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The talk begins with an inquiry into the relationship between people’s natural thinking — the suit
of skills that is acquired by all people spontaneously and successfully under normal
developmental conditions — and mathematical thinking. More specifically, when do these two
thinking modes go together and when do they clash? The influential dual-process theory from
cognitive psychology is applied to shed some light on this issue. A remarkable conclusion is that
many of the recurring errors we make come from the strength of our mind rather than its
weakness. The talk then proceeds to address a crucial design issue: In cases where natural and
mathematical thinking clash, what can we as math educators do to help students create peaceful
coexistence between the two? The extensively-researched medical diagnosis problem will be
used to demonstrate how theory, design and experiment collaborate in the pursuit of this goal.

Introduction

In the background of this talk lurks the momentous rationality debate: Are humans rational
beings or not? Or, better, how rational are human beings? Or, still better, what kind of rationality
(or irrationality) is invoked under what conditions? This question had been endlessly debated by
the great philosophers through the millennia, but has become an empirical issue for cognitive
psychologists in the second half of the 20" century, culminating with the 2002 Nobel Prize in
economy to Daniel Kahneman for his work with Tversky on “intuitive judgment and choice”
(Kahneman, 2002).

In this talk I will focus on a narrower (and more immediately relevant) facet of the rationality
debate: What is the relation between people’s natural thinking — the suit of skills that is acquired
by all people spontaneously and successfully under normal developmental conditions — and
mathematical thinking. More specifically, when do these two modes of thinking go together and
when do they clash? Or, even more specifically, when can we as math educators build on the
strength of students’ natural thinking, and when do we need to devise ways to overcome it. (For
a comprehensive discussion of the rationality debate see Gigerenzer, 2005; Samuels et al., 2004;
Saunders and Over, 2009; Stanovich and West, 2000; Stanovich, 2004; Stein, 1996.)

To begin our one-thousand-mile journey with a small step, consider the following puzzle:

A baseball bat and ball cost together one dollar and 10 cents. The bat costs one dollar
more than the ball. How much does the ball cost?

This simple arithmetical puzzle would be totally devoid of interest, if it were not for the fact
that it poses what I will call a cognitive challenge, best summarized in Kahneman’s (2002) Nobel
Prize lecture:

Almost everyone reports an initial tendency to answer ‘10 cents’ because the sum $1.10
separates naturally into $1 and 10 cents, and 10 cents is about the right magnitude.
Frederick found that many intelligent people yield to this immediate impulse: 50%
(47/93) of Princeton students, and 56% (164/293) of students at the University of
Michigan gave the wrong answer. (p. 451)
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The trivial arithmetical challenge has thus turned into a non-trivial challenge for cognitive
psychologists: What is it about the workings of our mind that causes so many intelligent people
to err on such a simple problem, when they surely posses the necessary mathematical knowledge
to solve it correctly?

Complicating this cognitive challenge even further, research in cognitive psychology has
revealed that harder versions of the task may result in better performance by the subjects. For
example, we can enhance the subjects’ performance by making the numbers more messy (let the
bat and ball cost together $1.12 and the bat cost 94 cents more than the ball), or by displaying the
puzzle via hard-to-read font on a computer screen (Song and Schwarz, 2008).

This challenge and many others like it have led to one of the most influential theories in
current cognitive psychology, Dual Process Theory (DPT), roughly positing the existence of
“two minds in one brain”. These two thinking modes — intuitive and analytic — mostly work
together to yield useful and adaptive behaviour, but, as the long list of cognitive challenges
demonstrate, they can also fail in their respective roles, yielding non-normative answers to
mathematical, logical or statistical tasks. A corollary of particular interest for mathematics
education is that many recurring and prevalent mathematical errors originate from general
mechanisms of our mind and not from faulty mathematical knowledge. Significantly, such errors
often result from the strengths of our mind rather than its weaknesses (hence the power of
natural thinking in the title).

