SET THEORY

NOTATION
- \{ \} braces indicate the beginning and end of a set notation; when listed, elements or members must be separated by commas. EX: A = \{4, 8, 16\}, sets are finite (ending, or having a last element) unless otherwise indicated.
- \emptyset indicates continuation of a pattern. EX: B = \{5, 10, 15, \ldots\}
- \ldots at the end indicates an infinite set, that is, a set with no last element.
EX: C = \{3, 6, 9, 12, \ldots\}
- |S| is a symbol which literally means “such that.”
- ∈ means “is a member of” OR “is an element of.” EX: If A = \{4, 8, 12\} then 12 ∈ A because 12 is in set A.
- /∈ means “is not a member of” OR “is not an element of.” EX: If B = \{2, 4, 6, 8\} then 3 /∈ B because 3 is not in set B.
- ∅ means empty set OR null set; a set containing no elements or members, but which is a subset of all sets; also written as \{\}.
- C means “is a subset of;” also may be written as ⊆.
- /∋ means “is not a subset of;” also may be written as ∉.
- A \cap B indicates the intersection of set A and set B; every element of this set is either an element of set A or an element of set B; that is, to form the union of two sets, put all of the elements of both sets together into one set making sure not to write any element more than once. EX: If A = \{2, 4\} and B = \{4, 8, 16\} then A \cup B = \{2, 4, 8, 16\}.
- \phi means intersection.
- A \cap B indicates the intersection of set A with set B; every element of this set is also an element of BOTH set A and set B; that is, to form the intersection of two sets, list only those elements which are found in BOTH of the two sets. EX: If A = \{2, 4\} and B = \{4, 8, 16\} then A \cap B = \{4\}.
- \emptyset includes the complement of set A; that is, all elements in the universal set which are NOT in set A. EX: If the universal set is the set of Integers and A = \{0, 1, 2, 3, \ldots\} then \emptyset = \{\ldots -2, -3, -4, \ldots\}. A \cup \emptyset = A.

PROPERTIES
- A \cup B means all of the elements in set A are also in set B and all elements in set B are also in set A, although they do not have to be in the same order. EX: If A = \{5, 10\} and B = \{10, 5\} then A \cup B = \{10, 5\}.
- n(A) indicates the number of elements in set A. EX: If A = \{2, 4, 6\} then n(A) = 3.
- “is equivalent to”; that is, set A and set B have the same number of elements although the elements themselves may or may not be the same. EX: If A = \{2, 4, 6\} and B = \{6, 12, 18\} then A \neq B because n(A) = 3 and n(B) = 3.
- A \cap B = \emptyset indicates disjoint sets which have no elements in common.

SETS OF NUMBERS
- Natural or Counting numbers = \{1, 2, 3, 4, 5, \ldots, 11, 12, \ldots\}
- Whole numbers = \{0, 1, 2, 3, \ldots, 10, 11, 12, 13, \ldots\}
- Integers = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}
- Rational numbers = \{p/q | p and q are integers, q \neq 0\}; the sets of Natural numbers, Whole numbers, and Integers, as well as numbers which can be written as proper or improper fractions, are all subsets of the set of Rational numbers.
- Irrational numbers = \{x | x is a Real number but is not a Rational number\}; the sets of Rational numbers and Irrational numbers have no elements in common and are therefore disjoint sets.
- Real numbers = \{x | x is the coordinate of a point on a number line\}; the union of the set of Rational numbers with the set of Irrational numbers equals the set of Real Numbers.
- Imaginary numbers = \{ai | a is a Real number and i is the number whose square is -1\}; i^2 = -1; the sets of Real numbers and Imaginary numbers have no elements in common and are therefore disjoint sets.
- Complex numbers = \{a + bi | a and b are Real numbers and i is the number whose square is -1\}; the set of Real numbers and the set of Imaginary numbers are both subsets of the set of Complex numbers. EXs: 4 + 7i; 3 - 2i

OPERATIONS

OPERATIONS OF REAL NUMBERS

FOR ANY REAL NUMBERS a, b, and a free variable.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>FOR ADDITION</th>
<th>FOR MULTIPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure</td>
<td>a + b = b + a</td>
<td>ab = ba</td>
</tr>
<tr>
<td>Commutative</td>
<td>a + b = b + a</td>
<td>ab = ba</td>
</tr>
<tr>
<td>Associative</td>
<td>a + (b + c) = (a + b) + c</td>
<td>(ab)c = a(bc)</td>
</tr>
<tr>
<td>Identity</td>
<td>a + 0 = a and a \cdot 0 = a</td>
<td>a + 1 = a and 1 \cdot a = a</td>
</tr>
<tr>
<td>Inverse</td>
<td>a + (-a) = 0 and</td>
<td>a \cdot \frac{1}{a} = 1</td>
</tr>
</tbody>
</table>

