Data: ____ - ___ -

Proposta de teste de avaliação [janeiro - 2023]

Nome: _____

Ano / Turma: _____ N.º: ____

1. Seja Ω , conjunto finito, o espaço amostral associado a uma dada experiência aleatória.

Sejam A e B dois acontecimentos possíveis $(A \subset \Omega \ e \ B \subset \Omega)$.

Sabe-se que:

- P(A) = 0.8
- P(B) = 0.36
- $P(A \cap \overline{B}) = 0.64$

O valor da probabilidade condicionada P(A|B)é:

- (A) $\frac{4}{9}$ (B) $\frac{3}{5}$ (C) $\frac{1}{3}$

2. Seja f uma função de domínio $\mathbb{R} \setminus \{2\}$.

Sabe-se que as únicas assíntotas ao gráfico de f são as retas definidas por x = 2 e y = -1.

As equações das assíntotas ao gráfico da função g, sendo g(x) = 5 - f(x-3) são:

(A) x = 5 e y = 6

(B) x = 5 e y = -6

(C) x = -1 e y = 4

- **(D)** x = -1 e y = 4
- Seja f uma função de domínio $\mathbb R$.

Sabe-se que:

- o ponto P, de coordenadas (1,2), pertence ao gráfico de f;
- a reta tangente ao gráfico de f no ponto P é definida pela equação y = 3x 1.

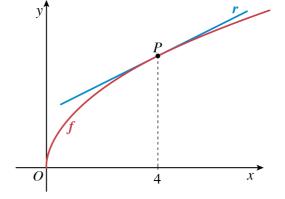
O número que representa $\lim_{x\to 1} \frac{f(x)-f(1)}{x^2-1}$ é:

- (A) $-\frac{1}{2}$ (B) 3 (C) $\frac{3}{2}$
- **(D)** 0

4. Considera a função f, de domíno \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{x}{2-x} & \text{se } x \le 1\\ \frac{2x-2}{x^2+x-2} & \text{se } x > 1 \end{cases}$$

- **4.1** Averigua se a função f é contínua x = 1.
- **4.2** Determina, caso existam, as equações das assíntotas ao gráfico de *f* paralelas aos eixos coordenados.
- **4.3** Mostra que a reta tangente ao gráfico de f no ponto de abcissa -1 é paralela à reta s definida pela equção $(x,y) = (-2,5) + k(9,2), k \in \mathbb{R}$.
- Na figura estão representados o gráfico de uma função f, de domínio R₀⁺, e uma reta r que é tangente ao gráfico da função no ponto P, de abcissa 4.
 A reta r é definida pela equação:

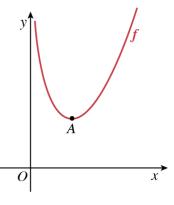


$$(x,y) = (8,6) + k(-4,-2)$$
, $k \in \mathbb{R}$

- **5.1** Indica o valor de $\lim_{h\to 0} \frac{f(4+h)-f(4)}{h}$.
- **5.2** Mostra que f(4) = 8f'(4).
- **6.** Na figura está representada uma função conínua, f, de domínio \mathbb{R}^+ , tal que f', função derivada de f, é definida por:

$$f'(x) = 2x - \frac{1}{x}$$

Sabe-se que a ordenada do ponto A é mínimo absoluto da função f



- **6.1** Determina a abcissa do ponto A.
- **6.2** Mostra que o gráfico de f não tem pontos de inflexão.

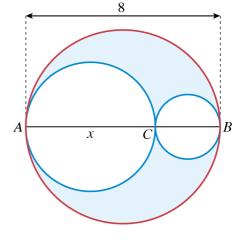
- 7. Na figura estão representadas:
 - uma circunferência de diâmetro [AB];
 - uma circunferência de diâmetro [AC];
 - uma circunferência de diâmetro [BC].

Sabe-se que:

- o ponto C pertence ao segmento de reta [AB];
- $\overline{AB} = 8$;
- $\overline{AC} = x$, com $x \in]0, 8[$.

