
Nathan Newmark (1910 1981) was an American engineer and a professor of
civil engineering at the University of Illinois at Champaign-Urbana. His research
in earthquake resistant structures and structural dynamics is widely known. The
numerical method he presented in 1959 for the dynamic response computation of
linear and nonlinear systems is known as the Newmark (Courtesy of
University of Illinois Urbane-Champaign).
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940 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

When the differential equation governing the free or forced vibration of a system cannot be

integrated in closed form, a numerical approach is to be used for the vibration analysis. The

finite difference method, which is based on the approximation of the derivatives appearing

in the equation of motion and the boundary conditions, is presented. Specifically, the central

difference method is outlined for both single- and multidegree-of-freedom systems using

the central difference method. The free-vibration solution of continuous systems is also

considered using the finite difference method in the context of the longitudinal vibration of

bars and transverse vibration of beams with different boundary conditions. The fourth-order

Runge-Kutta method is presented for the solution of differential equations governing the

vibration of single- and multidegree-of-freedom systems. The Houbolt, Wilson, and Newmark

methods are presented for the general solution of multidegree-of-freedom systems. Finally,

Matlab programs are given for the solution of multidegree-of-freedom systems with several

numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Use the finite difference method for the solution of single- and multidegree-of-freedom

vibration problems.

* Solve the vibration problems of continuous systems using the finite difference method.

* Solve the differential equations associated with discrete (multidegree-of-freedom) sys-

tems using the fourth-order Runge-Kutta, Houbolt, Wilson, and Newmark methods.

* Use MATLAB functions for solving discrete and continuous vibration problems.

11.1 Introduction

When the differential equation of motion of a vibrating system cannot be integrated in

closed form, a numerical approach must be used. Several numerical methods are available

for the solution of vibration problems [11.1 11.3].1 Numerical integration methods have

two fundamental characteristics. First, they are not intended to satisfy the governing differ-

ential equation(s) at all time t but only at discrete time intervals apart. Second, a suit-

able type of variation of the displacement x, velocity and acceleration is assumed

within each time interval Different numerical integration methods can be obtained,

depending on the type of variation assumed for the displacement, velocity, and accelera-

tion, within each time interval We shall assume that the values of x and are known to

be and respectively, at time and that the solution of the problem is required

from to In the following, we subdivide the time duration T into n equal steps

so that and seek the solution at 

We shall derive formulas for finding the solution at from the

known solution at according to five different numerical integrationti-1 = 1i - 12¢t
ti = i ¢ttn = n ¢t = T.

t2 = 2 ¢t, Á ,t1 = ¢t,t0 = 0,¢t = T/n¢t
t = T.t = 0

t = 0x 
#
0,x0

x 
#

¢t.

¢t.
x
$

x 
#
,

¢t

1A numerical procedure using different types of interpolation functions for approximating the forcing function

F(t) was presented in Section 4.9.
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schemes: (1) the finite difference method, (2) the Runge-Kutta method, (3) the Houbolt

method, (4) the Wilson method, and (5) the Newmark method. In the finite difference

and Runge-Kutta methods, the current displacement (solution) is expressed in terms of the

previously determined values of displacement, velocity, and acceleration, and the resulting

equations are solved to find the current displacement. These methods fall under the cate-

gory of explicit integration methods. In the Houbolt, Wilson, and Newmark methods, the

temporal difference equations are combined with the current equations of motion, and the

resulting equations are solved to find the current displacement. These methods belong to

the category of implicit integration methods.

11.2 Finite Difference Method

The main idea in the finite difference method is to use approximations to derivatives. Thus

the governing differential equation of motion and the associated boundary conditions, if

applicable, are replaced by the corresponding finite difference equations. Three types of

formulas forward, backward, and central difference formulas can be used to derive the

finite difference equations [11.4 11.6]. We shall consider only the central difference for-

mulas in this chapter, since they are most accurate.

In the finite difference method, we replace the solution domain (over which the solu-

tion of the given differential equation is required) with a finite number of points, referred

to as mesh or grid points, and seek to determine the values of the desired solution at these

points. The grid points are usually considered to be equally spaced along each of the inde-

pendent coordinates (see Fig. 11.1). By using Taylor s series expansion, and can

be expressed about the grid point i as

(11.1) xi+1 = xi + hx
 #

i +
h

2

2
 x
$

i +
h

3

6
  x
...

i +
Á

xi-1xi+1

x(t)

xi 3

xi 2

xi 1

xi
xi 1xi 2

ti 2

t  h

O ti 1 ti ti 1 ti 2 ti 3

t
i 2 i 1 i i 1 i 2 i 3

x(t)

h h h h

FIGURE 11.1 Grid points.
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(11.2)

where and By taking two terms only and subtracting

Eq. (11.2) from Eq. (11.1), we obtain the central difference approximation to the first

derivative of x at 

(11.3)

By taking terms up to the second derivative and adding Eqs. (11.1) and (11.2), we obtain

the central difference formula for the second derivative:

(11.4)

11.3 Central Difference Method for Single-Degree-of-Freedom Systems
The governing equation of a viscously damped single-degree-of-freedom system is

(11.5)

Let the duration over which the solution of Eq. (11.5) is required be divided into n equal

parts of interval each. To obtain a satisfactory solution, we must select a time step

that is smaller than a critical time step 2 Let the initial conditions be given by

and 

Replacing the derivatives by the central differences and writing Eq. (11.5) at grid point

i gives

(11.6)m b xi+1 - 2xi + xi-1

1¢t22 r + c b xi+1 - xi-1

2 ¢t
r + kxi = Fi

x 
#1t = 02 = x 

#
0.x1t = 02 = x0

¢tcri.¢t
h = ¢t

m 

d2x

dt2
+ c 

dx

dt
+ kx = F1t2

x 
$

i =
d2x

dt2
 `

ti

=
1

h2
 1xi+1 - 2xi + xi-12

x 
#
i =

dx

dt
 `

ti

=
1

2h
 1xi+1 - xi-12

t = ti:

h = ti+1 - ti = ¢t.xi = x1t = ti2

 xi-1 = xi - hx 
#
i +

h2

2
 x
$

i -
h3

6
  x
...

i +
Á

2Numerical methods that require the use of a time step smaller than a critical time step are said

to be conditionally stable [11.7]. If is taken to be larger than the method becomes unstable. This

means that the truncation of higher-order terms in the derivation of Eqs. (11.3) and (11.4) (or rounding-off in

the computer) causes errors that grow and make the response computations worthless in most cases. The crit-

ical time step is given by where is the natural period of the system or the smallest such

period in the case of a multidegree-of-freedom system [11.8]. Naturally, the accuracy of the solution always

depends on the size of the time step. By using an unconditionally stable method, we can choose the time step

with regard to accuracy only, not with regard to stability. This usually allows a much larger time step to be

used for any given accuracy.

tn¢tcri = tn/p,

¢tcri,¢t
1¢tcri21¢t2
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where and Solution of Eq. (11.6) for yields

(11.7)

This is called the recurrence formula. It permits us to calculate the displacement of the

mass if we know the previous history of displacements at and as well as the

present external force Repeated application of Eq. (11.7) yields the complete time his-

tory of the behavior of the system. Note that the solution of is based on the use of the

equilibrium equation at time is, Eq. (11.6). For this reason, this integration proce-

dure is called an explicit integration method. Certain care has to be exercised in applying

Eq. (11.7) for Since both and are needed in finding and the initial condi-

tions provide only the values of and we need to find the value of Thus the

method is not self-starting. However, we can generate the value of by using Eqs.

(11.3) and (11.4) as follows. By substituting the known values of and into Eq.

(11.5), can be found:

(11.8)

Application of Eqs. (11.3) and (11.4) at yields the value of 

(11.9)x-1 = x0 - ¢tx 
#
0 +

1¢t22

2
 x 
$

0

x-1:i = 0

x 
$

0 =
1

m
 [F1t = 02 - cx 

#
0 - kx0]

x
$

0

x 
#
0x0

x-1

x-1.x 
#
0,x0

x1,x-1x0i = 0.

ti that

xi+1

Fi.
ti-1,ti1xi+12

 + e c

2 ¢t
-

m

1¢t22
f  xi-1 + Fi d

 xi+1 = d 1

m

1¢t22
+

c

2 ¢t

t c b 2m

1¢t22
- k r  xi

xi+1Fi = F1ti2.xi = x1ti2

E X A M P L E  1 1 . 1
Response of Single-Degree-of-Freedom System

Find the response of a viscously damped single-degree-of-freedom system subjected to a force

with the following data: and Assume the values of the

displacement and velocity of the mass at to be zero.t = 0
k = 1.F0 = 1, t0 = p, m = 1, c = 0.2,

F1t2 = F0 a1 - sin 

pt

2t0
b
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Solution: The governing differential equation is

(E.1)

The finite difference solution of Eq. (E.1) is given by Eq. (11.7). Since the initial conditions are

Eq. (11.8) yields hence Eq. (11.9) gives Thus the solution of

Eq. (E.1) can be found from the recurrence relation

(E.2)

with and

The undamped natural frequency and the natural period of the system are given by

(E.3)

and

(E.4)

Thus the time step must be less than We shall find the solution of Eq. (E.1) by using

the time steps and The time step is used to illustrate

the unstable (diverging) behavior of the solution. The values of the response obtained at different

instants of time are shown in Table 11.1.

This example can be seen to be identical to Example 4.17. The results obtained by idealization

4 (piecewise linear type interpolation) of Example 4.17 are shown in Table 11.1 up to time in

the last column of the table. It can be observed that the finite difference method gives reasonably

accurate results with time steps and (which are smaller than ) but gives

diverging results with (which is larger than ).