Distributive Property: a(b + c) = ab + ac; (a - b) = ab - ac

PROPERTIES OF EQUALITY FOR ANY REAL NUMBERS a, b, and c

Reflexive: a = a
Symmetric: If a = b then b = a
Transitive: If a = b and b = c then a = c

Addition Property: If a = b then a + c = b + c
Multiplication Property: If a = b then ac = bc
Multiplication Property of Zero: a \cdot 0 = 0 and 0 \cdot a = 0
Double Negative Property: (-a) = a

PROPERTIES OF INEQUALITY FOR ANY REAL NUMBERS a, b, and c

Trichotomy: Either a > b, or a = b, or a < b
Transitive: If a < b, and b < c then a < c

Addition Property of Inequalities: If a < b then a + c < b + c
Multiplication Property of Inequalities: If a < b then ac < bc; also, if a < b then ac < bc

Operations of Real Numbers

ABSOLUTE VALUE
|x| = x if x is zero or a positive number; |x| = -x if x is a negative number; that is, the distance (which is always positive) of a number from zero on the number line is the absolute value of that number. EXs: |-4| = -(-4) = 4; |29| = 29; |0| = 0; |-43| = -(-43) = 43

ADDITION
If the signs of the numbers are the same: add the absolute values of the two numbers; the sign of the answer is the same as the signs of the original two numbers. EXs: -11 + (-5) = -16 and 16 + 10 = 26
If the signs of the numbers are different: subtract the absolute values of the numbers; the answer has the same sign as the number with the larger absolute value. EXs: -16 + 4 = -12 and 3 + 10 = 17

SUBTRACTION
a - b = a + (-b); subtraction is changed to addition of the opposite number: that is, change the sign of the second number and follow the rules of addition (never change the sign of the first number since it is the number in back of the subtraction sign which is being subtracted): 14 - 6 = 14 + (-6)
EXs: 15 - 42 = 15 + (-42) = -27; -24 + 5 = 5 + (-24) = -19; -13 - (-45) = -13 + (+45) = 32; -62 - (-20) = -62 + 20 = -42

MULTIPLICATION
The product of two numbers which have the same signs is positive; EXs: (55)(3) = 165; (-30)(-4) = 120; (-5)(-12) = 60
The product of two numbers which have different signs is negative no matter which number is larger. EXs: (-9)(-70) = 210; (-21)(-40) = 840; (50)(-3) = -150

DIVISION
The quotient of two numbers which have the same sign is positive. EXs: (-14) / (-7) = 2; (44) / (11) = 4; (-4) / (-8) = 0.5
The quotient of two numbers which have different signs is negative no matter which number is larger. EXs: (-24) / (6) = -4; (40) / (-8) = 5; (-14) / (56) = -0.25

DOUBLE NEGATIVE
- (-a) = a; that is, the negative sign changes the sign of the contents of the parentheses. EXs: -(-4) = 4; -(-17) = 17
ALGEBRAIC TERMS

COMBINING LIKE TERMS

ADDING OR SUBTRACTING

\[a + a = 2a; \text{ when adding or subtracting terms, they must have exactly the same variables and exponents, although not necessarily in the same order; these are called like terms. The coefficients (numbers in the front) may or may not be the same.} \]

- **RULE:** combine (add or subtract) only the coefficients of like terms and never change the exponents during addition or subtraction. Ex: \(4x^3y^2 - 7x^3y^2 = -3x^3y^2. \) Notice only the coefficients were combined and no exponent changed. \(-15ab^2c^3 + 3ab^2c^3 \) are not like terms because the exponents of the \(a \) are not the same in both terms, so they may not be combined.

MULTIPLYING PRODUCT RULE FOR EXPONENTS

\((a^m)(a^n) = a^{m+n}; \) any terms may be multiplied, not just like terms. The coefficients and the variables are multiplied which means the exponents also change.

- **RULE:** multiply the coefficients and multiply the variables (this means you have to add the exponents of the same variable).

DISTRIBUTIVE PROPERTY FOR POLYNOMIALS

- **Type 1:** \(a(c + d) = ac + ad \).
- **Type 2:** \((a + b)(c + d) = ac + ad + bc + bd\).

FOIL METHOD FOR PRODUCTS OF BINOMIALS

This is a popular method for multiplying 2 terms by 2 terms only. **FOIL** means first times first, outer times outer, inner times inner, and last times last. Ex: \((2x + 3)(x + 5) \) would be multiplied by first multiplying first times first, \(2x \) times \(x \) equals \(2x^2 \); outer times outer term, \(2x \) times \(5 \) equals \(10x \); inner times inner term, \(3 \) times \(x \) equals \(3x \); and last term times last term, \(3 \) times \(5 \) equals \(15x \); then combining like terms of \(10x \) and \(3x \) gives \(13x \) with the final answer equaling \(2x^2 + 13x + 15x^2 \).