This paper is organized in two main parts. In the first part (based on Leron and Hazzan 2006,
2009) I introduce the dual process theory and demonstrate its explanatory power in math
education research. The second part, which is based on work in progress with Abraham Arcavi
and with Lisser Rye Ejersbo, addresses the educational challenge of bridging the gap between
intuitive and analytical thinking. This is treated as a design issue: Given a problem with counter-
intuitive solution (in our case, the famous and extensively-researched medical diagnosis
problem), design a variation of the problem which brings the solution closer to intuition (or,
alternatively, stretches the intuition towards the solution). I hope that by focusing on the power
of students’ natural thinking, this talk might contribute to the goal of this conference: Optimizing
student understanding in mathematics!

“Doin’ what comes natur’lly””: Dual-process theory (DPT)

Annie Oakley’s phrase “Doin” what comes natur’lly”, from Irving Berlin’s musical Annie get
your Gun, touches charmingly on the ancient distinction between intuitive and analytical modes
of thinking. This distinction has achieved a new level of specifity and rigor in what cognitive
psychologists call dual-process theory (DPT). In fact, there are several such theories, but since
the differences are not significant for the present discussion, we will ignore the nuances and will
adopt the generic framework presented in Stanovich and West (2000), Kahneman and Frederick
(2005) and Kahneman (2002). For state of the art thinking on DPT — history, empirical support,
applications, criticism, adaptations, new developments — see Evans and Frankish (2009). The
present concise — and much oversimplified — introduction to DPT and its applications in
mathematics education is based on Leron and Hazzan (2006, 2009).

According to dual-process theory, our cognition and behavior operate in parallel in two quite
different modes, called System 1 (S1) and System 2 (S2), roughly corresponding to our common
sense notions of intuitive and analytical thinking. These modes operate in different ways, are
activated by different parts of the brain, and have different evolutionary origins (S2 being
evolutionarily more recent and, in fact, largely reflecting cultural evolution). The distinction



between perception and cognition is ancient and well known, but the introduction of S1, which
sits midway between perception and (analytical) cognition is relatively new, and has important
consequences for how empirical findings in cognitive psychology are interpreted, including
applications to the rationality debate and to mathematics education research.

Like perceptions, S1 processes are characterized as being fast, automatic, effortless, non-
conscious and inflexible (hard to change or overcome); unlike perceptions, S1 processes can be
language-mediated and relate to events not in the here-and-now. S2 processes are slow,
conscious, effortful, computationally expensive (drawing heavily on working memory
resources), and relatively flexible. In most situations, S1 and S2 work in concert to produce
adaptive responses, but in some cases (such as the ones concocted in the heuristics-and-biases
and in the reasoning research), S1 may generate quick automatic non-normative responses, while
S2 may or may not intervene in its role as monitor and critic to correct or override S1°s response.
The relation of this framework to the concepts of intuition, cognition and meta-cognition as used
in the mathematics education research literature (e.g., Fischbein, 1987; Stavy and Tirosh, 2000;
Vinner, 1997) is elaborated in Leron and Hazzan (2006).

Many of the non-normative answers people give in psychological experiments — and in
mathematics education tasks, for that matter — can be explained by the quick and automatic
responses of S1, and the frequent failure of S2 to intervene in its role as critic of S1.
Significantly, according to this framework, some of the ubiquitous mathematical misconceptions
may have their origins in general mechanisms of the human mind, and not in faulty mathematical
knowledge.

The bat-and-ball task is a typical example for the tendency of the insuppressible and fast-
reacting S1 to “hijack” the subject’s attention and lead to a non-normative answer. Specifically,
the salient features of the problem cause S1 to jump automatically and immediately with the
answer of 10 cents, since the numbers one dollar and 10 cents are salient, and since the orders of
magnitude are roughly appropriate. For many people, the effortful and slow moving S2 is not
alerted, and they accept S1’s output uncritically, thus in a sense “behave irrationally” (Stanovich,
2004). For others, S1 also immediately had jumped with this answer, but in the next stage, their
S2 interfered critically and made the necessary adjustments to give the correct answer (5 cents).
Evolutionary psychologists, who study the ancient evolutionary origins of universal human
nature, stress that the way S1 worked here, namely coming up with a very quick decision based
on salient features of the problem and of rough sense of what’s appropriate in the given situation,
would be adaptive behaviour under the natural conditions of our ancestors, such as searching for
food or avoiding predators (Buss, 2005; Cosmides and Tooby, 1997; Tooby and Cosmides,
2005). Gigerenzer (2005; Gigerenzer et al., 1999) claims that this is a case of ecological
rationality being fooled by a tricky task, rather than a case of irrationality.