*

¢tcri¢t = tn 
/2

¢tcritn 
/20¢t = tn 

/40

ti = p

ti

xi

¢t = tn 
/2 7 ¢tcritn 

/2.¢t = tn 
/40, tn 

/20,
tn 

/p = 2.0.¢t

tn =
2p

vn
= 2p

vn = a k

m
b1/2

= 1

Fi = F1ti2 = F0 +1 - sin 

ip ¢t

2t0
*

x0 = 0, x-1 = 1¢t22/2, xi = x1ti2 = x1i ¢t2,

 + e c

2 ¢t
-

m

1¢t22
f  xi-1 + Fi d ,  i = 0, 1, 2, Á

 xi+1 =
1

c m

1¢t22
+

c

2 ¢t
d

 c e 2m

1¢t22
- k f  xi

x-1 = 1¢t22/2.x
$

0 = 1;x0 = x 
#
0 = 0,

mx
$
+ cx 

#
+ kx = F1t2 = F0 a1 - sin 

pt

2t0
b
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11.4 Runge-Kutta Method for Single-Degree-of-Freedom Systems
In the Runge-Kutta method, the approximate formula used for obtaining from is

made to coincide with the Taylor s series expansion of x at up to terms of order 

The Taylor s series expansion of x(t) at is given by

(11.10)

In contrast to Eq. (11.10), which requires higher-order derivatives, the Runge-Kutta method

does not require explicitly derivatives beyond the first [11.9 11.11]. For the solution of a

second-order differential equation, we first reduce it to two first-order equations. For exam-

ple, Eq. (11.5) can be rewritten as

(11.11)x
$
=

1

m
 [F1t2 - cx 

#
- kx] = f1x, x 

#
, t2

  + x 
#
 
#
 
#
 
#
 

1¢t24

4!
+ Á

 x1t + ¢t2 = x1t2 + x 
#  ¢t + x

$
 

1¢t22

2!
+ x 

#
 
#
 
#
 

1¢t23

3!

t + ¢t
1¢t2n.xi+1

xixi+1

TABLE 11.1 Comparison of Solutions of Example 11.1

Values of Obtained withxi * x1ti2

Time 1ti2 ¢t *
tn

40
¢t *

tn

20
¢t *

tn

2

Value of Given by Idealization 4

of Example 4.31

xi

0 0.00000 0.00000 0.00000 0.00000

p/10 0.04638 0.04935 0.04541

2p/10 0.16569 0.17169 0.16377

3p/10 0.32767 0.33627 0.32499

4p/10 0.50056 0.51089 0.49746

5p/10 0.65456 0.66543 0.65151

6p/10 0.76485 0.77491 0.76238

7p/10 0.81395 0.82185 0.81255

8p/10 0.79314 0.79771 0.79323

9p/10 0.70297 0.70340 0.70482

p 0.55275 0.54869 4.9348 0.55647

2p 0.19208 0.19898 -29.551

3p 2.7750 2.7679 181.90

4p 0.83299 0.83852 -1058.8

5p -  0.05926 -  0.06431 6253.1



946 CHAPTER 11 NUMERICAL INTEGRATION METHODS IN VIBRATION ANALYSIS

By defining and Eq. (11.11) can be written as two first-order equations:

(11.12)

By defining

the following recurrence formula is used to find the values of at different grid points

according to the fourth-order Runge-Kutta method

(11.13)

where

(11.14)

(11.15)

(11.16)

(11.17)

The method is stable and self-starting that is, only the function values at a single previous

point are required to find the function value at the current point.

 K
:

4 = hF
:1X:i + K

:

3, ti+12
 K
:

3 = hF
:1X
:

i +
1
2 K
:

2,  ti +
1
2 h2

 K
:

2 = hF
:1X
:

i +
1
2 K
:

1, ti +
1
2 h2

 K
:

1 = hF
:

 1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 [K
:

1 + 2K
:

2 + 2K
:

3 + K
:

4]

ti

X
:1t2

X
:1t2 = e x11t2

x21t2 f and F
:1t2 = e x2

f1x1, x2, t2 f

 x 
#
2 = f1x1, x2, t2

 x 
#
1 = x2

x2 = x 
#
,x1 = x

E X A M P L E  1 1 . 2
Response of Single-Degree-of-Freedom System

Find the solution of Example 11.1 using the Runge-Kutta method.

Solution: We use a step size of and define

and

F
:1t2 = e x2

f1x1, x2, t2 f = L
x 
#1t2

1

m
 BF0¢1 - sin 

pt

2t0
- cx 

#1t2 - kx1t2R M

X
:1t2 = e x11t2

x21t2 f = ex1t2
x 
#1t2 f

¢t = 0.3142
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TABLE 11.2

Step i Time ti x1 * x x2 * x
 

1 0.3142 0.045406 0.275591

2 0.6283 0.163726 0.461502

3 0.9425 0.324850 0.547296

o

19 5.9690 -  0.086558 0.765737

` 20 6.2832 0.189886 0.985565

From the known initial conditions, we have

The values of obtained according to Eq. (11.13) are shown in Table 11.2.X
:

i+1, i = 0, 1, 2, Á

X
:

0 = e0

0
f

*

11.5 Central Difference Method for Multidegree-of-Freedom Systems
The equation of motion of a viscously damped multidegree-of-freedom system (see Eq.

(6.119)) can be expressed as

(11.18)

where [m], [c], and [k] are the mass, damping, and stiffness matrices, is the displacement

vector, and is the force vector. The procedure indicated for the case of a single-degree-of-

freedom system can be directly extended to this case [11.12, 11.13]. The central difference

formulas for the velocity and acceleration vectors at time are given by

(11.19)

(11.20)

which are similar to Eqs. (11.3) and (11.4). Thus the equation of motion, Eq. (11.18), at

time can be written as

(11.21) [m] 

1

1¢t22
 1 x
:

i+1 - 2x
:

i + x
:

i-12 + [c] 

1

2 ¢t
 1 x
:

i+1 - x
:

i-12 + [k] x
:

i = F
:

i

ti

x
!$
i =

1

1¢t22
 1x
!
i+1 - 2x

!
i + x

!
i-12

x
!#
i =

1

2 ¢t
 1x
!
i+1 - x

!
i-12

ti = i ¢t1x
!#
i and x

!$
i2

F
! x

!

[m] x
!$
+ [c] x

!#
+ [k] x

!
= F

!
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where 

and Equation (11.21) can be rearranged to obtain

or

(11.22)

Thus Eq. (11.22) gives the solution vector once and are known. Since Eq.

(11.22) is to be used for the evaluation of requires and Thus a

special starting procedure is needed to find For this, Eqs. (11.18) to

(11.20) are evaluated at to obtain

(11.23)

(11.24)

(11.25)

Equation (11.23) gives the initial acceleration vector as

(11.26)

and Eq. (11.24) gives the displacement vector at as

(11.27)x
:

1 = x
:

-1 + 2 ¢tx
!#

0

t1

x
!$

0 = [m]-11F
:

0 - [c] x
!#

0 - [k] x
:

0 2

 x
!$

0 =
1

1¢t22
 1 x
:

1 - 2 x
:

0 + x
:

-12

 x
!#

0 =
1

2 ¢t
 1 x
:

1 - x
:

-12

 [m] x
!$

0 + [c] x
!#

0 + [k] x
!
0 = F

!

0 = F
!1t = 02

i = 0

x
!
-1 = x

!1t = -¢t2.

x
:

-1.x
:

0x
:

1i = 1, 2, Á , n,

x
:

i-1x
:

ix
:

i+1

 - a 1

1¢t22
 [m] -

1

2 ¢t
 [c]b  x

:

i-1

 a 1

1¢t22
 [m] +

1

2 ¢t
 [c]b  x

:

i+1 = F
:

i - a[k] -
2

1¢t22
 [m]b  x

:

i

 + + 1

1¢t22
 [m] -

1

2 ¢t
 [c]*  x

:

i-1 = F
:

i

 + 1

1¢t22
 [m] +

1

2 ¢t
 [c]*  x

!
i+1 + + - 2

1¢t22
 [m] + [k]*  x

:

i

ti = i ¢t.
F
:

i = F
:1t = ti2,x

:

i-1 = x
:1t = ti-12,x

:

i = x
:1t = ti2,x

:

i+1 = x
:1t = ti+12,
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Substituting Eq. (11.27) for Eq. (11.25) yields

or

(11.28)

where is given by Eq. (11.26). Thus needed for applying Eq. (11.22) at is

given by Eq. (11.28). The computational procedure can be described by the following steps.

1. From the known initial conditions and compute

using Eq. (11.26).

2. Select a time step such that 

3. Compute using Eq. (11.28).

4. Find starting with from Eq. (11.22), as

(11.29)

where

(11.30)

If required, evaluate accelerations and velocities at 

(11.31)

and

(11.32)

Repeat Step 4 until (with ) is determined. The stability of the finite difference

scheme for solving matrix equations is discussed in reference [11.14].

i = nx
:

n+1

x
!#

i =
1

2 ¢t
  [ x
:

i+1 - x
:

i-1]

x
!$

i =
1

1¢t22
  [ x
:

i+1 - 2 x
:

i + x
:

i-1]

ti:

F
:

i = 1t = ti2

  - a 1

1¢t22
 [m] -

1

2 ¢t
 [c]b  x

:

i-1 d

 x
:

i+1 = c 1

1¢t22
 [m] +

1

2 ¢t
 [c] d-1 c F

:

i - a[k] -
2

1¢t22
 [m]b  x

:

i

i = 0,x
:

i+1 = x
:1t = ti+12,

x
:

-1

¢t 6 ¢tcri.¢t

x
!$1t = 02 = x

!$

0

x
!# 1t = 02 = x

!#

0,x
:1t = 02 = x

:

0

i = 1x
:

-1x
!$

0

x
!
-1 = x

!
0 - ¢tx

!#

0 +
1¢t22

2
 x
!$

0

x
!$

0 =
2

1¢t22
 [¢tx

!#

0 - x
:

0 + x
:

-1]

x
:

1,
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E X A M P L E  1 1 . 3
Central Difference Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system shown in Fig. 11.2 when the forcing

functions are given by and Assume the value of c as zero and the

initial conditions as 

Solution:

Approach: Use where is the smallest time period in the central difference method.

