CHAPTER 12 TWO-DEGREE- OF-FREEDOM-SYSTEMS

Introduction to two degree of freedom systems:

e The vibrating systems, which require two coordinates to describe its motion, are
called two-degrees-of —freedom systems.

e These coordinates are called generalized coordinates when they are independent
of each other and equal in number to the degrees of freedom of the system.

e Unlike single degree of freedom system, where only one co-ordinate and hence
one equation of motion is required to express the vibration of the system, in two-
dof systems minimum two co-ordinates and hence two equations of motion are
required to represent the motion of the system. For a conservative natural system,
these equations can be written by using mass and stiffness matrices.

e One may find a number of generalized co-ordinate systems to represent the
motion of the same system. While using these co-ordinates the mass and stiffness
matrices may be coupled or uncoupled. When the mass matrix is coupled, the
system is said to be dynamically coupled and when the stiffness matrix is coupled,
the system is known to be statically coupled.

e The set of co-ordinates for which both the mass and stiffness matrix are
uncoupled, are known as principal co-ordinates. In this case both the system
equations are independent and individually they can be solved as that of a single-
dof system.

e A two-dof system differs from the single dof system in that it has two natural
frequencies, and for each of the natural frequencies there corresponds a natural
state of vibration with a displacement configuration known as the normal mode.
Mathematical terms associated with these quantities are eigenvalues and
eigenvectors.

e Normal mode vibrations are free vibrations that depend only on the mass and
stiffness of the system and how they are distributed. A normal mode oscillation is
defined as one in which each mass of the system undergoes harmonic motion of
same frequency and passes the equilibrium position simultaneously.

e The study of two-dof- systems is important because one may extend the same
concepts used in these cases to more than 2-dof- systems. Also in these cases one
can easily obtain an analytical or closed-form solutions. But for more degrees of
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freedom systems numerical analysis using computer is required to find natural
frequencies (eigenvalues) and mode shapes (eigenvectors).

The above points will be elaborated with the help of examples in this lecture.
Few examples of two-degree-of-freedom systems

Figure 1 shows two masses m, and m, with three springs having spring stiffness
k,, k, and k, free to move on the horizontal surface. Let x, and x, be the displacement of

mass m, and m, respectively.

Figure 1

As described in the previous lectures one may easily derive the equation of motion by
using d’Alembert principle or the energy principle (Lagrange principle or Hamilton’s
principle)

m,%,
4—
Using d’Alembert principle for mass m,, from the X K, (X, —X,)
free body diagram shown in figure 1(b) — m,
mX, + (k, +k,)x —k,x, =0 1)
and similarly for mass m,
m,X, =KX, + (K, +k3)X, =0 (2) m. &
272
4—
Important points to remember K, (X, — %) ke,
«— m, «—

e Inertia force acts opposite to the
direction of acceleration, so in both the
free body diagrams inertia forces are shown
towards left.

e Forspring k,, assuming X, > X, ,

Figure 1 (b), Free body diagram
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The spring will pull mass m, towards right by k,(x, —x) and it is stretched by x, —x,
(towards right) it will exert a force of k,(x,—x,)towards left on mass m,. Similarly
assuming x, > X, , the spring get compressed by an amount x, —x, and exert tensile force

of k,(x, —X,). One may note that in both cases, free body diagram remain unchanged.

Now if one uses Lagrange principle,

The Kinetic energy = T :%mle +%m2>‘<22 and (3)

Potential energy =U = % kX +%k2 (X, —X,)° +%k3x§ 4)

So, the Lagrangian

L=T-U :(%mle +%m2x§j—£%kle +%k2(x1—x2)2 +%k3x§j (5)

The equation of motion for this free vibration case can be found from the Lagrange
principle

afay e o
dt{ oG, ) oq,

and noting that the generalized co-ordinate g, = x, and g, = X,

which yields
mX +(k, +k,)x —k,x, =0 (7
m2>'<'2 - klxl + (kz + ks)xz =0 (8)

Same as obtained before using d’Alembert principle.

Now writing the equation of motion in matrix form

m O x1 . k+k, -k, |[x _ 0 | ©)
0 m, [\ X% -k, Kk +k; |\ %, 0
Here it may be noted that for the present two degree-of-freedom system, the system is

dynamically uncoupled but statically coupled.
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Example 2.