Evans (2009) offers a slightly different view — called default-interventionist approach — of
the relations between the two systems. According to this approach, applied to the bat-and-ball
data, only S1 has access to all the incoming data, and its role is to filter it and submit its
"suggestions" for S2's scrutiny, analysis and final decision. This is a particularly efficient way to
operate in view of the huge amount of incoming information the brain constantly needs to
process, because it saves the scarce working memory resources that S2 depends on. On the other
hand, it is error-prone, because the features that S1 selects are the most accessible but not always
the most essential. In the bat-and-ball phenomenon, according to this model, the features that S1
has selected and submitted to S2 were the salient numbers 10 cents and 1 dollar, but the



condition about the difference has remained below consciousness level. Even though S2 has the
authority to override S1's decision, it may not do it due to lack of access to all the pertinent data.

The seemingly paradoxical phenomena that more difficult task formulations actually enhance
performance is also well explained by DPT. Making the task more difficult in the above-
mentioned sense, has the effect of suppressing the automatic response of S1, thus forcing S2 to
participate. Since the subjects’ S2 does posses the necessary mathematical knowledge, all that is
required to solve the problem correctly is suppressing S1 and activating S2, which is exactly the
effect of these added complications.

It is important to note that skills can migrate between the two systems. When a person
becomes an expert in some skill, perhaps after a prolonged training, this skill may become S1 for
this person. For example, driving is an effortful S2 behavior for beginners, requiring deep
concentration and full engagement of working memory processing. For experienced drivers, in
contrast, driving becomes an S1 skill which they can perform automatically while their working
memory is engaged in other tasks, such as a deep intellectual or emotional conversation.
Conversely, many S1 skills (such as walking straight or talking in a familiar but non-native
language), deteriorate with advancing age, or when just being tired or drunk, all of a sudden
requiring conscious effort to perform successfully (behaving in effect like S2).

We have now moved well along our one-thousand-mile journey, contemplating the power of
natural thinking (roughly the psychologists’ S1), and its uneasy relation with analytical thinking
(S2). The psychological research literature on dual-process theory is immense, and we could
barely touch the surface here. Many interesting and important questions remain open, such as
what are the mechanisms that cause (or fail to cause) S2 to intervene and override S1°s output.
Much more is known to psychologists about such questions, but equally much still remains
unanswered (see Evans and Frankish, 2009). In the rest of this paper we will delve more deeply
into the educational relevance of the foregoing theoretical framework.

Bridging intuitive and analytical thinking: A design approach

Our second one-thousand-mile journey begins again with a small step — this time the famous
string-around-the-earth puzzle (dating back to 1702).

Imagine you have a string tightly encircling the equator of a basketball. How much extra
string would you need for it to be moved one foot from the surface at all points? Hold
that thought, and now think about a string tightly encircling the Earth — making it around
25,000 miles long. Same question: how much extra string would you need for it to be one
foot from the surface at all points?

Everybody seems to feel strongly that the Earth would need a lot more extra string than the
basketball. The surprising answer is that they both need the same amount: 2r, or approximately
6.28 feet. (If R is the radius of any of them, then the extra string is calculated by the formula
2n(R+1) - 2nR =2mn.)

As with the bat-and-ball puzzle, this surprise is what we are after, for it tells us something
important about how the mind works, which is why cognitive psychologists are so interested in
such puzzles. This time, however, alongside with the cognitive challenge, there is also an
important educational challenge, to which we now turn. Suppose you present this puzzle to your
math class. Being a seasoned math teacher, you first let them be surprised; that is, you first let
them do some guessing, bringing out the strong intuitive feeling that the required additional
string is small for the basketball but huge for the earth. Then you have them carry out the easy
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calculation (as above) showing that — contrary to their intuition — the additional string is actually
quite small, and is in fact independent of the size of the ball.

