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ASPECTS OF THE NATURE AND STATE OF RESEARCH IN
MATHEMATICS EDUCATION ?

ABSTRACT. This paper offers an outline and a characterisation of the didactics of math-
ematics, alias the science of mathematics education, as a scientific and scholarly discipline,
and discusses why its endeavours should be of interest to research mathematicians (and
other mathematics professionals). It further presents and discusses a number of major,
rather aggregate findings in the discipline, includingthe astonishing complexity of math-
ematical learning, the key role of domain specificity, obstacles produced by the process-
object duality, students’ alienation from proof and proving, andthe marvels and pitfalls of
information technology in mathematics education.

1. INTRODUCTION

During the last three decades or so mathematics education has become
established as an academic discipline on the international scene. To show
this we need only refer to a number of sociological facts, such as the exist-
ence of a multitude of departments in universities and research institutions;
research grants and projects; academic programmes and degrees; interna-
tional scientific organisations and bodies; journals and publication series;
hosts of conferences; and so forth, all devoted to research in mathemat-
ics education. The discipline is given slightly different names in different
quarters, which is mainly due to the fact that mathematics education has
a dual and hence ambiguous meaning, in that it may refer both to some-
thing provided to students (for simplicity, throughout this paper we shall
use ‘student’ as the general term for the learner, irrespective of educa-
tional level), and to the field in which this ‘something’ is made subject of
research (and development). In order to avoid misunderstandings caused
by this duality the discipline is sometimes calledmathematics education
researchor the science of mathematics education, althoughmathematics
educationprobably remains predominant in everyday usage. In Europe,
there seems to be a preference for using the labelthe didactics of math-
ematics, inspired by names such as ‘Didaktik der Mathematik’ (German),
‘didactique des mathématiques’ (French), ‘didáctica de las matemáticas’

? A half-length version of this paper was published in Documenta Mathematica, Extra
Volume ICM 1998, III, pp. 767-776

Educational Studies in Mathematics40: 1–24, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.



2 MOGENS NISS

(Spanish), ‘matematikdidaktik’ (Scandinavian languages), and their ana-
logues in most European languages, in spite of the slightly oblique con-
notations attached to the term ‘didactical’ in English. In the following I
shall use the names interchangeably.

The sociological aspects aside, what are the issues and research ques-
tions of the didactics of mathematics, what are its methodologies, and what
sorts of results or findings does it offer? In this paper attempts will be
made to characterise this discipline, in particular as regards its nature and
state, and to present and discuss some of its major findings. Key sections
of this paper have been greatly inspired by a number of the world’s lead-
ing researchers in mathematics education who were consulted during the
preparation of this paper. My sincere thanks go to all of them (cf. ‘Ac-
knowledgements’). It is important to underline that these scholars hold a
variety of different views and perspectives of the discipline, and many of
them are likely to disagree with my exposition of it. Also, needless to say,
the responsibility for the entire paper, especially for any flaws or biases it
may contain, is mine alone.

Before undertaking the attempt just outlined it may be in order to ask
why it would/should be of interest not only to mathematics educators but
also to research mathematicians (and other categories of mathematics pro-
fessionals too, for that matter) to become acquainted with the nature and
state of research in mathematics education, i.e. a discipline which is not
quite their own and towards which they may hold various degrees of skep-
ticism. Well, let me offer an answer to this question. The answer consists
of a number elements most of which are related to the fact that the majority
of research mathematicians are also – and in some cases perhaps even
primarily – university teachers of mathematics.