SPECIAL PRODUCTS

- **Type 1:** \((a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2 \).
- **Type 2:** \((a - b)^2 = (a - b)(a - b) = a^2 - 2ab + b^2 \).
- **Type 3:** \((a + b)(a - b) = a^2 - 0ab - b^2 = a^2 - b^2 \).

EXPONENT RULES

- **RULE 1:** \((a^m)^n = a^{mn} \); \((a^m)^n \) means the parentheses contents are multiplied \(n \) times and when you multiply you add exponents; Ex: \((2m^2)^3 = (2m^2)(2m^2) = 2m^2n^3 \), notice the exponents were multiplied 3 times and then the rules of regular multiplying of terms were applied.

- **SHORTCUT RULE:** when raising a term to a power, just multiply the exponents; Ex: \((2m^2)^3 = 2m^3n^2 \), notice the exponents of the -2, m and n were all multiplied by the exponent 3, and that the answer was the same as the example above. CAUTION: \(a^{mn} \neq (a^m)^n \); these two expressions are different. Exs: \(-4y^3 \neq (4y)^3 \) because \((-4y)^3 = (4y)^3 \), \(16y^3 \), while \(-4y^2 \) means \(-4 \cdot y \cdot y \cdot y \) and the exponent 2 applies only to the \(y \) in this situation.

- **RULE 2:** \((ab)^n = a^n b^n \). Ex: \((6x^3 y^2)^3 = (6x^3)^3 y^2 \), BUT \((6x^3 + y^2)^3 = (6x^3 + y^2)^3 \) \(= 6x^3 + y^2 \), because there is more than one term in the parentheses the distributive property for polynomials must be used in this situation.

- **RULE 3:** \(\frac{a^m}{a^n} = a^{m-n} \) when \(a \neq 0 \); Ex: \(\frac{4x^2y^3}{8x} = \frac{16x^2y^3}{25x} \)

- **RULE 4:** Zero Power Rule \(a^0 = 1 \) when \(a \neq 0 \)

DIVIDING

- **QUOTIENT RULE:** \(a^{-n} = \frac{1}{an} \); any terms may be divided, not just like terms; the coefficients and the variables are divided which means the exponents also change.

RULE: Divide coefficients and divide variables (this means you have to subtract the exponents of matching variables). Ex: \(-20x^3y^2z^3 \div (5zx^2) = -4x \cdot y^2 \cdot z \), notice that \(-20 \) divided by \(5 \) became \(-4 \), \(x \) divided by \(x \) became \(x \), and \(z \) divided by \(z \) became \(1 \) and therefore did not have to be written because \(1 \) times \(-4x \cdot y^2 \cdot z \) equals \(-4x \cdot y^2 \cdot z \).

- **NEGATIVE EXPONENT:** \(a^{-n} = \frac{1}{an} \text{ when } a \neq 0 \); Exs: \(2^{-1} = \frac{1}{2} \); \(4^{-2} \cdot y^{-3} \div (-3ab)^{-2} = (4y^b)^{-2} \div (3a)^2 \). Notice that the 4 and the -3 both stayed where they were because they both had an invisible exponent of positive 1, the \(y \) remained in the numerator and the \(a \) remained in the denominator because their exponents were both positive numbers; the \(z \) moved down and the \(b \) moved up because their exponents were both negative numbers.

STEPS FOR SOLVING A FIRST DEGREE EQUATION WITH ONE VARIABLE

- **FIRST,** eliminate any fractions by using the Multiplication Property of Equality. Ex: \(\frac{1}{2} (3a - 5) = \frac{1}{4} (7a - 5) + 9 \) would be multiplied on both sides of the = sign by the lowest common denominator of \(\frac{1}{2} \) and \(\frac{1}{4} \), which is 6; the result would be \(3(3a - 5) = 6(3a - 5) + 54 \); notice only the \(\frac{1}{2} \), the \(\frac{1}{4} \), and the 9 were multiplied by 6 and not the contents of the parentheses; the parentheses will be handled in the next step which is distribution.

- **SECOND,** simplify the left side of the equation as much as possible by using the Order of Operations, the Distributive Property, and Combining Like Terms. Do the same to the right side of the equation. Ex: Use distribution first, \(3(2k - 5) + 6k - 2 = 5 - 2(k + 3) \) would become \(6k - 15 + 6k - 2 = 5 - 2k - 6 \) and then combine like terms to get \(12k - 17 = 12 - 1k \).