Consider a lathe machine, which can be modeled as a rigid bar with its center of mass not
coinciding with its geometric center and supported by two springs, ki, k,.

Figure 3: Free body diagram of the system

Figure 2

In this example, it will be shown, how the use of different coordinate systems lead to
static and or dynamic coupled or uncoupled equations of motion. Clearly this is a two-
degree-of freedom system and one may express the co-ordinate system in many different
ways. Figure 3 shows the free body diagram of the system where point G is the center of
mass. Point C represents a point on the bar at which we want to define the co-ordinates of
this system. This point is at a distance |, from the left end and I, from right end. Distance

between points C and G is e. Assuming X, is the linear displacement of point C and 6,

the rotation about point C, the equation of motion of this system can be obtained by using
d’Alember’s principle. Now summation of all the forces, viz. the spring forces and the
inertia forces must be equal to zero leads to the following equation.

my, +med, +k (x, —1,8.) +k,(x. +1,6,) =0 (10)
Again taking moment of all the forces about point C

350, +(mx_+med.)e—k (x, — L), +k,(x, +1,6,)l,=0 (11)

Noting J, = J, +me?, the above two equations in matrix form can be written as

m me|(X ki+k,  Kl=kl |(x 0
|y NS (g (12)
me J, [\6.) [KklL-kl Kkl +kl; [\ 6, 0
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Now depending on the position of point C, few cases can are studied below.

Case 1 : Considering e=0, i.e., point C and G coincides, the equation of motion can be
written as

kl(x o |19)

k,(x+1,0)
m 0 |(X k, +k K1, —k]1, | x 0
Ll 1 2 222 112 — (13)
0 J.|\0) |kl =kl Kkl +kl, [\& 0
So in this case the system is statically coupled and if kI, =k,l,, this coupling disappears,
and we obtained uncoupled x and & vibrations.

Case 2 : If, k,l, =k, , the equation of motion becomes

m me (X, k +k, 0 X, 0
L+ ) ) = | (14)
me J, |\ 6. 0 k1Z+ k15 [\ 6, 0

Hence in this case the system is dynamically coupled but statically uncoupled.

Case 3: If we choose |, =0, i.e. point C coincide with the left end, the equation of
motion will become
m me|X k,+k, Kl |[X 0
c + 1 2 2 i (o — . (15)
me J. |6, K1, Kkl [\ 6, 0

Here the system is both statically and dynamically coupled.

Normal Mode Vibration
Again considering the problem of the spring-mass system in figure 1 with m, =m,

m, =2m, k, =k, =k; =k, the equation of motion (9) can be written as

mX, +k(x, —x,) +kx, =0

N (16)
2m¥, —k(x, —X,)+kx, =0
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We define a normal mode oscillation as one in which each mass undergoes harmonic
motion of the same frequency, passing simultaneously through the equilibrium position.
For such motion, we let

Xl — Aiei(ut’xz — Azeiwt (17)
Hence,
2k —maw®)A —kA, =0
—kA +(2k —2me®)A, =0
or, in matrix form
2k —me? —k 0
Mo 2 A _ (19)
—k 2k —2mo” |\ A, 0
Hence for nonzero values of A and A, (i.e., for non-trivial response)
2k —mw® -k
me |=o0. (20)
—k 2k —2ma
Now substituting o = 1, equation 6.1. yields
A? —(3£)/1+§(£)2 =0 (21)
m 2'm
3 1 k k 3 1 k k
Hence, 4, =(=-=+3)—=0.634— and 4, =(=+=+/3)—=2.366—
4 (2 2\/—) m m ? (2 2\/_) m m

So, the natural frequencies of the system are o, = \/Z = 0.634% and o, = ,/2.366%

Now from equation (1)., it may be observed that for these frequencies, as both the
equations are not independent, one can not get unique value of A and A,. So one should
find a normalized value. One may normalize the response by finding the ratio of A to A,.
From the first equation (19) the normalized value can be given by

A__k __K 22)
A, 2k-mo” 2k-mA

and from the second equation of (19), the normalized value can be given by

A 2k-2meo’  2k-2mA

n 5 ; (23)

Now, substituting @ = 4, = 0.634h in equation (22) and (23) yields the same values,
m

as both these equations are linearly dependent. Here,
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(ﬁj _0732 (24)
A=)