The first element is to do with changes in the boundary conditions
for the teaching of mathematics at university level, changes which are,
in turn, linked to major changes in the role, place and functioning – and
financing! – of universities in society. In former times, say thirty-forty
years ago, the situation was more or less the following (in condensed
and simplistic terms). University students of mathematical topics were
expected to assume all responsibility for their own studies and for their
success or failure. Students who passed the exams had ‘it’ (i.e. necessary
prerequisites, mathematical talent, and diligence), and those who failed
lacked ‘it’, and apart from working hard there wasn’t much one could do
about that. Universities mainly had to pay attention to the former category,
except that they also had a task in identifying members of the latter at an
early stage and in pointing the exit from mathematics out to them. This
implied that lecturers of mathematics could concentrate on the delivery of
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their teaching, whereas the individual student’s learning of what was taught
was not the business of the lecturers but entirely of the student him/herself.
The outcome of learning was finally gauged in tests and examinations, and
students were filtered accordingly. In those days not many question marks
were placed against this way of operation. Universities were not blamed
for students’ failures, and enrolment and pass rates only influenced the
marginals of institution and department budgets. Against this background
it is not surprising that the typical university mathematician took no deeper
interest in students’ learning processes, especially not of those who were
unsuccessful in their studies, or in devising innovative formats and ways
of teaching or new kinds of student activity. By no means does this imply
that teaching was generally neglected (although sometimes it was). But the
focus was on the selection and sequencing of the material to be taught, and
on the clarity and brilliance of its presentation, all of which was considered
from the point of view of one-way communication. These deeply rooted
traditional conditions and circumstances of university teaching of mathem-
atics may well account for parts of the widespread, yet far from universal,
absence of interest amongst research mathematicians in the didactics of
mathematics.

But, whether or not it ought be deplored, these conditions and circum-
stances are no longer with (most of) us. Universities can no longer afford
to concentrate their main efforts on students who can, and want to, stand
the type of diet that used to be served in the past. Today, we have to cater
for students who are actually able to learn mathematics, if properly as-
sisted, but who would be likely to either not enroll at all in studies with
a non-negligible component of mathematics, or to leave or fail the studies
should they enroll, if no didactical or pedagogical attention were paid to
their backgrounds, situations, prerequisites and needs. First of all, apart
from the scarce ‘happy few’, these students are in fact the ones we get,
and it is our professional (and moral) duty to look after them as best we
can. Should we forget this ourselves our colleagues in other disciplines,
deans and vice-chancellors/presidents, administrators, politicians and the
public at large – and above all the students, by voting with their feet –
will know to remind us and to blame us for our autistic arrogance and
for our (co-)responsibility for waste of human potential. Besides, to an
increasing extent the existence, position, and resources of departments
which teach mathematics are strongly dependent not only on the number
of students enrolled and taught, but also on the proportion who succeed
in their courses and finish with a degree. Whether we perceive these as
facts in a hostile or ill-informed world that have to be counteracted, or as a
genuine challenge that has to be met, this – second element – points to the
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need try to understand what it is and what it takes to learn mathematics,
including the processes involved therein, in particular for students who
experience difficulties in this endeavour, and to invent and investigate ways
of teaching that are more beneficial and effective to average students than
the ones traditionally employed.

Then, thirdly, if we understood the possible paths of learning mathem-
atics, and the obstacles that may block these paths, for ordinary students,
we would gain a better understanding of what mathematical knowledge,
insight, and ability are (and are not), of how they are generated, stored, and
activated, and hence of how they may be promoted (and impeded) for other
categories of students, including those with severe learning difficulties, as
well as those with a remarkable talent. As far as the latter category is con-
cerned, we would come closer to specifying what mathematical talent is
and subsequently, perhaps, to fostering it. Similarly, it might well happen
that effective improvements of our modes of teaching ordinary students
could be transferred to have a positive bearing on the teaching of excep-
tional students as well. This would not pertain to the university level only.
If such improvements could be devised and brought about at all levels of
the educational system, we would not only do important service to soci-
ety at large, we would do important service to the mathematics research
community, too.

Finally, to the extent we are able to shed light on what mathematical
knowledge, insight, and ability are, we shall eventually contribute to shed-
ding light on whatmathematicsis. For, none of the issues touched upon
here can be dealt with without continuous implication of and reflection on
the characteristics of mathematics as a discipline in all its manifestations.

This completes my arguments for the claim that matters pertaining to
mathematics education research ought to be of interest also to research
mathematicians, at least in principle. Assuming that this argument be ac-
cepted, new issues arise. Although the questions posed by the didactics
of mathematics are important enough, to what extent is the didactics of
mathematics able to give answers to them, and what is the nature of the
answers actually given? This is the main issue of this paper. In order to
consider it, I shall offer a definition of the field.