Seja S(x)a área da região colorida, dada em função de x.

Mostra que $S(x) = \frac{\pi}{2}(8x - x^2)$ e determina para que valor de x a área colorida é máxima.



FIM

Cotações												Total
Questões	1.	2.	3.	4.1	4.2	4.3	5.1	5.2	6.1	6.2	7	Total
Cotações	15	15	15	20	20	20	15	18	20	20	22	200

Novo Espaço – Matemática A, 12.º ano

1.
$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$
, ou seja, $0.8 - P(A \cap B) = 0.64$

Então:
$$P(A \cap B) = 0.16 \ y = 1$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.16}{0.36} = \frac{16}{36} = \frac{4}{9}$$

Resposta: A opção correta é: (A) $\frac{4}{9}$

2.

Função	Assíntota vertical	Assíntota horizontal
$y = f\left(x - 3\right)$	x = 2 + 3 = 5	y = -1
y = -f(x-3)	x = 5	y=1
g(x) = 5 - f(x-3)	x = 5	y = 1 + 5 = 6

Resposta: A opção correta é: (A) x = 5 e y = 6

3.
$$f'(1) = 3$$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x^2 - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \times \lim_{x \to 1} \frac{1}{x + 1} = f'(1) \times \frac{1}{2} = \frac{3}{2}$$

Resposta: A opção correta é: (C) $\frac{3}{2}$

4.

$$f(x) = \begin{cases} \frac{x}{2-x} & \text{se } x \le 1\\ \frac{2x-2}{x^2+x-2} & \text{se } x > 1 \end{cases}$$

4.1
$$1 \in D_f$$
. $\lim_{x \to 1^-} \frac{x}{2-x} = \frac{1}{2-1} = 1$ e $f(1) = \frac{1}{2-1} = 1$

$$\lim_{x \to 1^+} \frac{2x-2}{x^2+x-2} = \lim_{x \to 1^+} \frac{2(x-1)}{(x-1)(x+2)} = \lim_{x \to 1^+} \frac{2}{x+2} = \frac{2}{3}$$

Como $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$, conclui-se que f não é contínua em x = 1.

Resposta: A função f não é contínua em x = 1.

4.2 Assíntotas verticais:

A função é contínua em todos os pontos do domínio, exceto em x = 1.

Os limites laterais, quando x tende para 1, são deferentes de $\pm \infty$.

Resulta que não há assíntotas verticais.

Assíntotas horizontais:

$$\lim_{x \to -\infty} \frac{x}{2 - x} = \lim_{x \to -\infty} \frac{1}{\frac{2}{x} - 1} = \frac{1}{0 - 1} = -1$$

A reta de equação y = -1 é assíntota horizontal ao gráfico de f.

$$\lim_{x \to +\infty} \frac{2x - 2}{x^2 + x - 2} \stackrel{\frac{\infty}{\infty}}{=} \lim_{x \to +\infty} \frac{x\left(2 - \frac{2}{x}\right)}{x^2\left(1 + \frac{1}{x} - \frac{2}{x^2}\right)} \stackrel{\frac{\infty}{\infty}}{=} \lim_{x \to +\infty} \frac{2 - \frac{2}{x}}{x\left(1 - \frac{1}{x} - \frac{2}{x^2}\right)} = \frac{2 - 0}{+\infty(1 - 0 - 0)} = 0$$

A reta de equação y = 0 é assíntota horizontal ao gráfico de f.

Resposta: As equações das assíntotas ao gráfico de f paralelas aos eixos coordenados são y = -1 e y = 0.