- **THIRD,** apply the Addition Property of Equality to simplify and organize all terms containing the variable on one side of the equation and all terms which do not contain the variable on the other side. Ex: \(12k - 17 = 1 - 2k \) would become \(2k + 12k - 17 + 17 = 1 - 2k + 2k + 12 \) and then combining like terms, \(14k = 16 \).

- **FOURTH,** apply the Multiplication Property of Equality to make the coefficient of the variable \(k \) \(14k = 16 \) would be multiplied on both sides by \(\frac{1}{14} \) (or divided by 14) to get \(a \) in front of the \(k \) so the equation would become \(1k = \frac{16}{14} \) or simply \(k = \frac{4}{7} \) or 1.143.

- **FIFTH,** check the answer by substituting it for the variable in the original equation to see if it works.

NOTE:

1. Some equations have exactly one solution (answer). They are conditional equations. Ex: \(2k = 18 \)
2. Some equations work for all real numbers. They are identities. Ex: \(2k = 2k \)
3. Some equations have no solutions. They are inconsistent equations. Ex: \(2k + 3 = 2k + 7 \)

STEPS FOR SOLVING A FIRST DEGREE INEQUALITY WITH ONE VARIABLE

- **ADDITION PROPERTY OF INEQUALITIES**

For all real numbers \(a, b, \) and \(c, \) the inequalities \(a < b \) and \(a + c < b + c \) are equivalent; that is, any terms may be added to both sides of an inequality and the inequality remains a true statement. This also applies to \(a > b \) and \(a + c > b + c \).

- **MULTIPLICATION PROPERTY OF INEQUALITIES**

- **FIRST**, simplify the left side of the inequality in the same manner as an equation, applying the order of operations, the distributive property, and combining like terms. Simplify the right side in the same manner.

- **SECOND**, apply the Addition Property of Inequality to get all terms which have the variable on one side of the inequality symbol and all terms which do not have the variable on the other side of the symbol.

- **THIRD**, apply the Multiplication Property of Inequality to get the coefficient of the variable to be a 1; (remember to reverse the inequality symbol when multiplying or dividing by a negative number, this is NOT done when multiplying or dividing by a positive number).

- **FOURTH**, check the solution by substituting some numerical values of the variable in the original inequality.
ORDER OF OPERATIONS

- FIRST, simplify any enclosure symbols: parentheses (), brackets [], braces { } if present.
 1. Work the enclosure symbols from the innermost and work outward.
 2. Work separately above and below any fraction bars since the entire top of a fraction bar is treated as though it has its own invisible enclosure symbols around it and the entire bottom is treated the same way.
- SECOND, simplify any exponents and roots, working from left to right; Note: The root symbol is used only to indicate the positive root, except that √0 = 0
- THIRD, do any multiplication and division in the order in which they occur, working from left to right; Note: If division comes before multiplication then it is done first, if multiplication comes first then it is done first.
- FOURTH, do any addition and subtraction in the order in which they occur, working from left to right; Note: If subtraction comes before addition in the problem then it is done first, if addition comes first then it is done first.

FACTORIZING

Some algebraic polynomials cannot be factored. The following are methods of handling those which can be factored. When the factoring process is complete the answer can always be checked by multiplying the factors out to see if the original problem is the result. That will happen if the factoring is a correct one.

A polynomial is factored when it is written as a product of polynomials with integer coefficients and all of the factors are prime. The order of the factors does not matter.

FIRST STEP - 'GCF'

Factor out the Greatest Common Factor (GCF), if there is one. The GCF is the largest number which will divide evenly into every coefficient together with the lowest exponent of each variable common to all terms.

EX: 15a^2 + 25a^2 + 10a^2

A has a greatest common factor of 5a^2 because 5 divides evenly into 15, 25, and 10; the lowest degree of a in all three terms is 2; the lowest degree of c is 3; the GCF is 5a^2c^3; the factorization is 5a^2c^3(3a + 5c - 2d).

SECOND STEP - CATEGORIZE AND FACTOR

Identify the problem as belonging in one of the following categories. Be sure to place the terms in the correct order first: highest degree term to the lowest degree term.