2. CHARACTERISING THE FIELD

Various researchers in mathematics education have given definitions of the
field which have a considerable amount of overlap. Instead of reviewing
the definitions put forward by others I shall offer my own as follows. It
contains four components.
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A definition

Subject: The didactics of mathematics, alias the science of mathematics
education, is the scientific and scholarly field of research and development
which aims atidentifying, characterising,and understandingphenomena
and processes actually or potentially involved in theteachingand learning
of mathematics at any educational level.

Endeavour: As particularly regards ‘understanding’ of such phenomena
and processes, attempts to uncover and clarifycausal relationshipsand
mechanismsare the focus.

Approaches: In pursuing these tasks, the didactics of mathematics ad-
dressesall mattersthat are pertinent to the teaching and learning of math-
ematics, irrespective of which scientific, psychological, ideological, eth-
ical, political, social, societal, or other spheres this may involve. Similarly,
the field makes use of considerations, methods, and results fromother fields
and disciplineswhenever this is deemed relevant.

Activities: The didactics of mathematics comprises different kinds of activ-
ities, ranging from theoretical or empiricalfundamental research,through
applied researchanddevelopment,to systematic, reflective practice.

The overall purposes of work in the field are not part of the definition
proper as different agents, including researchers, pursue different aims
and objectives. To quite a few researchers in mathematics education the
perspectives of pure, fundamental research are predominant. However, it
is fair to claim that the over-arching, ultimate end of the whole enterprise
is to promote/improve students’ learning of mathematics and acquisition
of mathematical competencies. It is worth pointing out that the very spe-
cification of the terms just used (‘promote’, ‘improve’ ‘students’ (what
students are being considered?) ‘learning’, ‘mathematics’, ‘acquisition’,
‘mathematical competencies’) is in itself a genuine didactic task.

It is important to realise a peculiar but essential aspect of the didactics
of mathematics: itsdual nature. As is the case with any academic field,
the didactics of mathematics addresses, not surpisingly, what we may call
descriptive/explanatoryissues, in which the generic questions are ‘whatis
(the case)?’(aiming at description) and ‘why is this so?’ (aiming at explan-
ation). Objective, neutral answers are sought to such questions by means of
empirical and theoretical data collection and analysis without any explicit
involvement of values (norms). This does not imply that values are not
present in the choice and formulation of the problems to be studied, or –
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in some cases – of the methods to be adopted. However, by their nature
numerous issues related to education, including mathematics education,
imply the fundamental, explicit or implicit, presence of values and norms.
In other words, in addition to its descriptive/explanatory dimension, the
didactics of mathematics also has to contain anormativedimension, in
which the generic questions are ‘whatought to bethe case?’ and ‘why
should this be so?’. It may come as a surprise to some that issues such
as these are considered part of a scholarly and scientific discourse and
are claimed to belong to the scope of research. But this is unavoidable
in the same way as it is unavoidable to operate with the notion of ‘good
health’ and ‘sound treatment’ in much medical research, or ‘satisfactory
functioning’ of devices constructed in engineering. For normative issues
to be subject of research it is necessary to reveal and explain the values
implicated as honestly and clearly as possible, and to make them subject to
scrutiny; and to undertake an analysis, as objective and neutral as possible,
of the logical, philosophical, and material relations between the elements
involved (cf. Niss, 1996). So, both dimensions are essential constituents
of the science of mathematics education, both crucially relying on theor-
etical and empiricalanalysis, but they are not identical and should not be
confused with one another.

It appears that in many respects the didactics of mathematics has a close
analogue in the field of medicine which has the same duality between a
descriptive/explanatory and a normative dimension as well as wide ranges
of goals, methods, and activities. On the other hand, being hardly more
than 30–40 years old, the didactics of mathematics is certainly not yet a
mature, full-fledged discipline on a par with medicine.

In a brief outline of the main areas of investigation the two primary
ones are, naturally,the teaching of mathematics, which focuses on matters
pertaining to organised attempts to transmit or bring about mathematical
knowledge, skills, insights, competencies, and so forth, to well-defined
categories of recipients, andthe learning of mathematics, where the focus
is on what happens around, in and with students who engage in acquir-
ing such knowledge, skills, etc., with particular regard to the processes
and products of learning. A closely related area of investigation is the
outcomes(results and consequences) of the teaching and the learning of
mathematics, respectively.