The equations of motion are given by

(E.1)

where

(E.2)

(E.3)

(E.4)

(E.5)

and

(E.6)

The undamped natural frequencies and the mode shapes of the system can be found by solving the

eigenvalue problem

x
:1t2 = e x11t2

x21t2 f

 F
:1t2 = e F11t2

F21t2 f = e 0

10
f

 [k] = ck1 + k -  k

-  k k + k2
d = c 6 -  2

-  2 8
d

 [c] = c c -  c

-  c c
d = c0 0

0 0
d

 [m] = cm1 0

0 m2
d = c1 0

0 2
d

[m] x
!$1t2 + [c] x

!# 1t2 + [k] x
:1t2 = F

:1t2

t¢t = t/10,

x
!# 1t = 02 = 0

:

.x
:1t = 02 =

F2(t) = 10.F1(t) = 0

k1 * 4

m1 * 1 m2 * 2

x1(t) x2(t)

F1(t) F2(t)
k * 2

k2 * 6

c * 0

FIGURE 11.2 Two-degree-of-freedom system.
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(E.7)

The solution of Eq. (E.7) is given by

(E.8)

(E.9)

Thus the natural periods of the system are

We shall select the time step as The initial value of can be found as follows:

(E.10)

and the value of as follows:

(E.11)

Now Eq. (11.29) can be applied recursively to obtain The results are shown in

Table 11.3.

*

11.6 Finite Difference Method for Continuous Systems

x
:

1, x
:

2, Á  .

x
:

-1 = x
:

0 - ¢t x
!#

0 +
1¢t22

2
    x
!$

0 = e0

0.1466
f

x
:

-1

 =
1

2
  c2 0

0 1
d  e 0

10
f = e0

5
f

 x
!$

0 = [m]-15F
:

- [k] x
:

06 = c1 0

0 2
d-1e 0

10
f

x
!$

t2/10 = 0.24216.1¢t2

t1 =
2p

v1
= 3.4757 and t2 =

2p

v2
= 2.4216

v2 = 2.594620, X
:122 = e 1.0000

-  0.3661
f

v1 = 1.807747, X
:112 = e 1.0000

1.3661
f

c -  v
2 c1 0

0 2
d + c 6 -  2

-  2 8
d d eX1

X2
f = e0

0
f

11.6.1
Longitudinal
Vibration of 
Bars

Equation of Motion. The equation of motion governing the free longitudinal vibration

of a uniform bar (see Eqs. (8.49) and (8.20)) can be expressed as

(11.33)
d2U

dx2
+ a

2U = 0
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TABLE 11.3

Time (ti * i ¢t) x
!
i * x

!
(t * ti)

t1 e0

0.1466
f

t2 e0.0172

0.5520
f

t3 e0.0931

1.1222
f

t4 e0.2678

1.7278
f

t5 e 0.5510

2.2370
f

t6 e0.9027

2.5470
f

t7 e 1.2354

2.6057
f

t8 e 1.4391

2.4189
f

t9 e 1.4202

2.0422
f

t10 e 1.1410

1.5630
f

t11 e0.6437

1.0773
f

t12 e0.0463

0.6698
f

where

(11.34)

To obtain the finite difference approximation of Eq. (11.33), we first divide the bar of

length l into equal parts each of length and denote the mesh points

as as shown in Fig. 11.3. Then, by denoting the value of U at mesh point

i as and using a formula for the second derivative similar to Eq. (11.4), Eq. (11.33) for mesh

point i can be written as

1

h2
 1Ui+1 - 2Ui + Ui-12 + a

2Ui = 0

Ui

1, 2, 3, Á , i, Á , n,
h = l/1n - 12n - 1

a
2 =

v
2

c2
=
rv

2

E



11.6 FINITE DIFFERENCE METHOD FOR CONTINUOUS SYSTEMS 953

l

U1 *  U2 *  U3 *         Ui  *                 Un *

U(x1) U(x2) U(x3)        U(xi)                U(xn)

1 2 3 i

x1 x2 x3 xi xn

n

FIGURE 11.3 Division of a bar for

finite difference approximation.

or

(11.35)

where The application of Eq. (11.35) at mesh points leads

to the equations

(11.36)

which can be stated in matrix form as

(11.37)  g U1

U2

U3

.

.

.

Un

w = g 0

0

0

.

.

.

0

w
 G -1 (2 - l) -1 0 0 Á 0 0 0

0 -1 (2 - l) -1 0 Á 0 0 0

0 0 -1 (2 - l) -1 Á 0 0 0

. . . . . . . .

. . . . . Á . . .

. . . . . . . .

0 0 0 0 0 Á -1 (2 - l) -1

W

U3 - 12 - l2U2 + U1 = 0

U4 - 12 - l2U3 + U2 = 0

o       
Un - 12 - l2Un-1 + Un-2 = 0

i = 2, 3, Á , n - 1l = h2
a

2.

Ui+1 - 12 - l2Ui + Ui-1 = 0
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Boundary Conditions

Fixed End. The deflection is zero at a fixed end. Assuming that the bar is fixed at 

and we set in Eq. (11.37) and obtain the equation

(11.38)

where

(11.39)

(11.40)

and matrix of order 

Note that the eigenvalue problem of Eq. (11.38) can be solved easily, since the matrix

[A] is a tridiagonal matrix [11.15 11.17].

Free End. The stress is zero at a free end, so We can use a formula for

the first derivative similar to Eq. (11.3). To illustrate the procedure, let the bar be free at

and fixed at The boundary conditions can then be stated as

(11.41)

(11.42)

In order to apply Eq. (11.41), we need to imagine the function U(x) to be continuous

beyond the length of the bar and create a fictitious mesh point so that becomes

the fictitious displacement of the point The application of Eq. (11.35) at mesh point

yields

(11.43)U2 - 12 - l2 U1 + U-1 = 0

i = 1
x-1.

U-1-1

 Un = 0

 
dU

dx
`
1
M

U2 - U-1

2h
= 0 or U-1 = U2

x = l.x = 0

1dU2/1dx2 = 0.

n - 2.[I] = identity

U
:

= f U2

U3

.

.

.

Un-1

v
[A] = G 2 -1 0 0 Á 0 0 0

-1 2 -1 0 Á 0 0 0

0 -1 2 -1 Á 0 0 0

. . . . Á . . .

. . . . Á . . .

. . . . Á . . .

0 0 0 0 Á 0 -1 2

W
[[A] - l[I]] U

:

= 0
:

U1 = Un = 0x = l,
x = 0
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By incorporating the condition (Eq. 11.41), Eq. (11.43) can be written as

(11.44)

By adding Eqs. (11.44) and (11.37), we obtain the final equations:

(11.45)

where

(11.46)

and

(11.47)U
!

= f U1
U2
.

.

.

Un-1

v
[A] = H 2 -2 0 0 Á 0 0 0

-1 2 -1 0 Á 0 0 0

0 -1 2 -1 Á 0 0 0

.

.

.

0 0 0 0 Á -1 2 -1

0 0 0 0 Á 0 -1 2

X
[[A] - l[I]]U

:

= 0
!

12 - l2 U1 - 2U2 = 0

U-1 = U2

11.6.2

Transverse

Vibration of

Beams

Equation of Motion. The governing differential equation for the transverse vibration of

a uniform beam is given by Eq. (8.83):

(11.48)

where

(11.49)b4
=

rAv2

EI

d4W

dx4
- b4W = 0
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By using the central difference formula for the fourth derivative,3 Eq. (11.48) can be writ-

ten at any mesh point i as

(11.50)

where

(11.51)

Let the beam be divided into equal parts with n mesh points and 

The application of Eq. (11.50) at the mesh points leads to the equations

(11.52)

Boundary Conditions

Fixed End. The deflection W and the slope (dW)/(dx) are zero at a fixed end. If the end

is fixed, we introduce a fictitious node on the left-hand side of the beam, as

shown in Fig. 11.4, and state the boundary conditions, using the central difference formula

for (dW)/(dx), as

 W1 = 0

-1x = 0

  g W1

W2

W3

.

.

.

Wn

w = g 0

0

0
.

.

.

0

w
G 1 -4 (6 - l) -4 1 0 0

0 1 -4 (6 - l) -4 1 0

0 0 1 -4 (6 - l) -4 1
#

#

#

0 0 0 0 0 0 0

 

Á 0 0 0 0 0
Á 0 0 0 0 0
Á 0 0 0 0 0

Á 1 -4 (6 - l) -4 1

W
i = 3, 4, Á , n - 2

h = l/1n - 12.n - 1

l = h4b4

Wi+2 - 4Wi+1 + 16 - l2Wi - 4Wi-1 + Wi-2 = 0

3The central difference formula for the fourth derivative (see Problem 11.3) is given by

d4f

dx4
`
i
M

1

h4
 1fi+2 - 4fi+1 + 6fi - 4fi-1 + fi-22
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x , 0

x

W(x)

h h h h h h h h

x , l

+1 n+3 n+2 n+1 n*1n1 2 3 4

Node
numbers

Deflected center
line of the beam

FIGURE 11.4 Beam with fixed ends.

(11.53)

where denotes the value of W at node i. If the end is fixed, we introduce the ficti-

tious node on the right side of the beam, as shown in Fig. 11.4, and state the bound-

ary conditions as

(11.54)

Simply Supported End. If the end is simply supported (see Fig. 11.5), we have

(11.55)

Similar equations can be written if the end is simply supported.x = l

 
d

2
W

dx
2

`
1

=
1

h
2

 1W2 - 2W1 + W-12 = 0  or W-1 = -
 
W2

 W1 = 0

x = 0

 
dW

dx
`
n

=
1

2h
 1Wn+1 - Wn-12 = 0  or Wn+1 = Wn-1

 Wn = 0

n + 1

x = lWi

 
dW

dx
`
1

=
1

2h
 1W2 - W-12 = 0 or W-1 = W2

x , 0
x

W(x)

h h h h h h h h

x , l

+1 n+3 n+2 n+1 n*1n1 2 3 4

Deflected center
line of the beam

FIGURE 11.5 Beam with simply supported ends.
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E X A M P L E  1 1 . 4

Pinned-Fixed Beam

Find the natural frequencies of the simply supported-fixed beam shown in Fig. 11.7. Assume that the

cross section of the beam is constant along its length.