TRINOMIALS (3 TERMS)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FORM OF PROBLEM</th>
<th>FORM OF FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRINOMIALS (3 TERMS)</td>
<td>ax^2 + bx + c</td>
<td>If a = 1: (x + h)(x + k) where h = k = c and h + k = -b; h and k may be either positive or negative numbers. If a = 1: (mx + h)(mx - k) where m = n = a, h = k = c, and h + n = m - k = b; m, h, and k may be either positive or negative numbers. Trial and error methods may be needed. (see Special Factoring Hints at right)</td>
</tr>
<tr>
<td>x^2 + 2cx + c^2 (perfect square)</td>
<td>(x + c)(x + c) = (x + c)^2 where c may be either a positive or a negative number</td>
<td></td>
</tr>
</tbody>
</table>

BINOMIALS (2 TERMS)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FORM OF PROBLEM</th>
<th>FORM OF FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINOMIALS (2 TERMS)</td>
<td>a^2x^2 - b^2y^2 (difference of 2 squares)</td>
<td>(ax + by)(ax - by)</td>
</tr>
<tr>
<td>a^2x^2 + b^2y^2 (sum of 2 squares)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^2x^3 + b^3y^3 (sum of 2 cubes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a^3x - b^3 (difference of 2 cubes)</td>
<td>(ax - by)(a^2x + abx + b^2y) (see Special Factoring Hints at right)</td>
<td></td>
</tr>
</tbody>
</table>

PERFECT CUBES (4 TERMS)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FORM OF PROBLEM</th>
<th>FORM OF FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFECT CUBES (4 TERMS)</td>
<td>a^3x^3 + 3a^2bx^2 + 3ab^2x + b^3</td>
<td>(a + b)^3 = (a + b)(a + b)(a + b)</td>
</tr>
<tr>
<td>a^3x^3 - 3a^2bx^2 + 3ab^2x - b^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ax + ay + bx + by (2 - 2 grouping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x^2 + 2cx + c^2 (3 - 1 grouping)</td>
<td>(x + c)^2 - y^2 = (x + c + y)(x + c - y)</td>
<td></td>
</tr>
<tr>
<td>y^2 - x^2 - 2cx - c^2 (1 - 3 grouping)</td>
<td>y^2 - (x + c)^2 = (y - x + c)(y + x - c)</td>
<td></td>
</tr>
</tbody>
</table>

GROUPING

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FORM OF PROBLEM</th>
<th>FORM OF FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUPING</td>
<td>ax + ay + bx + by (2 - 2 grouping)</td>
<td>(a + b)(x + y) + (a + b)(x + y)</td>
</tr>
<tr>
<td>x^2 + 2cx + c^2 (3 - 1 grouping)</td>
<td>(x + c)^2 - y^2 = (x + c + y)(x + c - y)</td>
<td></td>
</tr>
<tr>
<td>y^2 - x^2 - 2cx - c^2 (1 - 3 grouping)</td>
<td>y^2 - (x + c)^2 = (y - x + c)(y + x - c)</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL FACTORING HINTS

TRINOMIALS

WHERE THE COEFFICIENT OF THE HIGHEST DEGREE TERM IS NOT 1

The first term in each set of parentheses must multiply to equal the first term (highest degree). The second term in each set of parentheses must multiply to equal the last term in the problem. The middle term must be checked on a trial and error basis using: outer times outer plus inner times inner; ax^2 + bx + c = (mx + h)(nx + k) where mx times nx equals ax^2, h times k equals c, and mx times k plus h times nx equals bx.

EX: To factor 3x^2 + 7x - 6 all of the following are possible correct factorizations, (3x + 3)(x - 2); (3x + 2)(x - 3); (3x + 6)(x - 1); (3x + 1)(x - 6). However, the only set which results in a 22x for the middle term when applying “outer times outer plus inner times inner” is the last one, (3x + 1)(x - 6). It results in -17x and +17x is needed, so both signs must be changed to get the correct middle term. Therefore, the correct factorization is (3x - 1)(x + 2).

BINOMIALS

THE SUM OR DIFFERENCE OF TWO CUBES

This type of problem, a^3 ± b^3, requires the memorization of the following procedure: The factors are two sets of parentheses with 2 terms in the first set and 3 terms in the second. To find the 2 terms in the first set of parentheses take the cube root of both of the terms in the problem and join them by the same middle sign found in the problem. The 3 terms in the second set of parentheses are generated from the 2 terms in the first set of parentheses. The first term in the second set of parentheses is the square of the first term in the first set of parentheses; the last term in the second set is the square of the last term in the first set; the middle term of the second set of parentheses is found by multiplying the first term and the second term from the first set of parentheses together and changing the sign. Thus,

a^3 ± b^3 = (ax ± by)(ax^2 ± abx + b^2y).

PERFECT CUBES

Perfect cubes, such as a^3 ± 3ab^2x + 3ab^2x ± b^3, factor into three sets of parentheses, each containing exactly the same two terms; therefore, the final factorization is written as one set of parentheses to the third power, thus a perfect cube, (ax ± b)^3 = a^3x^3 ± 3a^2bx^2 ± 3ab^2x ± b^3.