Now, given the classroom situation just described, here is the educational challenge: As
teachers and math educators, what do we do next? I haven’t conducted a survey, but my guess is
that most teachers would leave it at that, or at best discuss with the students the clash they have
just experienced between the intuitive and analytical solutions. But is this the best we can do?

Taking my clue from Seymour Papert (of Logo fame), I claim that in fact we can do better.
We want to avoid the “default” conclusion that students should not trust their intuition, and
should abandon it in the face of conflicting analytical solution. We also want to help students
deal with the uncomfortable situation, whereby their mind harbours two conflicting solutions,
one intuitive but now declared illegitimate, the other correct but counter-intuitive.

Papert’s (1993/1980, 146-150) answer to this educational challenge is simple but ingenious:
Just imagine a cubic earth instead of a spherical one! Now follow in your mind’s eye the huge
square equator with two strings, one snug around its perimeter and the other running in parallel 1
foot away (Fig. 1). Then you can actually see that the two strings have the same length along the
sides of the square (the size doesn’t matter!), and that the only additional length is at the corners.
In addition, you can now see why the extra string should be 27: It is equal to the perimeter of the
small circle (of radius 1 foot) that we get by joining together the 4 circular sectors at the corners.

The final step in Papert’s ingenious construction is to bridge the gap between the square and
the circle with a chain of perfect polygons, doubling the number of sides at each step. The next
polygon in the chain after the square would be an octagon (Fig. 1, right). Here we have 8 circular
sections at the corners, each half the size of those in the square case, so that they again can be
joined to form a circle of exactly the same size as before. This demonstrates that doubling the
number of sides (and getting closer to a circle) leaves us with the same length of extra string.

Fig. 1: A string around a square Earth — and around an octagonal one.

Can this beautiful example be generalized? When intuitive and analytical thinking clash, can
we always design such “bridging tasks” that will help draw them closer? How should theory,
design and experiment be put together in this search? We go more deeply into these questions in
the next section.

Theory, design, experiment: The medical diagnosis problem (MDP)
Drawing inspiration from Papert’s approach, and prompted by the questions closing up the
last section, Lisser Rye Ejersbo and I set ourselves the challenge of designing an analogous
treatment for the more advanced, relevant, and extensively-researched task from cognitive
psychology: the medical diagnosis problem (MDP).



MDP background. Here is a standard formulation of the MDP task and data, taken from
Samuels et al. (2004, p. 136).

Before leaving the topic of base-rate neglect, we want to offer one further

example illustrating the way in which the phenomenon might well have serious

practical consequences. Here is a problem that Casscells et. al. (1978) presented to a

group of faculty, staff and fourth-year students at the Harvard Medical School.
[MDP:] If a test to detect a disease whose prevalence is 1/1000 has a false
positive rate of 5%, what is the chance that a person found to have a positive
result actually has the disease, assuming that you know nothing about the person's
symptoms or signs? %

Under the most plausible interpretation of the problem, the correct Bayesian answer is

2%. But only eighteen percent of the Harvard audience gave an answer close to 2%.

Forty-five percent of this distinguished group completely ignored the base-rate

information and said that the answer was 95%.

This task is intended to test what is usually called Bayesian thinking: how people update their
initial statistical estimates (the base rate) in the face of new evidence (the diagnostic
information). In this case, the base rate is 1/1000, the diagnostic information is that the patient
has tested positive, and the task is intended to discover how the subjects will update their
estimate of the chance that the patient actually has the disease. The meaning of “5% false
positive rate” is that 5% of the healthy people taking the test would test positive. Base-rate
neglect reflects the widespread tendency among subjects to ignore the base rate, instead simply
subtracting the false positive rate of 5% from 100%. Indeed, it is not at all intuitively clear why
the the base rate should matter, and how it could be taken into the calculation.