A, 1
and similarly for »,” =4, = 2366
m
(ij _ —2.73 (25)
A2 A=y 1

It may be noted

e Equation (19) gives only the ratio of the amplitudes and not their absolute values,
which are arbitrary.
e |f one of the amplitudes is chosen to be 1 or any number, we say that amplitudes
ratio is normalized to that number.
e The normalized amplitude ratios are called the normal modes and designated
by 4,(x)
From equation (24) and (25), the two normal modes of this problem are:

0.731 —2.73
A ) ={1.00 } %:() :{1.00 }

In the 1% normal mode, the two masses move in the same direction and are said to be in
phase and in the 2" mode the two masses move in the opposite direction and are said to
be out of phase. Also in the first mode when the second mass moves unit distance, the
first mass moves 0.731 units in the same direction and in the second mode, when the
second mass moves unit distance; the first mass moves 2.73 units in opposite direction.

Free vibration using normal modes

When the system is disturbed from its initial position, the resulting free-vibration of the
system will be a combination of the different normal modes. The participation of
different modes will depend on the initial conditions of displacements and velocities. So

for a system the free vibration can be given by

X = g Asin(aot +y,) + ¢,Bsin(a,t +,) (27)
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Here A and B are part of participation of first and second modes respectively in the
resulting free vibration and y; and y, are the phase difference. They depend on the

initial conditions. This is explained with the help of the following example.

Example: Let us consider the same spring-mass problem (figure 4) for which the natural
frequencies and normal modes are determined. We have to determine the resulting free
vibration when the system is given an initial displacement x, (0) =5, x,(0) =1 and initial
velocity % (0) =x,(0)=0.

> X1 —> X,

Figure 4

Solution:
Any free vibration can be considered to be the superposition of its normal modes. For
each of these modes the time solution can be expressed as:

0.731
{Xi} :{ }sina)lt
X, U
-2.731
{;‘1} :{100 }sina)zt
2)2 :

The general solution for the free vibration can then be written as:

731 27
{XXZ} _ A{flog }sin(a)lt+1//l) ; B{l 3}sin(a)2t+y/2)

where A and B allow different amounts of each mode and y, and y, allows the two
modes’ different phases or starting values.

Substituting:
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0 5 0.731 -2.731
e

@] _[o]_  [0731 5 [2731
L0l 8]y

cosy, =cosy, =0 =>y, =y, =90°

Substituting in 1% set:

af=Al el

0.731A-2.731B=5 } A=2.233
A+B =1 B=-1.233

Hence the resulting free vibration is

X, 0.731 -2.731
=2.233 cosmt —1.233 Cos m,t
X, 1.00 1.000

Normal modes from eigenvalues

The equation of motion for a two-degree-of freedom system can be written in matrix
form as
M X+Kx=0 (28)

where M and K are the mass and stiffness matrix respectively; X is the vector of
generalized co-ordinates. Now pre-multiplying M ™ in both side of equation 6.2. one
may get

I X+M 'K x=0 (29)
or, I X+ Ax=0 (30)

Here A=M 7K is known as the dynamic matrix. Now to find the normal modes,

x, = X,e'", x, = X,e"", the above equation will reduce to

[A-A1]X =0 (31)
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where X ={x_ x,}' and 1=’

From equation (31) it is apparent that the free vibration problem in this case is reduced to
that of finding the eigenvalues and eigenvectors of the matrix A.

Example: Determine the normal modes of a double pendulum.
Solution

Kinetic energy of the system =
T= % m,1,%67 +%m2 (1767 +1267 + 21,1,6,6, cos(6, — 6,)) 6, 1,6, La
272
Potential energy of the system = ’
U =mg(l-cosd)+m,g{l,(1-cosd)+l,(1-cosb,)} 92 Hz—I%
=g{(ml+m2)|1(l—COSHl)+m2|2(1—00892)} g ...................... 11

So Lagrangian of the system =
L=T-U

= % m,1,%67 +%m2 (1,6, +1,6, + 211, cos(6, - 4,)) — g {(m, +m,)(L—cos &,) + m, (1—cos b, )}

Figure 5

So using Lagrange principle, and assuming small angle of rotation, the equation of
motion can be written in matrix form as