EX: To factor 27x^3 - 54x^2 + 36x - 8 it must be first observed that the problem is in correct order and that it is a perfect cube; then the answer is simply the cube roots of the first term and the last term placed in a set of parentheses to the third power, so the answer to this example is (3x - 2)^3.

NOTICE TO STUDENT

This chart is the first of 2 charts outlining the major topics taught in Algebra courses. Keep it handy as a quick reference source in the classroom, while doing homework, and use it as a memory refresher when reviewing prior to exams. It is a durable and inexpensive study tool that can be repeatedly referred to during and well beyond your college years. Due to its condensed format, however, use it as an Algebra guide and not as a replacement for assigned course work.

©2002 BarCharts, Inc. Boca Raton, FL.
RATIONAL EXPRESSIONS

DEFINITION
The quotient of two polynomials where denominator cannot equal zero is a rational expression.

EX: \(\frac{x+4}{x-3} \) where \(x \neq 3 \), since 3 would make the denominator, \(x - 3 \), equal to zero.

DOMAIN: set of all Real numbers which can be used to replace a variable. EX: The domain for the rational expression; \(\frac{(x+5)(x-2)}{(x+1)(4-x)} \)

1. That is, \(x \) can be any Real number except -1 or 4 because -1 makes \((x+1)\) equal to zero and 4 makes \((4-x) \) equal to zero; therefore, the denominator would equal zero, which it must not.
2. Notice that numbers which make numerator equal to zero, -5 and 2, are members of the domain since fractions may have zero in numerator but not in denominator.

RULE 1:
1. If \(x/y \) is a rational expression then \(x/y = xa/ya \) when \(a \neq 0 \).
 a. That is, you may multiply a rational expression (or fraction) by any non-zero value as long as you multiply both numerator and denominator by the same value.
 i. Equivalent to multiplying by 1 since \(a/a = 1 \).
 ii. Note: 1 is equal to any fraction which has the same numerator and denominator.

RULE 2:
1. If \(xa/ya \) is a rational expression, \(xa = x \) when \(a \neq 0 \).
 a. That is, you may write a rational expression in lowest terms because \(xa/ya \) since \(a = 1 \)

LOWEST TERMS:
1. Rational expressions are in lowest terms when they have no common factors other than 1.
2. **STEP 1:** Completely factor both numerator & denominator.
3. **STEP 2:** Divide both the numerator and the denominator by the greatest common factor or by the common factors until no common factors remain.

OPERATIONS

ADDITION (DENOMINATORS MUST BE THE SAME)

RULE 1:
1. If \(a/b \) and \(c/b \) are rational expressions and \(b \neq 0 \), then \(a/c = (a + c) \).
 a. If denominators are already the same simply add numerators and write this sum over common denominator.

RULE 2:
1. If \(a/b \) and \(c/d \) are rational expressions and \(b \neq 0 \) and \(d \neq 0 \), then:
 \[\frac{a}{b} + \frac{c}{d} = \frac{(ad + cb)}{(bd)} \]
 a. If denominators are not the same they must be made the same before numerators can be added.

ADDITION STEPS
1. If the denominators are the same, then:
 a. Add the numerators.
 b. Write answer over common denominator.
 c. Write final answer in lowest terms, making sure to follow directions for finding lowest terms as indicated above.

SUBTRACTION (DENOMINATORS MUST BE THE SAME)

RULE 1:
1. If \(a/b \) and \(c/b \) are rational expressions and \(b \neq 0 \), then:
 \[\frac{a}{b} - \frac{c}{b} = \frac{a - c}{b} \]
 a. If denominators are the same be sure to change all signs of the terms in numerator of rational expression which is being subtracted (to the right of subtraction sign); then add numerators and write result over common denominator.

RULE 2:
1. If \(a/b \) and \(c/d \) are rational expressions and \(b \neq 0 \) and \(d \neq 0 \), then:
 \[\frac{a}{b} - \frac{c}{d} \]
 a. If denominators are not the same they must be made the same before numerators can be subtracted. Be sure to change signs of all terms in numerator of rational expression which follows subtraction sign after rational expressions have been made to have a common denominator. Combine numerator terms and write result over common denominator.

SUBTRACTION STEPS:
1. If the denominators are the same, then:
 a. Change signs of all terms in numerator of a rational expression which follows any subtraction sign.
 b. Add the numerators.
 c. Write answer to this addition over common denominator.
 d. Write final answer in lowest terms, making sure to follow directions for finding lowest terms as indicated above.