We may depict, as in Figure 1, these areas as boxes in a ‘ground floor’
plane such that the ‘teaching’ and ‘learning’ boxes are disjoint and the
‘outcomes’ box intersects both of them. As the investigation of these areas
leads to derived needs to investigate certain auxiliary areas related to the
primary ones but not in themselves of primary didactic concern, such as
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Figure 1. Survey map.

aspects of mathematics as a discipline, aspects of cognitive or learning
psychology, aspects of curriculum design and implementation, and so on,
we may place these auxiliary areas on the same plane as the primary areas
but in a separate compartment at the back of the ‘ground floor’. We may
agree to call activities on the ground floor ‘mathematical didactics of the
first order’. Although the didactics of mathematics may be considered a
mature discipline in a sociological sense (cf. the introduction), the same
is not necessarily the case in a philosophical, a methodological, or a veri-
ficational sense. Thus, there is no universally established framework or
consensus as regards schools of thought; research paradigms; methods;
standards of verification, justification and quality, etc. This is one reason,
among others, why a number of researchers in the field, during the last
couple of decades, have been reflecting on its nature and characterstics,
its issues, methods, and results (see, e.g., Grouws, 1992; Biehler et al.,
1994; Bishop et al., 1996; Sierpinska and Kilpatrick, 1998). Theoretical or
empirical studies in which the field as such is made subject of investigation
do in fact form part of the field itself, although at a meta-level, which we
may depict as an ‘upper floor’ plane parallel to the ground floor plane. We
may think of it as being transparent so as to allow for contemplation of
the ground floor from above. It seems natural to call such meta-activities
‘mathematical didactics of the second order’.
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Finally, for the survey picture being outlined to become complete, let
us imagine a vertical plane cutting both floors as a common wall. On the
ground floor, all three boxes, ‘teaching’, ‘learning’, and ‘outcomes’ are
bisected by this wall. The two half-spaces thus created may be thought of
as representing the descriptive/explanatory and the normative dimensions,
respectively. These dimensions are then present at both floors. If we ima-
gine the vertical wall to be transparent as well, it is possible to look into
each half-space (dimension) from the perspective of the other.

Let us sum up, in a simplified and maybe also simplistic way, the ulti-
mate (utopian?) goals of the didactics of mathematics as follows: We want
to be able to specify and characterisedesirable or satisfactory learningof
mathematics, including the mathematical competencies we should like to
see different categories of individuals possessing. We want to be able to
devise, design and implementeffective mathematics teaching(including
curricula, classroom organisation, study forms and activities, resources
and materials, to mention just a few components) that can serve to bring
about satisfactory/desirable learning. We finally want to construct and im-
plement valid and reliableways to detect and assess, without destructive
side effects, the results of learning and teaching of mathematics. Indicat-
ing and specifying these goals is a normative activity in the didactics of
mathematics.

For all this to be possible we have to be able to identify and understand,
in descriptive and explanatory terms, the role of mathematics in science
and society; what learning of mathematics is/can be and what it is not,
what its conditions are, how it may take place, how it may be hindered,
how it can be detected, and how it can be influenced, all with respect to
different categories of individuals. We further have to understand what
takes place in existing approaches to and modes of mathematics teaching,
and why, both as regards the individual student, groups of students and
entire classrooms (in a general sense). We have to invent new modes of
teaching and make similar investigations. We have to investigate the rela-
tionships between teaching modes and learning processes and outcomes.
We have to investigate the influence of teachers’ backgrounds, education,
and beliefs on their teaching. We have to examine the properties and effects
of current modes of assessment in mathematics education, with particular
regard to the ability to provide valid insight into what students know, un-
derstand, and can do, as we have to devise and investigate, in the same
way, innovative modes of assessment. All this points to endless multitudes
of theoretical and empirical tasks of fundamental and applied research as
well as of concrete development with practical aims.
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If issues such as these are the ones we want to raise, what are the
responses we can offer, and what is their nature? Let me deal with the
latter question first, and devote the next section to the former.