(m+m,)I2 m,Ll, |( 4 + (m,+my)lg 0 6)_(0
m,l,1, m,l? [ 6, 0 ml,g|l6,) (0

Now considering a special case when m, =m, =m andl, =1, =1, the above equation

2 e Al
T
|

1 - 2 0
Now A:i2 mig -4
m“{-1 2 0 1] |

To find eigenvalues of A,
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A-21|=0=

2 2
or, 4(%) —4%“,12 —2(%} ~0

2
or, A2 —4%/”2(%) -0

4?i\/(4?j2_8(?j2 ~2) Y

Hence natural frequencies are o, = 0.7653%,(02 =1.8478%

Or, A=

The normal modes can be determined from the eigenvalues.
The corresponding principal modes are obtained as

g

QR
%2 )11, (2—2+\/§)§|J V2

4. 01 o g

:(2—2—J§)?: V2

It may be noted that while in the first mode

Both the pendulum moves in the same direction, Figure 6

In the second mode they move in opposite direction

One may solve the same problem by taking x, and X, as the generalized coordinates.

Here X, is the horizontal distance moves by mass m, and x, is the distance move by

mass m, . Figure 7 show the free body diagram of both the masses.

Figure 7
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From the free body diagram of mass m,,
T,cos6, =m,g
T,sin @, =—m,X,
Also from the free body diagram of mass m, ,
T,cos@, —T,cosd, =mg
T,;sing, -T,sin@,+mX, =0
Assuming &, and 6, to be small,
sing,=tang, =6, =x /1
andsing, =tané, =6, =(x, —x)/1
Hence
T,=m,g, and T, =(m, +m,)g

mlx1+(((ml+m2)gj+ ng]Xl_l__ng X, =0

l, l, 1,

m25<‘2+ng(le_xij=0

2

Hence in matrix form

[ (m1+m2)g +ng _ng_
m07(%), ! L) L |(x)_(0
0 m, —M,9 m,g |\ X o

|2 |2

X,

Considering the case in which m, =m, =m andl, =1, =1, the above equation becomes

o a1 G
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Azg{?; —1}
I[-1 1

and |[A-11|=0= =0
Hence 3 8

I I
or, 4, :(Z—ﬁ)lgand A, =(2+\/§)%
Same as those obtained by taking &, and 6, as the generalized coordinates.

g
X, | 1 1

[X_2L=,11 B 3?_,11 T 3-2442 24142

2
or, 2243 5+ 2(% -0

=0.4142

Now
9
Xy | 1 1

(Xl] = = =- =-2.4142
X, i=4, 3?_22 3-2-V2 04142

2.4142

The different modes are as shown in the above figure.

Example Determine the equation of motion if the double pendulum is started with initial
conditions x,(0) = x,(0) =0.5, % (0) = X,(0) =0.

Solution:

The resulting free vibration can be considered to be the superposition of the normal
modes. For each of these modes, the time solution can be written as

Figure 8
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X X
(le :( lj sin ajt [le :( 1} sin wyt
X, ), X, X X, ), X, X

The general solution for the free vibration can be written as

4142 24142
(“}:A[Ol jsin(a)lt+1//l)+B( X jsin(a)ztﬂ//z)

X3

where Aand B are the amounts of first and second mode’s participation and y, andy,

are the starting values or phases of the two modes. Substituting the initial conditions in
the above equation

05)_,(04142\  ~ (-24142)
05/) " 1 £ 1 v

and

0 0.4142 —2.4142
0 = A, L cosy, + Bw, L cosy,

For the second set of equations to be satisfied, cosy, =cosy, =0, so that w, =y, =90°.
Hence A=0.6035 and B =-0.1036. So the equation for free vibration can be given by

X, 0.4142 —2.4142
|~ 0.6035 ! cosmt—0.1036 ! cos m,t
2

Damped-free vibration of two-dof systems
Consider a two degrees of freedom system with damping as shown in figure

— X —» X, K,

Figure 9
Now the equation of motion of this system can be given by

m 0 5(‘1+k1+k2 -k, xlec1+c2 —C, X,
0 m, [\ X% -k, Kk, +k; [\ %, —C, C,+C; | X%,
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As in the previous case, here also the solution of the above equations can be written as

x, = Ae” and x, = Ae” (33)
where A, A, and sare constant . Substituting (33) in (32) , one may write
m;s” +(c, +¢,)s+k, +k, —C,5—K, A\ (0 (34)
—C,s—kK, m,s” +(c, +¢,)s+k, +k, [\ A, ) |0