Solution: We shall divide the beam into four segments and express the governing equation

(E.1)

in finite difference form at each of the interior mesh points. This yields the equations

(E.2)

(E.3)

(E.4)

where and denote the values of W at the fictitious nodes 0 and 6, respectively, and

(E.5)l = h
4b4

=

h
4rAv2

EI

W6W0

 W2 - 4W3 + 16 - l2W4 - 4W5 + W6 = 0

 W1 - 4W2 + 16 - l2W3 - 4W4 + W5 = 0

 W0 - 4W1 + 16 - l2W2 - 4W3 + W4 = 0

d
4
W

dx
4
- b4

W = 0

Free End. Since bending moment and shear force are zero at a free end, we introduce two

fictitious nodes outside the beam, as shown in Fig. 11.6, and use central difference formulas

for approximating the second and the third derivatives of the deflection W. For example, if

the end is free, we have

(11.56) 
d

3
W

dx
3

`
1

=
1

2h
3

 1W3 - 2W2 + 2W-1 - W-22 = 0

 
d

2
W

dx
2

`
1

=
1

h
2

 1W2 - 2W1 + W-12 = 0

x = 0

x , 0
x

W(x)

h h h h h h h h h h

x , l

+1+2 n+3 n+2 n+1 n*2n*1n1 2 3 4

Deflected center
line of the beam

FIGURE 11.6 Beam with free ends.
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The boundary conditions at the simply supported end (mesh point 1) are

(E.6)

At the fixed end (mesh point 5) the boundary conditions are

(E.7)

With the help of Eqs. (E.6) and (E.7), Eqs. (E.2) to (E.4) can be reduced to

(E.8)

(E.9)

(E.10)

Equations (E.8) to (E.10) can be written in matrix form as

(E.11)

The solution of the eigenvalue problem (Eq. (E.11)) gives the following results:

(E.12)

(E.13)

(E.14)

*

 l3 = 12.2543,  v3 =
3.5006

h2
 A

EI

rA
,  c W2

W3

W4

s132

= c 0.4498

-  0.6673

0.5936

s

 l2 = 5.0322,  v2 =
2.2433

h2
 A

EI

rA
,  c W2

W3

W4

s 122

= c 0.6723

-  0.1846

-  0.7169

s

 l1 = 0.7135,  v1 =
0.8447

h2
 A

EI

rA
,  c W2

W3

W4

s112

= c 0.5880

0.7215

0.3656

s

C 15 - l2 -  4 1

-   4 16 - l2 -  4

1 -  4 17 - l2

S c W2

W3

W4

s = c 0

0

0

s

 W2 - 4W3 + 17 - l2W4 = 0

 -  4W2 + 16 - l2W3 - 4W4 = 0

 15 - l2W2 - 4W3 + W4 = 0

 W6 = W4

 W5 = 0

 W0 = -
 
W2

 W1 = 0

0 1

h h

2 3 4
5

6

l * 4h

FIGURE 11.7 Simply supported-fixed

beam.
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11.7 Runge-Kutta Method for Multidegree-of-Freedom Systems
In the Runge-Kutta method, the matrix equations of motion, Eq. (11.18), are used to express

the acceleration vector as

(11.57)

By treating the displacements as well as velocities as unknowns, a new vector, is

defined as so that

(11.58)

Equation (11.58) can be rearranged to obtain

that is,

(11.59)

where

(11.60)

(11.61)

and

(11.62)

With this, the recurrence formula to evaluate at different grid points according to

the fourth order Runge-Kutta method becomes [11.10]

(11.63)

where

(11.64)

(11.65)

(11.66)

(11.67)K
:

4 = hf
:1X
:

i + K
:

3, ti+12
K
:

3 = hf
:1X
:

i +
1
2 K
:

2, ti +
1
2 h2

K
:

2 = hf
:1X
:

i +
1
2 K
:

1, ti +
1
2 h2

K
:

1 = hf
:1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 [K
:

1 + 2K
:

2 + 2K
:

3 + K
:

4]

tiX
:1t2

F
!

'
1t2 = e 0

!

[m]-1F
!1t2 f

 [A] = c [0] [I]

-[m]-1[k] -[m]-1[c]
d

 f
:1X
:

, t2 = [A]X
:1t2 + F

!

'1t2

X
!# 1t2 = f

:1X
:

, t2

X
!# 1t2 = c [0] [I]

-[m]-1[k] -[m]-1[c]
d ex

!1t2
x
!# 1t2 f + e 0

[m]-1F
:1t2 f

X
!#

= ex
!#

x
!$ f = e x

!#

[m]-11F
:

- [c]x
!#
- [k]x

:2f

X
:1t2 = e x

:1t2
x
!# 1t2 f

X
:1t2,

x
!$1t2 = [m]-11F

:1t2 - [c]x
!# 1t2 - [k]x

:1t22
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E X A M P L E  1 1 . 5
Runge-Kutta Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system considered in Example 11.3 using the fourth-

order Runge-Kutta method.

Solution:

Approach: Use the Runge-Kutta method with 

Using the initial conditions Eq. (11.63) is sequentially applied

with to obtain the results shown in Table 11.4.¢t = 0.24216

x
!1t = 02 = x

!# 1t = 02 = 0
!
,

¢t = 0.24216.

*

TABLE 11.4

Time ti * i ¢t x
!
i * x

!1t * ti2

t1 e0.0014
0.1437

f

t2 e0.0215
0.5418

f

t3 e0.0978
1.1041

f

t4 e0.2668
1.7059

f

t5 e0.5379
2.2187

f

t6 e 0.8756
2.5401

f

t7 e 1.2008
2.6153

f

t8 e 1.4109

2.4452
f

t9 e 1.4156

2.0805
f

t10 e 1.1727
1.6050

f

t11 e0.7123
1.1141

f

t12 e 0.1365

0.6948
f
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xi*1

xixi+1

xi+2

,t ,t ,t

t
ti+2 ti+1 ti ti*1

FIGURE 11.8 Equally spaced grid

points.

11.8 Houbolt Method

We shall consider the Houbolt method with reference to a multidegree-of-freedom system.

In this method, the following finite difference expansions are employed:

(11.68)

(11.69)

To derive Eqs. (11.68) and (11.69), consider the function x(t). Let the values of x at the

equally spaced grid points and be

given by and respectively, as shown in Fig. 11.8 [11.18]. The Taylor s

series expansion, with backward step, gives several possibilities.

* With Step 

or

(11.70)

* With Step 

  +
12 ¢t22

2!
 x
$
1t + ¢t2 -

12 ¢t23

3!
 x 
#
 
#
 
#
1t + ¢t2 + Á

 x1t - ¢t2 = x1t + ¢t2 - 12 ¢t2x 
#
1t + ¢t2

Size = 2 ¢t:

xi = xi+1 - ¢t x 
#
i +  1 +

1¢t22

2
 x
$

i +  1 -
1¢t23

6
 x 
#
 
#
 
#
i +  1 + Á

 x1t2 = x1t + ¢t2 - ¢t x 
#
1t + ¢t2 +

1¢t22

2!
 x
$
1t + ¢t2 -

1¢t23

3!
 x 
#
 
#
 
#
1t + ¢t2

Size = ¢t:

xi+1,xi,xi-1,xi-2,

ti+1 = ti + ¢tti,ti-1 = ti - ¢t,ti-2 = ti - 2 ¢t,

 x
!$

i+1 =
1

1¢t22
  12x

!
i+1 - 5x

!
i + 4x

!
i-1 - x

!
i-22

 x
!#

i+1 =
1

6 ¢t
 111x

!
i+1 - 18x

!
i + 9x

!
i-1 - 2x

!
i-22
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or

(11.71)

* With Step 

or

(11.72)

By considering terms up to only, Eqs. (11.70) to (11.72) can be solved to express

and in terms of and This gives and as in

[11.18]:

(11.73)

(11.74)

Equations (11.68) and (11.69) represent the vector form of these equations.

To find the solution at step we consider Eq. (11.18) at so that

(11.75)

By substituting Eqs. (11.68) and (11.69) into Eq. (11.75), we obtain

(11.76)

Note that the equilibrium equation at time Eq. (11.75), is used in finding the solution

through Eq. (11.76). This is also true of the Wilson and Newmark methods. For this

reason, these methods are called implicit integration methods.