A formal solution to the task is based on Bayes' theorem, but there are many complications
and controversies involving mathematics, psychology and philosophy, concerning the
interpretation of that theorem. Indeed, this debate — “Are humans good intuitive statisticians after
all?” (Cosmides and Tooby, 1996) — is a central issue in the great rationality debate. See Barbey
and Sloman (2007) for a comprehensive discussion, and a glimpse of the controversy.

Here is a simple intuitive solution for the MDP, bypassing Bayes' theorem: Assume that the
population consists of 1,000 people and that all have taken the test (see Fig. 2). We know that
one person will have the disease (because of the base rate) and will test positive (because no
false negative rate is indicated). In addition, 5% of the remaining 999 healthy people
(approximately 50) will test false-positive — a total of 51 positive results. Thus, the probability
that a person who tests positive actually has the disease is 1/51, which is about 2%.

Researchers with evolutionary and ecological orientation (Cosmides and Tooby, 1996;
Gigerenzer et al., 1999) claim that people are "good statisticians after all" if only the input and
output is given in "natural frequencies" (integers instead of fractions or percentages):

In this article, we will explore what we will call the "frequentist hypothesis" — the
hypothesis that some of our inductive reasoning mechanisms do embody aspects of a
calculus of probability, but they are designed to take frequency information as input and
produce frequencies as output. (Cosmides and Tooby, 1996, 3)

Evolutionary psychologists theorize that the brains of our hunter-gatherer ancestors
developed such a module because it was vital for survival and reproduction, and because this is
the statistical format that people would naturally encounter under those conditions. The statistical
formats of today, in contrast, are the result of the huge amount of information that is collected,
processed and shared by modern societies with modern technologies and mass media.



Indeed, Cosmides and Tooby (1996) have replicated the Casscells et al. (1978) experiment,
but with natural frequencies replacing the original fractional formats, and the base-rate neglect
has all but disappeared:

Although the original, non-frequentist version of Casscells et al.'s medical diagnosis
problem elicited the correct bayesian answer of "2%" from only 12% of subjects tested,
pure frequentist versions of the same problem elicited very high levels of bayesian
performance: an average of 76% correct for purely verbal frequentist problems and 92%
correct for a problem that requires subjects to construct a concrete, visual frequentist
representation. (Cosmides and Tooby, 1996, 58)

These results, and the evolutionary claims accompanying them, have been consequently
challenged by other researchers (Evans, 2006; Barbie and Sloman, 2007). In particular, Evans
(2006) claims that what makes the subjects in these experiments achieve such a high success rate
is not the frequency format per se, but rather a problem structure that cues explicit mental models
of nested-set relationships (see below). However, the fresh perspective offered by evolutionary
psychology has been seminal in re-invigorating the discussion of statistical thinking in particular,
and of cognitive biases in general. The very idea of the frequentist hypothesis, and the exciting
and fertile experiments that it has engendered by supporters and opponents alike, would not have
been possible without the novel evolutionary framework. Here is how Samuels et al. (1999, p
101) summarize the debate:

But despite the polemical fireworks, there is actually a fair amount of agreement between
the evolutionary psychologists and their critics. Both sides agree that people do have
mental mechanisms which can do a good job at bayesian reasoning, and that presenting
problems in a way that makes frequency information salient can play an important role in
activating these mechanisms.

The educational challenge as design issue. The extensive data on base rate neglect in the
MDP (leading to the 95% answer) demonstrates the counter-intuitive nature of the analytical
solution, as in the case of the string around the earth. As math educators, we are interested in
helping students build bridges between the intuitive and analytical perspectives, hopefully
establishing peaceful co-existence between these two modes of thought. As we have seen in
Papert’s example, achieving such reconciliation involves a design issue: Design a new bridging
task, which is logically equivalent to, but psychologically much easier than the given task.
(Compare Clements’ (1993) “bridging analogies” and “anchoring intuitions” in physics
education.)

From the extensive experimental and theoretical research on the MDP in psychology, we
were especially influenced in our design efforts by the nested subsets hypothesis (Fig. 2):

All this research suggests that what makes Bayesian inference easy are problems that
provide direct cues to the nested set relationships involved [...]