Traditionally, fields of research within the sciences produce eitherem-
pirical findingsof objects, phenomena, properties, relationships, and causes
– like in, say, chemistry – through some form of data collection guided or
followed by theoretical considerations and interpretations, or they produce
theorems, i.e. statements derived by means of logical deduction from a
collection of ‘axioms’ (postulates, facts, laws, assumptions) that are taken
as a (locally) undisputed basis for the derivations, like in mathematics and
theoretical physics.

If we go beyond the predominant paradigms in the sciences and look
at the humanities and the social sciences, other aspects have to be added
to the ones just considered. In philosophical disciplines, the proposal and
analysis of distinctions and concepts – sometimes sharp, but mostly some-
what fuzzy – and concept clusters, introduced to identify and represent
matters from the real world, serve to create a platform for discourses on
and investigations of these matters in an explicit, clear and systematic way.
Such disciplines often producenotions, distinctions, terms, amalgamated
into concepts, or extensive hierarchical networks of concepts connected by
formal or material reasoning, calledtheories, which are meant to be stable,
coherent and consistent. Or more simply put: tools for thought to assist the
analysis of parts or aspects of the world. Disciplines dealing with human
beings, their minds, types of behaviour and activity, as persons, members
of different social and cultural groups, and as citizens, or with communities
and societies at large, primarily produceinterpretationsandmodels, i.e.
hypotheses of individual or social forces and mechanisms that may account
for (explain) phenomena and structures observed in the human or societal
domain under consideration, as encountered in, say, psychology, anthro-
pology, or history. Sometimes sets of interpretations are organised and
assembled into systems of interpretation that are, again, meant to be stable,
coherent, and consistent, and are therefore often called ‘theories’, they too.
We shall refer to such systems by the terminterpretative theories. As most
human behaviour is complex, and most of the time at best locally coherent,
results in these disciplines cannot be expected to be simple and clear-cut.
Finally, there are disciplines within all categories of science that produce
designs(and eventually –constructions). For such products the ultimate
test is their functioning and efficiency in the realm in which they are put
into practice (‘the proof of the pudding is in its eating’). However, as most
important designs and constructions are required to have certain properties
and meet certain specifications before the resulting constructions are in-
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stalled, design disciplines are scientific only to the extent they can provide
well-founded evidence and reasons to believe that their designs possess
certain such properties to a satisfactory degree.

This is not the place to enter into classical philosophical (epistemo-
logical) discussions of the similarities and abundant differences between
disciplines such as these, let alone of their well-foundedness and relative
strengths and weaknesses. Suffice it, here, to note that irrespective of any
dispute, all these types of disciplines are represented in academia with
‘civil rights’ of long standing.

Where is the didactics of mathematics situated in the discipline survey
just sketched? In fact it contains instances and provides findings of most
of the categories of disciplines mentioned, but to strongly varying degrees.
There are empirical findings, like in chemistry or archaeology. There are
terms, concepts and theories for analysis of a philosophical nature (e.g.
Ernest, 1991; Skovsmose, 1994; Niss, 1994), and there are models, in-
terpretations and interpretative theories of a psychological, sociological
or historical nature. There are multitudes of designs and constructions of
curricula, teaching approaches, instructional sequences, learning environ-
ments, materials for teaching and learning, and so forth. As to ‘theorems’,
like in mathematics, the situation is different, though. In fact, the only
theorems one may find in the didactics of mathematics are already the-
orems of mathematics itself. (For instance, in the 1960’s and 1970’s it
was not unusual to encounter demonstrations that a given mathematical
concept, theorem or topic could be introduced, in a consistent way, on
some axiomatic basis taylored to a given educational level.)

However, as the teaching and learning of mathematics are always situ-
ated in context and time, and subjected to a multitude of conditions and
circumstances, sometimes of a very specific nature, there will always be
limits to the universality in space and time of the findings obtained in the
didactics of mathematics.