X
:

i+1

ti+1,

 - a 4

1¢t22
 [m] +

3[c]

2 ¢t
bx
!
i-1 + a 1

1¢t22
 [m] +

[c]

3 ¢t
bx
!
i-2

 = F
!

i+1 + a 5

1¢t22
 [m] +

3

¢t
 [c]bx

!
i

a 2

1¢t22
 [m] +

11

6 ¢t
 [c] + [k]bx

!
i+1

[m] x
!$

i+1 + [c] x
!#

i+1 + [k] x
!
i+1 = F

!

i+1 K F
!1t = ti+12

ti+1,i + 11x
!
i+12,

 x 
$

i+1 =
1

1¢t22
 12xi+1 - 5xi + 4xi-1 - xi-22

 x 
#
i+1 =

1

61¢t2  111xi+1 - 18xi + 9xi-1 - 2xi-22

x
$

i+1x 
#
i+1xi+1.xi-2, xi-1, xi,x 

#
 
#
 
#
i+1x 

#
i+1, x

$
i+1,

1¢t23

xi-2 = xi+1 - 3 ¢t x 
#
i+1 +

9
2 1¢t22x 

$
i+1 -

9
2 1¢t23 x  

#
 
#
 
#
 
i+1 + Á

  +
13 ¢t22

2!
x
$1t + ¢t2 -

13 ¢t23

3!
x 
#
 
#
 
#1t + ¢t2 + Á

 x1t - 2 ¢t2 = x1t + ¢t2 - 13 ¢t2x 
#1t + ¢t2

Size = 3 ¢t:

xi-1 = xi+1 - 2 ¢tx 
#
i+1 + 21¢t22x 

$
i+1 -

4
3  1¢t23 x  

#
 
#
 
#
 
i+1 + Á
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It can be seen from Eq. (11.76) that a knowledge of and is required to

find the solution Thus the values of and are to be found before attempting to

find the vector using Eq. (11.76). Since there is no direct method to find and we

cannot use Eq. (11.76) to find and This makes the method non self-starting. To start

the method, we can use the central difference method described in Section 11.5 to find 

and Once is known from the given initial conditions of the problem and and 

are known from the central difference method, the subsequent solutions can be

found by using Eq. (11.76).

The step-by-step procedure to be used in the Houbolt method is as follows:

1. From the known initial conditions and find 

using Eq. (11.26).

2. Select a suitable time step 

3. Determine using Eq. (11.28).

4. Find and using the central difference equation (11.29).

5. Compute starting with and using Eq. (11.76):

(11.77)

If required, evaluate the velocity and acceleration vectors and using Eqs. (11.68)

and (11.69).

x
!$

i+1x
!#

i+1

 + a 1

1¢t22
 [m] +

1

3 ¢t
 [c]bx

!
i-2f

 - a 4

1¢t22
 [m] +

3

2 ¢t
 [c]bx

!
i-1

 * e F
:

i+1 + a 5

1¢t22
 [m] +

3

¢t
 [c]bx

!
i

 x
!
i+1 = c 2

1¢t22
 [m] +

11

6 ¢t
 [c] + [k] d-1

i = 2x
!
i+1,

x
!
2x

!
1

x
!
-1

¢t.

x
!$1t = 02

x
!$

0 =x
!# 1t = 02 = x

!#

0,x
!1t = 02 = x

!
0

x
!
3, x

!
4, Á

x
!
2x

!
1x

!
0x

!
2.

x
!
1

x
!
2.x

!
1

x
!
-2,x

!
-1x

!
1

x
!
-2x

!
-1x

!
i+1.

x
!
i-2x

!
i, x

!
i-1,

E X A M P L E  1 1 . 6
Houbolt Method for a Two-Degree-of-Freedom System

Find the response of the two-degree-of-freedom system considered in Example 11.3 using the Houbolt

method.

Solution

Approach: Use the Houbolt method with 

The value of can be found using Eq. (11.26):

x
!$

0 = e0

5
f

x
!$

0

¢t = 0.24216.
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TABLE 11.5

Time ti * i ¢t x
!
i * x

!1t * ti2

t1 e0.0000

0.1466
f

t2 e0.0172

0.5520
f

t3 e0.0917

1.1064
f

t4 e0.2501

1.6909
f

t5 e0.4924

2.1941
f

t6 e0.7867

2.5297
f

t7 e 1.0734

2.6489
f

t8 e 1.2803

2.5454
f

t9 e 1.3432

2.2525
f

t10 e 1.2258

1.8325
f

t11 e0.9340

1.3630
f

t12 e 0.5178

0.9224
f

By using a value of Eq. (11.29) can be used to find and and then Eq. (11.77)

can be used recursively to obtain as shown in Table 11.5.

*

11.9 Wilson Method

The Wilson method assumes that the acceleration of the system varies linearly between two

instants of time. In particular, the two instants of time are taken as indicated in Fig. 11.9.

Thus the acceleration is assumed to be linear from time to time ti+u = ti + u ¢t,ti = i ¢t

x
!
3, x

!
4, Á ,

x
!
2,x

!
1¢t = 0.24216,
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where [11.19]. For this reason, this method is also called the Wilson method. If

this method reduces to the linear acceleration scheme [11.20].

A stability analysis of the Wilson method shows that it is unconditionally stable pro-

vided that In this section, we shall consider the Wilson method for a multidegree-

of-freedom system.

Since is assumed to vary linearly between and we can predict the value of

at any time 

(11.78)

By integrating Eq. (11.78), we obtain4

(11.79)

and

(11.80)

By substituting into Eqs. (11.79) and (11.80), we obtain

(11.81)

(11.82) x
!
i+u = x

!
1ti + u ¢t2 = x

!
i + u ¢t x

!#

i +
u

21¢t22

6
 1x
!$

i+u + 2x
!$

i2

 x
!#

i+u = x
!#
1ti + u ¢t2 = x

!#

i +
u ¢t

2
 1x
!$

i+u + x
!$

i2

t = u ¢t

x
!
1ti + t2 = x

!
i + x

!#

it +
1

2
 x
!$

it
2 +

t
3

6u ¢t
 1x
!$

i+u - x
!$

i2

x
!#
1ti + t2 = x

!#

i + x
!$

it +
t

2

2u ¢t
 1x
!$

i+u - x
!$

i2

x
!$
1ti + t2 = x

!$

i +
t

u ¢t
 1x
!$

i+u - x
!$

i2

ti + t, 0 t u ¢t:x
!$

ti+u,tix
!$
1t2

u Ú 1.37.

u = 1.0,

uu Ú 1.0

4 and have been substituted in place of the integration constants in Eqs. (11.79) and (11.80), respectively.x
!
ix

!#

i

xi*1

xi*u

xi

ti
ti*1 , 

ti * +t

ti*u , 

ti * u +t

**

**

**

FIGURE 11.9 Linear acceleration

assumption of the Wilson method.
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Equation (11.82) can be solved to obtain

(11.83)

By substituting Eq. (11.83) into Eq. (11.81), we obtain

(11.84)

To obtain the value of we consider the equilibrium equation (11.18) at time

and write

(11.85)

where the force vector is also obtained by using the linear assumption:

(11.86)

Substituting Eqs. (11.83), (11.84), and (11.86) for and Eq. (11.85) gives

(11.87)

which can be solved for 

The Wilson method can be described by the following steps:

1. From the known initial conditions and find using Eq. (11.26).

2. Select a suitable time step and a suitable value of ( is usually taken as 1.4).

3. Compute the effective load vector starting with 

(11.88)  + [c]a 3

u ¢t
 x
!
i + 2x

!#

i +
u ¢t

2
 x
!$

ib

 F
!

L i+u = F
!

i + u1F
!

i+1 - F
!

i2 + [m]a 6

u
21¢t22

 x
!
i +

6

u ¢t
 x
!#

i + 2x
!$

ib

i = 0:F
L

i+u,

uu¢t

x
!$

0x
!#

0,x
!
0

x
!
i+1.

   + e 6

u ¢t
 [m] + 2[c]fx

!#

i + e2[m] +
u ¢t

2
 [c] fx

!$

i

  = F
!

i + u1F
!

i+1 - F
!

i2 + e 6

u
2 1¢t22

 [m] +
3

u ¢t
 [c] fx

!
i

 e 6

u
21¢t22

 [m] +
3

u ¢t
 [c] + [k] fx

!
i+1

F'i+u,x
!$

i+u, x
!#

i+u,

F'i+u = F
!

i + u1F
!

i+1 - F
!

i2
F'i+u

[m] x
!$

i+u + [c] x
!#

i+u + [k] x
!
i+u = F'i+u

ti+u = ti + u ¢t
xi+u,

x
!#

i+u =
3

u ¢t
 1x
!
i+u - x

!
i2 - 2x

!#

i -
u ¢t

2
 x
!$

i

x
!$

i+u =
6

u
21¢t22

 1x
!
i+u - x

!
i2 -

6

u ¢t
 x
!#

i - 2x
!$

i
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4. Find the displacement vector at time 

(11.89)

5. Calculate the acceleration, velocity, and displacement vectors at time 

(11.90)

(11.91)

(11.92) x
!
i+1 = x

!
i + ¢t x

!#

i +
1¢t22

6
 1x
!$

i+1 + 2x
!$

i2

 x
!#

i+1 = x
!#

i +
¢t

2
  1x

!$

i+1 + x
!$

i2

 x
!$

i+1 =
6

u31¢t22
 1x
!
i+u - x

!
i2 -

6

u2¢t
 x
!#

i + a1 -
3

u
bx

!$

i

ti+1:

x
!
i+u = c 6

u2 1¢t22
 [m] +

3

u ¢t
 [c] + [k] d-1

 F
L

i+u

ti+u:

E X A M P L E  1 1 . 7
Wilson Method for a Two-Degree-of-Freedom System

Find the response of the system considered in Example 11.3, using the Wilson method with

Solution:

Approach: Use Wilson method with 

The value of can be obtained as in the case of Example 11.3:

Then, by using Eqs. (11.90) to (11.92) with a time step of we obtain the results indi-

cated in Table 11.6.

*

11.10 Newmark Method
The Newmark integration method is also based on the assumption that the acceleration

varies linearly between two instants of time. The resulting expressions for the velocity and

displacement vectors and for a multidegree-of-freedom system [11.21], are writ-

ten as in Eqs. (11.79) and (11.80):

(11.93)

(11.94) x
!
i+1 = x

!
i + ¢t x

!#

i + [11
2 - a2x

!$

i + ax
!$

i+1]1¢t22

 x
!#

i+1 = x
!#

i + [11 - b2x
!$

i + bx
!$

i+1] ¢t

x
!
i+1,x

!#

i+1

¢t = 0.24216,

x
!$

0 = e0

5
f

x
!$

0

¢t = 0.24216.

u = 1.4.
u
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TABLE 11.6

Time ti * i ¢t x
!
i * x

!1t * ti2

t1 e0.0033
0.1392

f

t2 e0.0289
0.5201

f

t3 e0.1072
1.0579

f

t4 e0.2649
1.6408

f

t5 e0.5076
2.1529

f

t6 e0.8074
2.4981

f

t7 e 1.1035
2.6191

f

t8 e 1.3158

2.5056
f

t9 e 1.3688

2.1929
f

t10 e 1.2183
1.7503

f

t11 e 0.8710
1.2542

f
t12 e 0.3897

0.8208
f

where the parameters and indicate how much the acceleration at the end of the inter-

val enters into the velocity and displacement equations at the end of the interval In fact,

and can be chosen to obtain the desired accuracy and stability characteristics [11.22].