4.3 Declive da reta s:
$$m = \frac{2}{9}$$

Se
$$x < 1$$
, $f(x) = \frac{x}{2-x}$.

$$f'(x) = \left(\frac{x}{2-x}\right)' = \frac{1 \times (2-x) - (2-x)' \times x}{(2-x)^2} = \frac{2-x+x}{(2-x)^2} = \frac{2}{(2-x)^2}$$

$$f'(-1) = \frac{2}{(2+1)^2} = \frac{2}{9}$$

O declive da reta tangente ao gráfico de f no ponto de abcissa -1 é igual ao declive da reta s. Conclui-se que são retas paralelas.

5.1 Declive da reta
$$r: m = \frac{-2}{-4} = \frac{1}{2}$$

$$f'(4) = \frac{1}{2}$$

$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = f'(4) = \frac{1}{2}$$

Resposta:
$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \frac{1}{2}$$

Novo Espaço - Matemática A, 12.º ano



5.2 Mostrar que f(4) = 8f'(4)

O ponto P pertence ao gráfico de f, mas também pertence à reta r, logo:

$$(4, f(4)) = (8,6) + k(-4,-2), k \in \mathbb{R}$$

$$\begin{cases} 4 = 8 - 4k \\ f(4) = 6 - 2k \end{cases} \Leftrightarrow \begin{cases} k = 1 \\ f(4) = 4 \end{cases}$$

Assim: f(4) = 8f'(4), ou seja, $4 = 8 \times \frac{1}{2}$ (verdadeiro)

6.

6.1
$$f'(x) = 2x - \frac{1}{x}$$

$$f'(x) = 0 \Leftrightarrow 2x - \frac{1}{x} = 0 \Leftrightarrow 2x^2 - 1 = 0 \Leftrightarrow x = \sqrt{\frac{1}{2}} \Leftrightarrow x = \frac{\sqrt{2}}{2}$$
, atendendo a que $x \in \mathbb{R}^+$

x	0		$\frac{\sqrt{2}}{2}$	+∞
f'(x)		_	0	+
f		_		▼

Logo, a função f atinge o valor mínimo absoluto no ponto de abcissa $\frac{\sqrt{2}}{2}$.

Resposta: A abcissa do ponto $A \notin \frac{\sqrt{2}}{2}$.

6.2
$$f'(x) = 2x - \frac{1}{x}$$

$$f''(x) = \left(2x - \frac{1}{x}\right)' = 2 + \frac{1}{x^2}$$

A função f'' é positiva em todos os pontos do domínio (não muda de sinal).

Conclui-se que o gráfico de f não tem pontos de inflexão.

Novo Espaço - Matemática A, 12.º ano

7. Área de um círculo de raio r: πr^2

Área do círculo de diâmetro [AB]: $\pi \times 4^2 = 16\pi$

Área do círculo de diâmetro [AC]: $\pi \times \left(\frac{x}{2}\right)^2 = \frac{\pi}{4}x^2$

Área do círculo de diâmetro [BC]: $\pi \times \left(\frac{8-x}{2}\right)^2 = \frac{\pi}{4}(x^2 - 16x + 64)$

Área da região colorida: $S(x) = 16\pi - \left[\frac{\pi}{4}x^2 + \frac{\pi}{4}(x^2 - 16x + 64)\right]$

$$S(x) = 16\pi - \left(\frac{\pi}{4}x^2 + \frac{\pi}{4}x^2 - 4\pi x + 16\pi\right) = 4\pi x - \frac{\pi}{2}x^2 = \frac{\pi}{2}(8x - x^2)$$

$$x \in]0,8[e S(x) = \frac{\pi}{2}(8x - x^2)$$

$$S'(x) = \frac{\pi}{2} \times (8x - x^2)' = \frac{\pi}{2} (8 - 2x)$$

$$S'(x) = 0 \Leftrightarrow 8 - 2x = 0 \Leftrightarrow x = 4$$

х	0		4		8
S'(x)		+	0	_	
S		_			

Resposta: A área colorida é máxima para x = 4.

FIM

Cotações												Total
Questões	1.	2.	3.	4.1	4.2	4.3	5.1	5.2	6.1	6.2	7	
Cotações	15	15	15	20	20	20	15	18	20	20	22	200