When researchers in mathematics education are asked about the nature
of their field, their answers point to some of these aspects but with varying
perspectives and emphases. Some researchers are hesitant to use the term
‘finding’ in this context in order to avoid misunderstandings and too nar-
row expectations of what a scientific field should have to offer. They prefer
to see the didactics of mathematics as providing generic tools – including
conceptual apparatuses and models – for analysing teaching/learning situ-
ations, or as providing new questions, new ways of looking at things, new
ideas inspired by other fields, etc. Others emphasise that the field offers
illuminating case studies which are not necessarily claimed to be gener-
alisable beyond the individual cases themselves, and hence should not be
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considered scientific findings in the classical sense, but are nevertheless
stimulating for thought and practice. Still other didacticians give primary
importance to the design aspects of the field (Wittmann, 1995; cf. also
Artigue, 1987). However, as long as we keep in mind that the notion of
finding is broader in disciplines not residing within the realm of classical
empirical and theoretical sciences, I don’t see any severe problems in using
this term in the didactics of mathematics.

Although it is not an easy task to gauge the relative weights of the
different categories of disciplines and findings across the entire field of
the didactics of mathematics, it is probably fair to describe the situation as
follows.

A major portion of research done during the last couple of decades has
focused on students’learning processes and productsas manifested on
the individual, small group, and classroom levels, and as conditioned by
a variety of factors such as mathematics as a discipline; curricula; teach-
ing; tasks and activities; materials and resources, including text books and
information technology; assessment; students’ beliefs and attitudes; edu-
cational environment, including classroom communication and discourse;
social relationships amongst students and between students and teacher(s);
teachers’ education, backgrounds, and beliefs; and so forth. The typical
findings – of which examples will be given in the next section – take the
shape of models, interpretations, and interpretative theories, but certainly
often also of solid empirical facts. Today, we know a lot about the possible
mathematical learning processes of students and about how these may take
place within different areas of mathematics and under different circum-
stances and conditions, as we know a lot about factors that may hinder,
impede or simply prevent successful learning.

We have further come to know a great deal about what happens in
actual mathematics teachingin actual classrooms at different levels and
in different places in the world (Cobb and Bauersfeld, 1995). Much of this
knowledge is of a factual, descriptive nature. This has made it possible to
describe and analyse various settings and forms of teaching, and the res-
ulting teaching-learning situations. However, we are still left with hosts of
unanswered questions as to how to design, stage, organise, implement, and
carry through teaching-learning environments and situations addressing
various categories of students, which to a reasonable degree of certainty
and robustness lead to desirable or satisfactory learning outcomes, in a
broad sense, for those students. Indeed this is not to say that we don’t
know anything in this respect. In fact we do, but as yet our knowledge is
more fragmentary and scattered than is the case with our insights into the
mathematical learning processes of students. This is to do with two factors.
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Firstly, insights into such learning processes have turned out to be a
prerequisite for insights into the outcomes of teaching. So, progress in the
latter respect somehow has to await progress in the former. Secondly, as
research on learning processes has revealed several variations, complex-
ities and complications in students’ learning of mathematics, traditional
assessment modes and instruments to an increasing extent have proved
insufficient, and sometimes outright misleading, in making well-founded
inference of what students actually know, understand, and can achieve
in different situations and contexts, especially when larger student pop-
ulations are considered. In other words, it is far from a trivial matter to
specify, detect, appraise, assess, and convincingly document the outcomes
of teaching and learning in terms of students’ mathematical knowledge,
insights and competencies. A third factor that might have been expected
to be in force here is disagreement about what desirable or satisfactory
outcomes of mathematical learning are. Such disagreement on the goals
would, of course, give rise to problems regarding what should be con-
sidered adequate modes of teaching. A considerable amount of literature
has been devoted to the – normative – issue of the ends and aims of math-
ematics education (e.g., see Niss, 1996), and even though there is some
variation in the views held by mathematics educators on these matters, in
particular as regards details or terminology, a fair amount of agreement on
the basics seems to prevail (with emphases on understanding, reasoning,
creativity, problem solving, and the ability to apply mathematics in extra-
mathematical contexts and situations, all under varying circumstances and
in varying domains and contexts).