Now for a nontrivial response i.e., for non-zero values of A and A,, the determinant of

their coefficient matrix must vanish. Hence

m,s® +(c, +¢,)s +k, +k, 2 —C,S—Kk, 0 (35)
—C,5—K, m,s” +(C, +C;)s+k, +k,
or, (m;s?+(c, +¢,)s+k, +Kk,)(m,s* +(c, +¢,)s+k, +k;) +(c,5+k,)* =0 (36)

which is a fourth order equation in s and is known as the characteristic equation of the
system. This equation is to be solved to get four roots. The general solution of the system
can be given by

X = Aileslt + Aizeszt + Aisesgt + Ames4t
X, = Azleslt + Azzeszt + Azaesgt + Az4e54t

Here A,;,1=12,3,4 are four arbitrary constants to be determined from the initial

(37)
conditions and the coefficients A,,i=1,2,3,4are related to A, and can be determined
from equation (34) as

i: C,S; +K, (38)
A, m13i2 +(c,+¢,)s +k +k,

For a physical system with damping, the motion will die out with time. For a stable
system, all the four roots must be either real negative numbers or complex number with
negative real parts. It may be recalled that, if the roots contain complex conjugate
numbers, the motion will be oscillatory.

Example: Find the response of the system as shown in figure 9 considering m, =m, =m,
k,=k,=k,=k and ¢c,=c,=0andc, =c.

Solution.

In this case the characteristics equation becomes

(ms® +cs + 2k)(ms® +cs+2k) — (cs+k)* =0
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(ms® +cs+2k)> —(cs+k)* =0

or,m?s* +2mcs® + (4mk +¢® —c?)s? + (4kc — 2kc)s + 4k* —k* =0
or,m?s* +2mcs® + 4mks® + 2kes +3k* =0

or,ms*(ms® + 2cs + 3k) + k(ms® + 2cs +3k) = 0

or,(ms® +k)(ms* +2cs+3k) =0

or,(ms” +k)(ms® +2cs+3k) =0

Hence the roots are

S —+i\/Kands -t £2—3h
2\ m * m \Im m

So the system has a pair of complex conjugate

SEMI-DEFINITE SYSTEMS

The systems with have one of their natural frequencies equal to zero are known as semi-
definite or degenerate systems. One can show that the following two systems are
degenerate systems.

X —» X
nd g 2
m, JV\NVL m, 1, 1,

Q Q Q Q

D
)

Figure 10
Figure 11

From figure 10 the equation of motion of the system is
m 0 |(X k -k 0
g har e (39)
0 m,|(% -k kL% 0

Assuming the solution x, = Ae'* and x, = Ae™ (40)

LR
—K k—-m,e” |\ A, 0

So for non-zero values of A, A,,

224



‘k _—nlllwz k —;nkza)z =0 (42)
or, (k—-ma?)(k-m,e’)-k* =0 (43)
or, k? —k(m, + m,)w® + mm,e* —k*=0 (44)
or, ®*(mm,w’ —k(m, +m,)) =0 (45)

=a =0, and, @, = f% (46)
1772

Hence, the system is a semi-definite or degenerate system. Corresponding to the first
mode frequency, i.e., @ =0, A =A,. So the system will have a rigid-body motion. For

the second mode frequency
A k km,m, _ kmm, m,

A, k-mo~ kmm,-mk(m +m,) -mkm, m,

amplitude ratio is inversely proportional to the mass ratio the system.

Similarly one may show for the two-rotor system,

6_ 1 @)
02 I1

the ratio of angle of rotation inversely proportional to the moment of inertia of the rotors.