It appears that heuristic [S1] processes cannot lead to correct integration of diagnostic
and base rate information, and so Bayesian problems can only be solved analytically [i.e.,
by S2]. This being the case, problem formats that cue construction of a single mental
model that integrates the information in the form of nested sets appears to be critical.
(Evans, 2006, 391)

Indeed, it is not easy to form a mental representation of the subsets of sick and healthy
people, and even less so for the results of the medical test. Mental images of people all look
basically the same, whether they are sick or healthy or tested positive or negative. The task of
finding a more intuitive version of the MDP has thus been operationalized to finding a task



which will “cue construction of a single mental model that integrates the information in the form
of nested sets” (ibid).

Subset of people tested positive Subset of people tested negative
(app. 50 of 1000) (App. 950 of 1000)
The whole set Subset of people actually sick
(1000 people) (1 of 1000)

Fig. 2: Nested subsets in the medical diagnosis problem (for 1000 people)

Based on this theoretical background, we formulated three design criteria for the new task
(which would also serve as testable predictions).

1. [Intuitively accessible: The bridging task we will design will be easier (“more intuitive”)
than the original MDP (i.e., significantly more people — the term is used here in a
qualitative sense —will succeed in solving it correctly).

2. Bridging function: Significantly more people will solve the MDP correctly, without any
instruction, after having solved the new task.

3. Nested subsets hypothesis: Base rate neglect will be significantly reduced.

Note that the first two design criteria pull the new task in opposite directions. Criterion 1
(turning the hard task into an easy one) requires a task which is sufficiently different from the
original one, while criterion 2 (the bridging function) requires a task that is sufficiently similar to
the original one. The new task, then, should be an equilibrium point in the “design space” —
sufficiently different from the original task but not too different.

Armed with these criteria, we set out on the search for the new bridging task. After a long
process of trial and error, intermediate versions, partial successes and failures, we have finally
come up with the Robot-and-Marbles Problem (RMP), which we felt had a good chance of
satisfying the design criteria and withstanding the empirical test. The RMP is based on the idea
of replacing sick and healthy people in the population by red and green marbles in a box. The
medical test is then replaced by a colour-detecting robot, which can distinguish between red and
green marbles via a colour sensor. The sensor is not perfect, however, and 5% of the green
marbles are falsely identified as red, corresponding to the 5% healthy people in the MDP who
are falsely diagnosed as sick. We also decided to make the action of the robot on the marbles
more vividly imaginable by actually describing the process, not just the result. A final step in the
design of the new problem was to slightly change the numbers from the original MDP, in order
to make the connection less obvious. According to the bridging criterion, our subjects who
solved the RMP first, should then solve more successfully the MDP. For this to happen, they
would first need to recognize the similarity between the two problems, and we didn’t want to
make this too obvious by using the same numbers. (For a more detailed and nuanced description
of the design process, as well as the experiments that followed, see Ejersbo and Leron, in
preparation).



Here then is the final product of our design process, the version that would actually be put to
the empirical test to see whether the design criteria have been satisfied.

RMP: In a box of red and green marbles, 2/1000 of the marbles are red. A robot
equipped with green-marble detector with a 10% error rate (10% green marbles are
identified as red), throws out all the marbles which it identifies as green, and then you are
to pick a marble at random from the box. What is the probability that the marble you have
picked would be red?

The experiment. The participants in the experiment were 128 students studying towards
M.A degree in Educational Psychology at a Danish university, with no special background in
mathematics or statistics. All the participants were assigned the two tasks — the medical
diagnosis problem (MDP) and the robot-and-marbles problem (RMP) — and were given 5
minutes to complete each task. (In a pilot experiment we found that 5 minutes were enough both
for those who could solve the problem and those who couldn’t.) The subjects were assigned
randomly into two groups of 64 students each. The order of the tasks was MDP first and RMP
second for one group (called here the MR group), and the reverse order for the second group (the
RM group). The results of the RM group were clearly our main interest, the MR group serving
mainly as control.