When and Eqs. (11.93) and (11.94) correspond to the linear acceleration

method (which can also be obtained using in the Wilson method). When and

Eqs. (11.93) and (11.94) correspond to the assumption of constant acceleration

between and To find the value of the equilibrium equation (11.18) is consid-

ered at , so that

(11.95)[m] x
!$

i+1 + [c] x
!#

i+1 + [k] x
!
i+1 = F

!

i+1

t = ti+1

x
!$

i+1,ti+1.ti

a =
1
4,

b =
1
2u = 1

a =
1
6,b =

1
2

ba

¢t.

ba
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Equation (11.94) can be used to express in terms of and the resulting expression

can be substituted into Eq. (11.93) to express in terms of By substituting these

expressions for and into Eq. (11.95), we can obtain a relation for finding 

(11.96)

The Newmark method can be summarized in the following steps:

1. From the known values of and find using Eq. (11.26).

2. Select suitable values of and 

3. Calculate the displacement vector starting with and using Eq. (11.96).

4. Find the acceleration and velocity vectors at time 

(11.97)

(11.98)

It is important to note that unless is taken as there is a spurious damping intro-

duced, proportional to If is taken as zero, a negative damping results; this

involves a self-excited vibration arising solely from the numerical procedure. Similarly,

if is greater than a positive damping is introduced. This reduces the magnitude of

response even without real damping in the problem [11.21]. The method is uncondi-

tionally stable for and b Ú
1
2 .a Ú

1
41b +

1
2 22

1
2,b

b1b -
1
22.

1
2,b

 x
!#

i+1 = x
!#

i + 11 - b2 ¢t x
!$

i + b  ¢t  x
!$

i+1

 x
!$

i+1 =
1

a1¢t22
 1x
!
i+1 - x

!
i2 -

1

a ¢t
 x
!#

i - a 1

2a
- 1bx

!$

i

ti+1:

i = 0x
!
i+1,

b.¢t, a,

x
!$

0x
!#

0,x
!
0

 + a b
a

- 2b  

¢t

2
 x
!$

ib f

 + [c]a b

a ¢t
 x
!
i + a b

a
- 1bx

!#

i

 * eF
!

i+1 + [m]a 1

a1¢t22
  x
!
i +

1

a ¢t
x
!#

i + a 1

2a
- 1bx

!$

ib

 x
!
i+1 = c 1

a1¢t22
 [m] +

b

a ¢t
 [c] + [k] d-1

x
!
i+1:x

!$

i+1x
!#

i+1

x
!
i+1.x

!#

i+1

x
!
i+1,x

!$

i+1

E X A M P L E  1 1 . 8
Newmark Method for a Two-Degree-of-Freedom System

Find the response of the system considered in Example 11.3, using the Newmark method with 

and 

Solution

Approach: Use the Newmark method with ¢t = 0.24216.

b =
1
2 .

a =
1
6
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TABLE 11.7

Time ti * i ¢t x
!
i * x

!1t * ti2

t1 e0.0026

0.1411
f

t2 e0.0246

0.5329
f

t3 e0.1005

1.0884
f

t4 e0.2644

1.6870
f

t5 e 0.5257

2.2027
f

t6 e0.8530

2.5336
f

t7 e 1.1730

2.6229
f

t8 e 1.3892

2.4674
f

t9 e 1.4134

2.1137
f

t10 e 1.1998

1.6426
f

t11 e0.7690

1.1485
f

t12 e 0.2111

0.7195
f

The value of can be found using Eq. (11.26):

With the values of and Eq. (11.96) gives the values of

as shown in Table 11.7.

*

x
!
i = x

!1t = ti2,

¢t = 0.24216,a =
1

6, b = 0.5,

x
!$

0 = e0

5
f

x
!$

0
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MATLAB Solution of a Single-Degree-of-Freedom System

Using the MATLAB function ode23, solve Example 11.1.

Solution: Defining and Eq. (E.1) of Example 11.1 can be expressed as a set of two

first-order differential equations:

(E.1)

(E.2)

with initial conditions The MATLAB program to solve Eqs. (E.1) and (E.2) is

given below.

% Ex11_9.m
tspan = [0: 0.1: 5*pi];
x0 = [0; 0];
[t,x] = ode23 ('dfunc11_9', tspan, x0);
plot (t,x(:,1));
xlabel ('t');
ylabel ('x(t) and xd(t)');
gtext ('x(t)');
hold on;
plot (t,x(:,2), '--');
gtext ('xd(t)')

%dfunc11_9.m
function f = dfunc11_9(t,x)
m = 1;
k = 1;
c = 0.2;
t0 = pi;
F0 = 1;
f = zeros (2,1);
f(1) = x(2);
f(2) = (F0* (1 * sin(pi*t/(2*t0))) * c*x(2) * k*x(1) )/m;

x1102 = x2102 = 0.

x 
#

2 =

1

m
 cF0 a1 - sin 

pt

2t0
b - cx2 - kx1 d

x 
#

1 = x2

x2 = x 
#

,x1 = x

E X A M P L E  1 1 . 9

11.11 Examples Using MATLAB

0 2
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xd(t)

x(t)
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x
(t

) 
a
n
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 x
d

(t
)

*
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EXAMPLE 11.10
MATLAB Solution of Multidegree-of-Freedom System

Using the MATLAB function ode23, solve Example 11.3.

Solution: The equations of motion of the two-degree-of-freedom system in Eq. (E.1) of Example 11.3

can be expressed as a system of four first-order differential equations in terms of

as

(E.1)

(E.2)

(E.3)

(E.4) =
1

2
  510 + 2 y1 - 8 y36 = 5 + y1 - 4 y3

 y 
#

4 =
1

m2

  5F21t2 + cy2 - cy4 + ky1 - 1k + k22y36

 y 
#

3 = y4

 y 
#

2 =
1

m1

  5F11t2 - cy2 + cy4 - 1k1 + k2y1 + ky36 = -
 
6y1 + y3

 y 
#

1 = y2

y1 = x1,  y2 = x 
#

1,  y3 = x2,  y4 = x 
#

2

0 5
*3

*2

*1

0

2

1

3

10 15 20

t (Solid line: x2(t); Dotted line: xd2(t))

25 30 35 40 45 50

0 5
*3

*2

*1

0

2

1

3

10 15 20

t (Solid line: x1(t); Dotted line: xd1(t))

x
1
(t

) 
a
n

d
 x
d

1
(t

)
x
2
(t

) 
a
n

d
 x
d

2
(t

)

25 30 35 40 45 50

with initial conditions The MATLAB program to solve Eqs. (E.1) to (E.4)

is given below.

% Ex11_10.m

tspan = [0: 0.05: 50];

y0 = [0; 0; 0; 0];

[t,y] = ode23 ('dfunc11_10', tspan, y0);

yi102 = 0, i = 1, 2, 3, 4.
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subplot (211);
plot (t,y(:,1));
xlabel ('t ( Solid line: x1 (t) Dotted line: xd1 (t) ) ');
ylabel ('x1 (t) amd xd1 (t)');
hold on;
plot (t,y(:, 2), '--');
subplot (212);
plot (t,y(:, 3));
xlabel ('t ( Solid line: x2 (t) Dotted line: xd2 (t) )');
ylabel ('x2 (t) amd xd2 (t) ');
hold on;
plot (t,y (:,4), '--');
%dfunc11_10.m
function f = dfunc11_10 (t,y)
m1 = 1;
m2 = 2;
k1 = 4;
k2 = 6;
k = 2;
c = 0;
F1 = 0;
F2 = 10;
f = zeros (4,1);
f(1) = y(2);
f(2) = ( F1 2 c*y(2) + c*y(4) * (k1+k) *y(1) + k*y(3) )/m1;
f(3) = y(4);
f(4) = ( F2 + c*y(2) * c*y(4) + k*y(1) * (k + k2) *y(3) )/m2;

*

EXAMPLE 11.11
Program to Implement Fourth-Order Runge-Kutta Method

Develop a general MATLAB program called Program14.m for solving a set of first-order differen-

tial equations using the fourth-order Runge-Kutta method. Use the program to solve Example 11.2.

Solution: Program14.m is developed to accept the following input data:

of first-order differential equations

values a vector of size n

incrementdt = time

xi102,xx = initial

n = number

10
*0.8

*0.6

*0.2

*0.4

0

X 0.2

0.4

0.6

0.8

1

2 3 4

Time

x(1)

x(2)

5 6 7
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EXAMPLE 11.12
Program for Central Difference Method

Using the central difference method, develop a general MATLAB program called Program15.m to

find the dynamic response of a multidegree-of-freedom system. Use the program to find the solution

of Example 11.3.

Solution: Program15.m is developed to accept the following input data:

of freedom of the system

matrix, of size n * nm = mass

n = degree

The program requires a subprogram to define the functions The program

gives the values of at different values of time t.

I Time(I) x(1) x(2)

1 1.570800e*001 1.186315e*002 1.479138e*001

2 3.141600e*001 4.540642e*002 2.755911e*001

3 4.712400e*001 9.725706e*002 3.806748e*001

4 6.283200e*001 1.637262e*001 4.615022e*001

5 7.854000e*001 2.409198e*001 5.171225e*001

.

.

.