Forced harmonic vibration, Vibration Absorber
Consider a system excited by a harmonic force F, sin wt expressed by the matrix equation

2 HE e
m21 m22 X2 k21 k22 X2 0

Since the system is undamped, the solution can be assumed as

(f]:@ljsim (50)

Substituting equation (50) in equation (49), one obtains
— 2 — 21X F
a m“a)z e mlza)z Ylsinwt=| *[sinet
Ky —My0® Ky, —Myo” [ X, 0

(51)
or Ky, — mlla)z K, — m12a)2 Xy _ F
Ky — My 0 Ky —my® | X, 0
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1
(xlj:[kn_mnwz Ky _m12w2j| (Fj
X, Ky — m21a)2 Ky, = m22w2 0
Ky, —M,,0°  —K, +m,0” |[F (52)
—k,, + m21a)2 K, — mllco2 0

2 2
ky, —myo° K, —m,o

2 2
Kyy =m0 Ky, — My

Hence
k,, —m.,o"|F
X, = ( 22 2 ) ’ (53)
|Z(a))|
_ 2 _ 2
where [Z(w)] :{Eﬂ_mﬂwz :12 _mlza)z}
21— My 20 — My
(kZl - m21602 ) F (54)

2 |z()
Example Consider the system shown in figure 12 where the mass m, is subjected to a

force Fsinot. Find the response of the system when m, =m, and k, =k, =k;,.

— X —> X,
——>» Fsinwt

Figure 12

Solution:
The equation of motion of this system can be written as

'm0 (% ) k,+k, Kk, |(x) (Fsinet
0 m, (% —*, kK +k|lx,) L 0
'm 0% . 2k —k](x ) (Fsinot

0 m(%) [k 2k]lx,) | O

So assuming the solution
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X
(fj = (lesin ot and proceeding as explained before
2 2

2k — ma? -k
[2(@)] { —k 2k—mw2}

2
1Z () =( 2K —mw2)2 —k? =m?w* — 4mka?® + 3k? = m?(o* —4%# +3F)

or, |Z(w)| = m? (& —h)(a)2 —3£) =m*(0® - o} )(@* — )
m m

k k . .
where, @’ =— and ? =3— are normal mode frequencies of this system.
m m

Hence,
(2k - ma)z) F
Lomie” - of)(o" - ;)
kF

F (0" — o) )

So it may be observed that the system will have maximum vibration

whenw = @, or,w = @,. Also it may be observed that X, =0,when &’ =2k/m.
Tuned Vibration Absorber

Consider a vibrating system of mass m,, stiffness k,, subjected to a force Fsinat. As

studied in case of forced vibration of single-degree of freedom system, the system will
have a steady state response given by

x—m, where @, =k, /m,

- m(e? — °) (55)
which will be maximum when @ = @, Now to absorb this Ky
vibration, one may add a secondary spring and mass F sin wt
system as shown in figure 13. m
' X
k2
m
2 X2
Figure 13
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The equation of motion for this system can be given by

[ml 0}(%‘1}{k1+k2 —kz}{xl]:[lzsina)tj 6)
0 m,|(X, -k, k, |\x 0

Comparing equation (49) and (56),
m, =m, m, = 0, m,, = 0, my, =m, k11 = k1 + kzv k12 = _kz’ k21 = _kz’ and k22 =k.

Hence,
k, —m,e’ —k
1Z(w)| = K+ ik M@ . rr12 2 kk, —mk,o® —km,o’ —k,m,e’ + mm,o’
2 2 2
=mm, (4 - o°)(4, —o?) (57)

where 4 and 4, are the roots of the characteristic equation |Z(a))| =0 of the free-

vibration of this system., which can be given by

2
o[l o), J[k— k) o)

ml m2 ml ml m2 ml ml m2

Now from equation (53) and (54)
(k22 - mzza)z) F (k2 - mza)z) F

X1 = Z@)|  |2e)] &9
K,F
2= |Z(a))| (60)

From equation (59), it is clear that, X, =0,when o’ = ﬁ. Hence, by suitably choosing
2

the stiffness and mass of the secondary spring and mass system, vibration can be

completely eliminated from the primary system. For @® = ﬁ

m,
|Z(a))| =kk, —mk, ﬁ— k,m, ﬁ— k,m, £+ m,m, ﬁﬁ
m, m, m, m, m, 61
k2 , k2 (61)
=kk, —mlm—zz—klk2 -k +m1m—22:—k2
i x, -7 .
_kz kz
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Centrifugal Pendulum Vibration Absorber

The tuned vibration absorber is only effective when the frequency of external excitation
equals to the natural frequency of the secondary spring and mass system. But in many
cases, for example in case of an automobile engine, the exciting torques are proportional
to the rotational speed ‘n’ which may vary over a wide range. For the absorber to be
effective, its natural frequency must also be proportional to the speed. The characteristics
of the centrifugal pendulum are ideally suited for this purpose.