MULTIPLICATION (DENOMINATORS DO NOT HAVE TO BE THE SAME)

RULE:
1. If \(a, b, c, \) and \(d \) are Real numbers and \(b \) and \(d \) are non-zero numbers, then:
 \[\frac{a}{b} \cdot \frac{c}{d} = \frac{(ac)}{(bd)} \] [top times top and bottom times bottom]

MULTIPLICATION STEPS:
1. Completely factor all numerators and denominators.
2. Write problem as one big fraction with all numerators written as factors (multiplication indicated) on top and all denominators written as factors (multiplication indicated) on bottom.
3. Divide both numerator and denominator by all of the common factors; that is, write in lowest terms.
4. Multiply the remaining factors in the numerators together and write the result as the final numerator.
5. Multiply the remaining factors in the denominators together and write the result as the final denominator. EX:
 \[\frac{x^2 + 2x + 1}{x^2 + 9} \cdot \frac{x^2 - 2x + 3}{x^2 - 9} = \frac{(x + 1)}{(x + 3)} \]
DIVISION

- **DEFINITION:** Reciprocal of a rational expression \[\frac{a}{b} \] is \[\frac{b}{a} \] because \(\left(\frac{a}{b} \right) \left(\frac{b}{a} \right) = 1 \).

- **RULE:**
 1. If \(a, b, c, \) and \(d \) are Real numbers \(a, b, c, \) and \(d \) are non-zero numbers, then \(\frac{a}{b} \div \frac{c}{d} = \left(\frac{a}{b} \right) \left(\frac{d}{c} \right) = \frac{ad}{bc} \).

- **DIVISION STEPS:**
 1. Reciprocate (flip) rational expression found behind division sign (immediately to right of division sign).
 2. Multiply resulting rational expressions to find lowest terms and yield a final answer of \(\frac{x+3}{x+2} \).

SIMPLIFY RADICAL EXPRESSIONS

When the radical expression contains one term and no fractions (Ex: \(\sqrt{12m^2} \)) then:

1. Take the greatest root of the coefficient.
2. For \(\sqrt{2} \), use \(\sqrt{16} = 2, \) NOT \(\sqrt{4} \cdot \sqrt{8} \), because \(\sqrt{8} \) is not in simplest form.
3. Write the greatest root of each variable in the term. Remember \(\sqrt{n} a^n = a \), that is, the power of the variable is divided by the index.
4. This is accomplished by first noting if the power of the variable in the radicand is less than the index. If it is, the radical expression is in its simplest form.
5. If the power of the variable is not less than the index, divide the power by the index. The quotient is the new power of the variable to be written outside of the radical symbol. The remainder is the new power of the variable still written inside of the radical symbol.

SYNTHETIC DIVISION

- **DEFINITION:** A process used to divide a polynomial by a binomial in the form of \(x + h \) where \(h \) is an integer.

- **STEPS:**
 1. Write the polynomial in descending order [from highest to lowest power of variable].
 2. Write all coefficients of dividend under long division symbol, making sure to write zeros which are coefficients of powers of variable which are not in polynomial.
 3. Write the binomial in descending order: \(x - 2 \).
 4. Write additive inverse of constant term of binomial in front of long division sign as divisor.
 5. Bring up first number in dividend, so it will become first number in quotient (the answer).
 6. Multiply number just placed in quotient by divisor, 2.
 a. Add result of multiplication to next number in dividend.
 b. Result of this addition is next number in quotient in quotient; write it over next coefficient in dividend.
 7. Repeat step 6 until all coefficients in dividend have been used.

COMPLEX FRACTIONS

An understanding of the Operations section of Rational Expressions is required to work “complex fractions.”

- **DEFINITION:** A rational expression having a fraction in the numerator or denominator or both is a complex fraction. Ex: \(\frac{x-1}{x} \).

- **TWO AVAILABLE METHODS:**
 1. Simplify the numerator (combine rational expressions found only on top of the complex fraction) and denominator (combine rational expressions found only on bottom of the complex fraction) then, divide numerator by denominator; that is, multiply numerator by reciprocal (flip) of denominator. OR
 2. Multiply the complex fraction (both numerator & denominator) by least common denominator of all individual fractions which appear anywhere in the complex fraction. This will eliminate the fractions on top & bottom of the complex fraction and result in one simple rational expression. Follow steps listed for simplifying rational expressions.
ROOTS AND RADICALS CONTINUED

b. Never leave a radical expression in the denominator. It is not considered completely simplified until the fraction is in lowest terms. Rationalize the expression to remove the radical expression from the denominator as follows:

i. Step 1: Multiply the numerator and the denominator by the radical expression needed to eliminate the radical expression from the denominator. A radical expression in the numerator is acceptable.

\[(\sqrt{3})
\]

EX: \((\sqrt{5}) \) must be multiplied by \((\sqrt{3})\) so the denominator becomes 21 with no radical symbols in it. The numerator becomes \(5x \cdot 6\).

ii. Step 2: Write the answer in lowest terms.

\[x\]

2. If the fraction contains monomial radical expressions. EX: \((\sqrt{5})\) then:

a. If the radical expression is in the numerator only, simplify it and write the fraction in lowest terms.

b. If the radical expression is in the denominator only, rationalize the fraction so no radical symbols remain there. Simplify the resulting fraction to lowest terms.

c. If radical expressions are in both numerator and denominator, either:

i. Simplify each separately, rationalize the denominator and write the answer in lowest terms, OR

ii. Make the indices on all radical symbols the same, put the numerator and the denominator under one common radical symbol, write in lowest terms, separate again into a radical expression in the numerator and a radical expression in the denominator, rationalize the denominator, and write the answer in lowest terms.

