence the natural frequency of the pendulum is 

n
Rn
r

ω =                                (70)  

and its steady-state solution is 

2
02 2

( ) / sin
( / )

R r r t
Rn r

φ ω θ ω
ω

+
=
− +

          (71) 

It may be noted that the same pendulum in a gravity field would have a natural 

frequency of g
r

.  So it may be noted that for the centrifugal pendulum the gravity 

field is replaced by the centrifugal field 2Rn . 
 

Torque exerted by the pendulum on the wheel 

With the component of  equal to zero, the pendulum force is a tension along , 

given by times the component of . 

ĵ ma r

m î ma

( ) 2 2

2 2 2 2
0

ˆ ˆcos sin cos sin ( )

sin sin 2

T R i R j m R R r i

mR R t Rn rn r r

φ φ θ φ θ φ θ φ

φ ω θ ω φ φ θφ

ˆ⎡ ⎤= + × − + − +⎣ ⎦
⎡ ⎤= − − − − − −⎣ ⎦

     (72) 

Now assuming small angle of rotation 

( ) 2T m R r n Rφ= − +            (73) 

Now substituting the (73) in (72), 
2 2

2
02 2

( ) / sin
( / )

mR R r n rT t
Rn r

ω θ ω
ω

− +
=

−
 

2

2 2

( )
1 / eff

m R r J
r Rn

θ θ
ω

⎡ ⎤+
= − =⎢ ⎥−⎣ ⎦

          (74) 

Hence the effective inertia  can be written as 

( )

2 2

22 2

( ) ( )
1 / 1 /

eff
n

m R r m R rJ
r Rnω ω ω

⎡ ⎤+
= − = −⎢ ⎥− −⎣ ⎦

+         (75) 

which can be ∞  at its natural frequency. This possesses some difficulties in the 
design of the pendulum. For example to suppress a disturbing torque of frequency 
equal to four times the natural speed n, the pendulum must meet the requirement 

. Hence, as the length of the pendulum 2 2 2(4 ) /n n Rω = = r /16r R=  becomes very 
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small it will be difficult to design it. To avoid this one may go for Chilton bifilar 
design.  
 

Exercise problems 
1. In a certain refrigeration plant, a section of pipe carrying the refrigerant vibrated violently 

at a compressor speed of 232 rpm. To eliminate this difficulty, it was proposed to clamp a 
cantilever spring mass system to the pipe to act as an absorber. For  a trial test, for a 905 
gm. Absorber tuned to 232 cpm resulted in two natural frequencies of 198 and 272 cpm. 
If the absorber system is to be designed so that the natural frequencies lie outside the 
region 160 to 320 cpm, what must be the weight and spring stiffness? 

2. Derive the normal modes of vibration of a double pendulum with same length and 
mass of the pendulum. 

3. Develop a matlab code for determination of free-vibration of a general two-degree 
of freedom system. 

4. Derive the equation of motion for the double pendulum shown in figure p1 in terms of θ1 
and θ2 using Lagrange principle.  Determine the natural frequencies and mode shapes of 
the systems. If the system is started with the following initial conditions: x1(0) =x2(0) = X, 
v1(0) =v2(0)=0, (v1 and v2 are velocity) determine the equation of motion. If the lower 
mass is given an impulse F0 δ (t), determine the response in terms of normal modes. 

                   
 
                      
                                                                                  θ1  L1                                 
 
                                                                                              m1
                                                                                               L2                                                                                            
                                                                                     x1  θ2           
                                                                                                            m2
                                                                                                              
                                                                                           x2                      
                                                                              
  
                                                                            Figure P1                                         
5. A centrifugal pump rotating at 500 rpm is driven by an electric motor at 1200 rpm 
through a single stage reduction gearing. The moments of inertia of the pump impeller 
and the motor are 1600 kg.m2 and 500 kg.m2 respectively. The lengths of the pump shaft 
and the motor shaft are 450 and 200 mm, and their diameters are 100 and 50 mm 
respectively. Neglecting the inertia of the gears, find the frequencies of torsional 
oscillations of the system. Also determine the position of the nodes. 
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