36 5.654880e+000 *2.868460e*001 5.040887e*001

37 5.811960e+000 *1.969950e*001 6.388500e*001

38 5.969040e+000 *8.655813e*002 7.657373e*001

39 6.126120e+000 4.301693e*002 8.821039e*001

40 6.283200e+000 1.898865e*001 9.855658e*001

*

xi1t2, i = 1, 2, Á , n

fi1x
!
, t2, i = 1, 2, Á , n.

*10

x
(1
)

xdd(1)

x(1)

xd(1)

0 1 2 3 4 5 6

*5

0

5

10

*5

x
(2
)

Time

xdd(2)

xd(2)

x(2)

0 1 2 3 4 5 6

0

5
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EXAMPLE 11.13
Program for Houbolt Method

Using the Houbolt method, develop a general MATLAB program called Program16.m to find the

dynamic response of a multidegree-of-freedom system. Use the program to find the solution of

Example 11.6.

Solution: Program16.m is developed to accept the following input data:

delt = increment between time steps

nstep (nstp) = number of time steps at which solution is to be found

xdi = initial values of x
#

i, a vector of size n

xi = initial values of xi, a vector of size n

k = stiffness matrix, of size n * n

c = damping matrix, of size n * n

m = mass matrix, of size n * n

n = degree of freedom of the system

matrix, of size 

matrix, of size 

values of a vector of size n

values of a vector of size n

of time steps at which solution is to be found

between time steps

The program requires a subprogram to define the forcing functions at any time

t. It gives the values of the response at different time steps i as and 

Solution by central difference method

Given data:

n= 2 nstp= 24 delt=2.421627e*001

Solution:

step time x(i,1) xd(i,1) xdd(i,1) x(i,2) xd(i,2) xdd(i,2)

1 0.0000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 5.0000e+000

2 0.2422 0.0000e+000 0.0000e+000 0.0000e+000 1.4661e*001 0.0000e+000 5.0000e+000

3 0.4843 1.7195e*002 3.5503e*002 2.9321e*001 5.5204e*001 1.1398e+000 4.4136e+000

4 0.7265 9.3086e*002 1.9220e*001 1.0009e+000 1.1222e+000 2.0143e+000 2.8090e+000

5 0.9687 2.6784e*001 5.1752e*001 1.6859e+000 1.7278e+000 2.4276e+000 6.0429e*001

.

.

.

21 4.8433 1.6034e+000 1.7764e+000 *4.0959e+000 2.2077e+000 1.6763e+000 *1.0350e+000

22 5.0854 1.6083e+000 6.5025e*001 *5.2053e+000 2.4526e+000 1.2813e+000 *2.2272e+000

23 5.3276 1.3349e+000 *5.5447e*001 *4.7444e+000 2.5098e+000 6.2384e*001 *3.2023e+000

24 5.5697 8.8618e*001 *1.4909e+000 *2.9897e+000 2.3498e+000 *2.1242e*001 *3.7043e+000

25 5.8119 4.0126e*001 *1.9277e+000 *6.1759e*001 1.9837e+000 *1.0863e+000 *3.5128e+000

*

 j = 1, 2, Á , n.

x
$

j1i2,xj1i2, x 
#

j1i2,

fi1t2, i = 1, 2, Á , n

delt = increment

nstep (nstp) = number

x
# i,xdi = initial

xi,xi = initial

n * nk = stiffness

n * nc = damping
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The program requires a subprogram to define the forcing functions at any time

t. It gives the values of the response at different time stations i as and 

Solution by Houbolt method

Given data:

n= 2 nstp= 24 delt=2.421627e*001

Solution:

step time x(i,1) xd(i,1) xdd(i,1) x(i,2) xd(i,2) xdd(i,2)

1 0.0000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 5.0000e+000

2 0.2422 0.0000e+000 0.0000e+000 0.0000e+000 1.4661e*001 0.0000e+000 5.0000e+000

3 0.4843 1.7195e*002 3.5503e*002 2.9321e*001 5.5204e*001 1.1398e+000 4.4136e+000

4 0.7265 9.1732e*002 4.8146e*001 1.6624e+000 1.1064e+000 2.4455e+000 6.6609e*001

5 0.9687 2.5010e*001 8.6351e*001 1.8812e+000 1.6909e+000 2.3121e+000 *1.5134e+000

.

.

.

21 4.8433 8.7373e*001 1.7900e+000 *1.7158e+000 1.7633e+000 1.3850e+000 *1.1795e+000

22 5.0854 1.2428e+000 1.1873e+000 *3.3403e+000 2.0584e+000 1.0125e+000 *1.9907e+000

23 5.3276 1.4412e+000 3.6619e*001 *4.1553e+000 2.2460e+000 4.9549e*001 *2.5428e+000

24 5.5697 1.4363e+000 *4.8458e*001 *4.0200e+000 2.2990e+000 *9.6748e*002 *2.7595e+000

25 5.8119 1.2410e+000 *1.1822e+000 *3.0289e+000 2.2085e+000 *6.8133e*001 *2.5932e+000

j = 1, 2, Á , n.

x
$

j1i2,x 
#

j1i2,xj1i2,

fi1t2, i = 1, 2, Á , n

*5

x
(1
)

xdd(1)

x(1)

xd(1)

0 1 2 3 4 5 6

0

5

*5

x
(2
)

Time

xdd(2)

xd(2)

x(2)

0 1 2 3 4 5 6

0

5

*
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CHAPTER SUMMARY

Numerical methods are to be used in situations where the differential equations governing free and

forced vibration cannot be solved to find closed-form solutions. We presented the finite difference

method for the solution of the governing equations of discrete and continuous systems. We outlined

the use of the fourth-order Runge-Kutta, Houbolt, Wilson, and Newmark methods for the solution of

vibration problems related to multidegree-of-freedom systems. Finally, we presented the use of

MATLAB for the numerical solution of vibration problems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.
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REVIEW QUESTIONS

11.1 Give brief answers to the following:

1. Describe the procedure of the finite difference method.

2. Using Taylor s series expansion, derive the central difference formulas for the first and

the second derivatives of a function,

3. What is a conditionally stable method?

4. What is the main difference between the central difference method and the Runge-Kutta

method?

5. Why is it necessary to introduce fictitious mesh points in the finite difference method of

solution?

6. Define a tridiagonal matrix.

7. What is the basic assumption of the Wilson method?

8. What is a linear acceleration method?

9. What is the difference between explicit and implicit integration methods?

10. Can we use the numerical integration methods discussed in this chapter to solve nonlin-

ear vibration problems?

11.2 Indicate whether each of the following statements is true or false:

1. The grid points in the finite difference methods are required to be uniformly spaced.

2. The Runge-Kutta method is stable.

3. The Runge-Kutta method is self-starting.

4. The finite difference method is an implicit integration method.

5. The Newmark method is an implicit integration method.
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6. For a beam with grid points the central difference equivalence of the

condition is 

7. For a beam with grid points the central difference approximation of a

simply supported end condition at grid point 1 is given by 

8. For a beam with grid points the central difference approximation of

yields 

11.3 Fill in each of the following blanks with the appropriate word:

1. Numerical methods are to be used when the equations of motion cannot be solved in

_____ form.

2. In finite difference methods, approximations are used for _____.

3. Finite difference equations can be derived using _____ different approaches.

4. In finite difference methods, the solution domain is to be replaced by _____ points.

5. The finite difference approximations are based on _____ series expansion.

6. Numerical methods that require the use of a time step smaller than a critical value

are said to be _____ stable.

7. In a conditionally stable method, the use of larger than makes the method _____.

8. A _____ formula permits the computation of from known values of 

11.4 Select the most appropriate answer out of the choices given:

1. The central difference approximation of at is given by

a.

b.

c.

2. The central difference approximation of at is given by

a.

b.

c.

3. An integration method in which the computation of is based on the equilibrium

equation at is known as

a. explicit method

b. implicit method

c. regular method

4. In a non self-starting method, we need to generate the value of the following quantity

using the finite difference approximations of and 

a. b. c.

5. Runge-Kutta methods find the approximate solutions of

a. algebraic equations b. differential equations c. matrix equations

x-1x
$
-1x 

#
-1

x
$

i:x 
#
i

ti

xi+1

1

h2
 1xi - xi-12

1

h2
 1xi+1 - xi-12

1

h2
 1xi+1 - 2xi + xi-12

tid2x/dt2

1

2h
 1xi+1 - xi-12

1

2h
 1xi - xi-12

1

2h
 1xi+1 - xi2

tidx/dt

xi-1.xi

¢tcri¢t
1¢tcri2

1¢t2

W2 - 2W1 + W-1 = 0.
d2W

dx2
`
1
= 0

-1, 1, 2, 3, Á ,
W-1 = W2.

-1, 1, 2, 3, Á ,

W-1 = W2.
dW

dx
`
1
= 0

-1, 1, 2, 3, Á ,
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PROBLEMS

Section 11.2 Finite Difference Approach

11.1 The forward difference formulas make use of the values of the function to the right of the

base grid point. Thus the first derivative at point is defined as

Derive the forward difference formulas for and at ti.1d4x2/1dt421d2x2/1dt22, 1d3x2/1dt32,

dx

dt
=

x1t + ¢t2 - x1t2

¢t
=

xi+1 - xi

¢t

i1t = ti2

6. The finite difference approximation of at is given by

a.

b.

c.

7. The finite difference method requires the use of finite difference approximations in

a. governing differential equation only

b. boundary conditions only

c. governing differential equation as well as boundary conditions

8. If a bar under longitudinal vibration is fixed at node 1, the forward difference formula

gives

a. b. c.

9. If a bar under longitudinal vibration is free at node 1, the forward difference formula

gives

a. b. c.

10. The central difference approximation of at grid point i with step

size h is

a.

b.

c.