3. IF THE RADICAL EXPRESSIONS ARE PART OF POLYNOMIALS

\[(x + \sqrt{2})\]

IN A RATIONAL EXPRESSION. EX: \((3x + \sqrt{5})\) then:

a. If the radical expressions are not in the denominator, then simplify the fraction and write the answer in lowest terms.

b. If the radical expressions are in the denominator, rationalize it by multiplying the numerator and the denominator by the conjugate of the denominator. Conjugate expressions are in the middle sign changed.

EX: The conjugate of \(3x + \sqrt{2}\) is \(3x - \sqrt{2}\) because when they are multiplied, the radical symbol is eliminated.

RADICAL OPERATIONS

• DEFINITION: Equations containing rational expressions are algebraic fractions.

• STEPS:

1. Determine least common denominator for all rational expressions in equation.

2. Use the Multiplication Property of Equality to multiply all terms on both sides of the equality sign by the common denominator and thereby eliminate all algebraic fractions.

3. Solve resulting equation using appropriate steps, depending on degree of equation which resulted from following Step 2.

4. Check answers because numerical values which cause denominators of rational expressions in original equation to be equal to zero are extraneous solutions, not true solutions of original equation.

QUADRATIC EQUATIONS

• DEFINITION: Second-degree equations in one variable which can be written in the form \(ax^2 + bx + c = 0\) where \(a\), \(b\), and \(c\) are Real numbers and \(a \neq 0\).

• PROPERTY: If \(a\) and \(b\) are Real numbers and \((a)(b) = 0\) then either \(a = 0\) or \(b = 0\) or both equal zero. At least one of the numbers has to be equal to zero.

• STEPS:

1. Set the equation equal to zero. Combine like terms. Write in descending order.

2. Factor, if factoring is not possible then go to step 3.

a. Set each factor equal to zero. See above: “If a product is equal to zero at least one of the factors must be zero.”

b. Solve each resulting equation and check the solution(s).

3. Use the quadratic formula if factoring is not possible.

a. The quadratic formula is: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\).

b. \(a\), \(b\), and \(c\) come from the second-degree equation which is to be solved. After the second-degree equation has been set equal to zero, \(a\) is the coefficient (number in front of) of the second-degree term, \(b\) is the coefficient (number in front of) of the first-degree term (if no first-degree term is present then \(b\) is zero), and \(c\) is the constant term (no variable showing). (Note: \(ax^2 + bx + c = 0\)).

4. Check the two answers, one with + in front of the radical expression, and one with − in front of the radical expression in the formula. Any additional simplification to get the answers in the required form.

COMPLEX NUMBERS

• DEFINITION: The set of all numbers, \(a + bi\), where \(a\) and \(b\) are Real numbers and \(i^2 = -1\); that is, \(i\) is the number whose square equals -1 or \(i = \sqrt{-1}\).

NOTE: \(i\) is \(-1\) will be used in multiplication and division. The complex number \(3 + 2i \neq 3 - 2i\) because the numbers must be identical to be equal.

• OPERATIONS:

1. Addition and Subtraction:

a. Combine complex numbers as though the \(i\) were a variable.

EX: \((4 + 5i) + (3 - 7i) = 11 - 2i; \ (-3 - 7i) - (5 - 8i) = -8 + 15i\).

b. The sum or difference of complex numbers is another complex number. Even when the number \(21\) is a complex number of the form \(a + bi\) where \(a = 21\) and \(b = 0\).

2. Multiplication and Division:

a. Multiply complex numbers using the methods for multiplying two binomials. Remember that \(i^2 = -1\), so the answer is not complete until \(i^2\) has been replaced with \(-1\) and simplified. EX: \((3 + 5i) (1 - i) = -3 + 3i + 5i - 5i^2 = -3 + 3i + 5i + 1 = -3 + 8i\).

b. Divide complex numbers by rationalizing the denominator. The answer is complete when there is no radical expression or \(i\) in the denominator and the answer is in simplest form. EX: The conjugate of the complex number \(-3 + 12i\) is \(-3 - 12i\).