Placing the coordinates through point O’, parallel and normal to r, the line r rotates with
angular velocity (0+¢)

The acceleration of mass m

a = [—Réz cos¢+ Résing— r(é+q§)2] f+[R92 sing+ R cosg+ r([9'+g}5)2] j (63)
Since the moment about O’ is zero,
MO,=m[Rézsin¢+Récos¢+r(5+¢'ﬁ')2]r=0 (64)

Assuming ¢ to be small, cos¢ =1,sing=¢, SO
¢'+($QZJ¢=—(R:rjé (65)

If we assume the motion of the wheel to be a steady rotation nplus a small sinusoidal
oscillation of frequency @, one may write

6 =nt+6,sin wt (66)
0 =Nt + @b, coswt = n (67)
0 = —-6,0° sin wt (68)

Substituting the above equations in equation (65) yields,
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(%+($n2)¢=(R:rjwzeosinwt (69)

Hence the natural frequency of the pendulum is

@, =N \/E (70)
r

and its steady-state solution is
(R+n)/r 2a
= w6, sin wt 71
9 —o*+(Rn?/r)  ° (71)

It may be noted that the same pendulum in a gravity field would have a natural

frequency of \E So it may be noted that for the centrifugal pendulum the gravity

field is replaced by the centrifugal field Rn?.

Torque exerted by the pendulum on the wheel

With the j component of a,, equal to zero, the pendulum force is a tension along r,
given by mtimes the fcomponent of a,,.

T =(Rcosgi +Rsing j)xm| -R6” cosg+RAsing—r(0+4¢)* |i

. Ny (72)
= —MRg| —Re’6, sin wtsin g—Rn* —rn” —rg’ —2rdg |
Now assuming small angle of rotation
T=-m(R+r)n°R¢ (73)
Now substituting the (73) in (72),
. 2,2
_ mR(I:2+r) n2/r 8, sin ot
(Rn“/1r)-w
m(R+r)* | .
=—| ————"—10=J,6 74
L—ra)ZIan} o (74)
Hence the effective inertia can be written as
2 2
Ty = m(R2+r) . m(R+r)2 (75)
1-rw/Rn 1_(60/@”)

which can be <o at its natural frequency. This possesses some difficulties in the
design of the pendulum. For example to suppress a disturbing torque of frequency
equal to four times the natural speed n, the pendulum must meet the requirement

o’ =(4n)*> =n’R/r. Hence, as the length of the pendulum r =R/16 becomes very
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small it will be difficult to design it. To avoid this one may go for Chilton bifilar
design.

Exercise problems

1. Ina certain refrigeration plant, a section of pipe carrying the refrigerant vibrated violently
at a compressor speed of 232 rpm. To eliminate this difficulty, it was proposed to clamp a
cantilever spring mass system to the pipe to act as an absorber. For a trial test, for a 905
gm. Absorber tuned to 232 cpm resulted in two natural frequencies of 198 and 272 cpm.
If the absorber system is to be designed so that the natural frequencies lie outside the
region 160 to 320 cpm, what must be the weight and spring stiffness?

2. Derive the normal modes of vibration of a double pendulum with same length and
mass of the pendulum.

3. Develop a matlab code for determination of free-vibration of a general two-degree
of freedom system.

4. Derive the equation of motion for the double pendulum shown in figure p1 in terms of 6,
and 0, using Lagrange principle. Determine the natural frequencies and mode shapes of
the systems. If the system is started with the following initial conditions: x;(0) =x»(0) = X,
v1(0) =v»(0)=0, (v, and v, are velocity) determine the equation of motion. If the lower
mass is given an impulse F, o (t), determine the response in terms of normal modes.

91 I—l

m;

Figure P1
5. A centrifugal pump rotating at 500 rpm is driven by an electric motor at 1200 rpm
through a single stage reduction gearing. The moments of inertia of the pump impeller
and the motor are 1600 kg.m? and 500 kg.m? respectively. The lengths of the pump shaft
and the motor shaft are 450 and 200 mm, and their diameters are 100 and 50 mm
respectively. Neglecting the inertia of the gears, find the frequencies of torsional
oscillations of the system. Also determine the position of the nodes.
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