11.5 Match the items in the two columns below:

1. Houbolt method

2. Wilson method

3. Newmark method

4. Runge-Kutta method

5. Finite difference method

6. Linear acceleration method

Wi+3 - 4Wi+1 + 16 - h4b42Wi - 4Wi-1 + Wi-3 = 0

Wi+2 - 6Wi+1 + 16 - h4b42Wi - 6Wi-1 + Wi-2 = 0

Wi+2 - 4Wi+1 + 16 - h4b42Wi - 4Wi-1 + Wi-2 = 0

d4W/dx4
- b4W = 0

U1 = U-1U1 = U2U1 = 0

U1 = U-1U1 = U2U1 = 0

Ui+1 - 12 - a22Ui + Ui-1 = 0

Ui+1 - 2Ui + Ui+1 = 0

Ui+1 - 12 - h2a22Ui + Ui-1 = 0

xid2U/dx2
+ a2U = 0

a. Assumes that acceleration varies linearly between 

and 

b. Assumes that acceleration varies linearly between 

and can lead to negative damping

c. Based on the solution of equivalent system of 

first-order equations

d. Same as Wilson method with 

e. Uses finite difference expressions for and 

in terms of and 

f. Conditionally stable

xi+1xi-2, xi-1, xi,

x
$

i+1x 
#
i+1

u = 1

ti+1;
ti

ti + u ¢t; u Ú 1ti
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F(t)

200

0 0.2 0.6
t

FIGURE 11.10

11.2 The backward difference formulas make use of the values of the function to the left of the

base grid point. Accordingly, the first derivative at point is defined as

Derive the backward difference formulas for and at 

11.3 Derive the formula for the fourth derivative, according to the central differ-

ence method.

Section 11.3 Central Difference Method for Single-Degree-Of-Freedom Systems

11.4 Find the free vibratory response of an undamped single-degree-of-freedom system with

and using the central difference method. Assume and Com-

pare the results obtained with and with the exact solution 

11.5 Integrate the differential equation

using the backward difference formula with Assume the initial conditions as

and 

11.6 Find the free-vibration response of a viscously damped single-degree-of-freedom system

with using the central difference method. Assume that 

and 

11.7 Solve Problem 11.6 by changing c to 2.

11.8 Solve Problem 11.6 by taking the value of c as 4.

11.9 Find the solution of the equation where F(t) is as shown in

Fig. 11.10 for the duration Assume that and ¢t = 0.05.x0 = x 
#
0 = 00 t 1.

4x
$
+ 2x 

#
+ 3000x = F1t2,

¢t = 0.5.
x0 = 0, x 

#
0 = 1,m = k = c = 1,

x 
#
0 = 0.x0 = 1

¢t = 1.

-  
d2x

dt2
+ 0.1x = 0 for 0 t 10

x1t2 = sin t.¢t = 0.5¢t = 1
x 
#
0 = 1.x0 = 0k = 1,m = 1

1d4x2/1dt42,

ti.1d4x2/1dt421d2x2/1dt22, 1d3x2/1dt32,

dx

dt
=

x1t2 - x1t - ¢t2

¢t
=

xi - xi-1

¢t

i1t = ti2

11.10 Find the solution of a spring-mass-damper system governed by the equation

t with and Assume the initial val-

ues of x and to be zero and Compare the central difference solution with the

exact solution given in Example 4.9.

¢t = 0.5.x 
#

dF = 1.m = c = k = 1mx
$
+ cx 

#
+ kx = F1t2 = dF.
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Section 11.4 Runge-Kutta Method for Single-Degree-Of-Freedom Systems

11.11 Express the following nth-order differential equation as a system of n first-order differential

equations:

11.12 Find the solution of the following equations by using the fourth-order Runge-Kutta method

with 

(a)

(b)

11.13 The second-order Runge-Kutta formula is given by

where

Using this formula, solve the problem considered in Example 11.2.

11.14 The third-order Runge-Kutta formula is given by

where

and

Using this formula, solve the problem considered in Example 11.2.

11.15 Using the second-order Runge-Kutta method, solve the differential equation 

with the initial conditions and Use 

11.16 Using the third-order Runge-Kutta method, solve Problem 11.15.

11.17 Using the fourth-order Runge-Kutta method, solve Problem 11.15.

Section 11.5 Central Difference Method for Multidegree-Of-Freedom Systems

11.18 Using the central difference method, find the response of the two-degree-of-freedom system

shown in Fig. 11.2 when 

11.19 Using the central difference method, find the response of the system shown in Fig. 11.2

when and F21t2 = 0.F11t2 = 10 sin 5t

c = 2, F11t2 = 0, F21t2 = 10.

¢t = 0.01.x 
#
0 = 0.x0 = 5

x
$
+ 1000x = 0

K
:

3 = h F
:

1X
:

i - K
:

1 + 2K
:

2, ti + h2

 K
:

2 = hF
:

1X
:

i +
1
2 K
:

1,  ti +
1
2 h2

 K
:

1 = hF
:

1X
:

i, ti2

X
:

i+1 = X
:

i +
1
6 1K
:

1 + 4K
:

2 + K
:

32

K
:

1 = hF
:

1X
:

i, ti2 and K
:

2 = hF
:

1X
:

i + K
:

1, ti + h2

X
:

i+1 = X
:

i +
1
2 1K
:

1 + K
:

22

x 
#
= - tx2; x0 = 1.

x 
#
= x - 1.5e-0.5t; x0 = 1

¢t = 0.1:

an 

dnx

dtn + an-1 

dn-1x

dtn-1
+ Á + a1 

dx

dt
= g1x, t2
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11.20 The equations of motion of a two-degree-of-freedom system are given by

and Assuming the initial conditions as

find the response of the system, using the central

difference method with 

Section 11.6 Central Difference Method for Continuous Systems

11.21 The ends of a beam are elastically restrained by linear and torsional springs, as shown in

Fig. 11.11. Using the finite difference method, express the boundary conditions.

¢t = 0.25.

x1102 = x 
#
1102 = x2102 = x 

#
2102 = 0,

x
$

2 - 2x1 + 4x2 = 20 sin 5t.2x
$

1 + 6x1 - 2x2 = 5

W(x)

kt1

x * 0 x * l

k1

hh h h hh h h
kt2

Deflected center line
of the beam

k2

x

FIGURE 11.11

11.22 Using the fourth-order Runge-Kutta method, solve Problem 11.20.

11.23 Find the natural frequencies of a fixed-fixed bar undergoing longitudinal vibration, using

three mesh points in the range 

11.24 Derive the finite difference equations governing the forced longitudinal vibration of a fixed-free

uniform bar, using a total of n mesh points. Find the natural frequencies of the bar, using 

11.25 Derive the finite difference equations for the forced vibration of a fixed-fixed uniform shaft

under torsion, using a total of n mesh points.

11.26 Find the first three natural frequencies of a uniform fixed-fixed beam.

11.27 Derive the finite difference equations for the forced vibration of a cantilever beam subjected

to a transverse force at the free end.

11.28 Derive the finite difference equations for the forced-vibration analysis of a rectangular mem-

brane, using m and n mesh points in the x and y directions, respectively. Assume the mem-

brane to be fixed along all the edges. Use the central difference formula.

Sections 11.7, 11.11 Runge-Kutta Method for Multidegree-Of-Freedom Systems and

MATLAB Problems

11.29 Using Program14.m (fourth-order Runge-Kutta method), solve Problem 11.18 with 

11.30 Using Program14.m (fourth-order Runge-Kutta method), solve Problem 11.19.

11.31 Using Program15.m (central difference method), solve Problem 11.20.

c = 1.

f1x, t2 = f0 cos vt

n = 4.

0 6 x 6 l.
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Section 11.8, 11.11 Houbolt Method

11.32 Using Program15.m (central difference method), solve Problem 11.18 with 

11.33 Using Program16.m (Houbolt method), solve Problem 11.19.

11.34 Using Program16.m (Houbolt method), solve Problem 11.20.

Section 11.9 Wilson Method

11.35 Using the Wilson method with solve Problem 11.18.

11.36 Using the Wilson method with solve Problem 11.19.

11.37 Using the Wilson method with solve Problem 11.20.

Section 11.10 Newmark Method

11.38 Using the Newmark method with and solve Problem 11.18.

11.39 Using the Newmark method with and solve Problem 11.19.

11.40 Using the Newmark method with and solve Problem 11.20.

Section 11.11 MATLAB Problems

11.41 Using MATLAB function ode23, solve the differential equation 

with 

11.42 The equations of motion of a two-degree-of-freedom system are given by

where denotes a rectangular pulse of magnitude 5 acting over Find the

solution of the equations using MATLAB.

11.43 Find the response of a simple pendulum numerically by solving the linearized equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

11.44 Find the response of a simple pendulum numerically by solving the exact equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

u
# 1t = 02 = u

#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u
$

+

g

l
 sin u = 0

u
# 1t = 02 = u

#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u
$

+

g

l
 u = 0

0 t 2.F11t2

c2 0

0 4
d e x

$

1

x
$

2

f + 5 c 2 -1

-1 3
d e x1

x2

f = eF11t2
0

f

x102 = x 
#102 = 0.

5x
$

+ 4x 
#
+ 3x = 6 sin t

b =
1
2 ,a =

1
6

b =
1
2 ,a =

1
6

b =
1
2 ,a =

1
6

u = 1.4,

u = 1.4,

u = 1.4,

c = 1.



11.45 Find the response of a simple pendulum numerically by solving the nonlinear equation:

with and plot the response, for Assume the initial conditions as

and Use the MATLAB function ode23

for numerical solution.

11.46 Write a subroutine WILSON for implementing the Wilson method. Use this program to find

the solution of Example 11.7.

11.47 Write a subroutine NUMARK for implementing the Newmark method. Use this subroutine to

find the solution of Example 11.8.

u

#

1t = 02 = u

#

0 = 1.5 rad/s.u1t = 02 = u0 = 1 rad

0 t 150.u1t2,
g

l
= 0.01

u

$

+

g

l
 +u -

u
3

6
* = 0
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