Group 1: Robot first | Group 2: Medical diagnosis first
RMP 1 MDP 2™ MDP 1* RMP 2™
Correct 31 17 8 20
Base-rate neglect 1 12 22 4
Incorrect other 32 35 34 40
Total 64 64 64 64

Table 1: Numbers of responses in the various categories

The results are summarized in Table 1, and it can be seen that the design criteria have been
validated and the predictions confirmed. Here is a brief summary of the results for the RM group
(with comparative notes in parentheses).

1. The RMP succeeded in its role as bridge between intuitive and analytical thinking: 48%
(31/64) of the subjects in the RM group solved it correctly. ( compared to 18% success on
the MDP in the original Harvard experiment and 12% (8/64) in our MR group.)

2. The RMP succeeded in its role as stepping stone for the MDP: More than 25% (17/64)
solved the MDP, without any instruction, when it followed the RMP. (Again compared to
18% in the original Harvard experiment and 12% in our MR group.)

3. The notorious base-rate neglect has all but disappeared in the RMP: it was exhibited by
only 1 student out of 64 in the RM group and 4 out of 64 in the MR group. (Compared to
45% on the MDP in the original Harvard group and 34% in our MR group.)

4. Remarkably, the MDP, when given first, does not at all help in solving the RMP that
follows. Worse, the MDP gets in the way: The table shows 48% success on the RMP
alone, vs. 31% success on the RMP when given after the MDP.

5. Even though the performance on the RMP and the MDP has greatly improved in the RM
group, still the largest number of participants appear in the “incorrect other” category.
This category consists of diverse errors which do not directly relate to the MDP,




including (somewhat surprisingly for this population) many errors concerning misuse of
percentages.

Conclusion

In this article we have seen how the dual-process theory from cognitive psychology
highlights and help explain the power of natural thinking. We have used the medical diagnosis
problem to discuss the gap between intuition (S1) and analytical thinking (S2), and to develop
design principles for bridging this gap. It is my belief that bridging the gap between intuition and
analytical thinking (in research, curriculum planning, learning environments, teaching methods,
work with teachers and students) is a major step towards “optimizing student understanding in
mathematics”.

Based on the above examples and analysis, and indulging in a bit of over-optimism, here are
some of the developments in the educational system I’d like to see happen in the future. (There is
no claim of originality; many related ideas have appeared in the math education literature in
various forms.)

- Map out the high school curriculum (and beyond) for components that could build on
natural thinking and parts that would need to overcome it. For example, which aspects of
functions (or fractions, or proofs) are consonant or dissonant with natural thinking?

- Design curricula, learning environments, teaching methods, that build from the power of
natural thinking.

- Build a stock of puzzles and problems which challenge the intuition, and develop ways to
work profitably with teachers and students on these challenges.

I wish to conclude with an even bigger educational challenge. If you ask mathematicians for
examples of beautiful theorems, you will discover that many of them are counter-intuitive;
indeed, that they are beautiful because they are counter-intuitive, because they challenge our
natural thinking. Like a good joke, the beauty is in the surprise, the unexpected, the unbelievable.
Like a world-class performance in classical ballet, sports, or a soprano coloratura, the beauty is
(partly) in overcoming the limitations of human nature. Examples abound in the history of
mathematics: The infinity of primes, the irrationality of V2, the equi-numerosity of even and
natural numbers, the impossibility theorems (trisecting angles by ruler and compass, solving 5-
degree equations by radicals, enumerating the real numbers, Godel’s theorems). Recall, too, the
joy of discovering that — contrary to your intuition — the extra length in the string-around-the-
earth puzzle is quite small, and the beauty of Papert’s cubic earth thought experiment.

Here, then, is the challenge: By all means, let us build on the power of natural thinking, but
let us also look for ways to help our students feel the joy and see the beauty of going beyond it,
or even against it. We thus arrive at the closing slogan — a variation on the title of the talk:

The power of natural thinking, the challenge of stretching it, the beauty of overcoming it.
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