As I said, we know something about effective teaching modes in spe-
cific contexts (see, for instance, Leron, 1985; Tirosh, 1991; and, for an
introduction to the idea of a ‘scientific debate’, Alibert and Thomas, 1991).
In particular, based on our growing insight into mathematical learning pro-
cesses and teaching situations, we know more and more about whatis not
effective teaching vis-à-vis various groups of recipients. At first sight such
knowledge may appear to be a bit negative, but at closer reflection negative
results are certainly valuable as they provide progress in the search for pos-
itive, definitive results. Moreover, the didactic literature displays numerous
examples of innovative teaching designs and practices, many of which are
judged highly successful. The fact that it is not always easy to analyse
and document the success of an innovation in scientific terms, including to
provide evidence of its transferability to other contexts and settings, does
certainly not rule out that the innovation possesses highly valuable qualit-
ies of the kind claimed and experienced (Leron 1983). These qualities are
just recognised and appraised at a more local or subjective level than asked
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for in research. By the way, wasn’t it a renowned mathematician who said
‘I cannot define my wife but I can recognise her when I see her’?

3. EXAMPLES OF MAJOR FINDINGS

It follows from the previous section that findings in the didactics of math-
ematics only relatively seldom take the shape of empirical or experimental
results in the traditional sense – and of mathematical results only to the
extent theyarealready results in mathematics, just transferred to a didactic
context. Nevertheless, findings in the field resulting from thorough theor-
etical or empirical analyses do give rise to solid insights of considerable
significance to our understanding of processes and outcomes of mathem-
atics teaching and learning, and hence for the ways in which mathematics
may, or may not, be taught and learnt. This is not the place for a systematic
review of the most important findings in the didactics of mathematics – in
fact, no such single place can exist (for more comprehensive attempts in
this direction, cf. the handbooks, Grouws, 1992, and Bishop et al., 1996).
Instead, we shall consider a few selected, significant examples, of a fairly
advanced level of aggregation, which can serve to illustrate the range and
scope of the field. By the nature of this paper, it is not possible to provide
detailed presentations or full documentation of the findings selected. A few
references, mainly of survey or review type providing access to a broader
body of primary research literature, have to suffice.

The astonishing complexity of mathematical learning: An individual
student’s mathematical learning often takes place in immensely complex
ways, along numerous strongly winding and frequently interrupted paths,
across many different sorts of terrain. Many elements, albeit not necessar-
ily their composition, are shared by large categories of students, whereas
others are peculiar to the individual.

Students’ misconceptions (and errors) tend to occur in systematic ways
in regular and persistent patterns, which can often be explained by the
action of an underlying tacit rationality put into operation on a basis which
is distorted or insufficient.

The learning processes and products of the student are strongly in-
fluenced by a number of crucial factors, including the epistemological
characteristics of mathematics and the student’s beliefs about them; the
social and cultural situations and contexts of learning; primitive, relat-
ively stable implicit intuitions and models that interact, in a tacit way,
with new learning tasks; the modes and instruments by which learning is
assessed; similarities and discrepancies between different ‘linguistic re-
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gisters’, including everyday language and various language modes that
are characteristic of mathematical discourses.

This over-arching finding is an agglomeration of several separate findings,
each of which results from extensive bodies of research. The roles of epi-
stemological issues and obstacles in the acquisition of mathematical know-
ledge have been studied, for instance, by Sierpinska (1994) and others (for
an overview, see Sierpinska and Lerman, 1996). Social, cultural, and con-
textual factors in mathematical learning have been investigated from many
perspectives, see for instance Bishop, 1988; Nunes et al., 1993; and Cobb
and Bauersfeld, 1995. Schoenfeld (1983) and Pehkonen (e.g. Pehkonen
and Törner, 1996), among others, have investigated students’ (and teach-
ers’) belief’s. Fischbein and his collaborators have studied the influence
of tacit models on mathematical activity (see, e.g. Fischbein, 1989). The
influence of assessment on the learning of mathematics has been subject of
several theoretical and empirical studies (e.g. Leder, 1992; Niss, 1993a and
b). The same is true with the role of language and communication (Pimm,
1987; and Ellerton and Clarkson, 1996, for an overview).

The studies behind these findings teach us to be cautious and not to
jump to conclusions when dealing with students’ learning of mathematics.
Mathematical learning is not isomorphic to the edifice of mathematics to be
learnt. Neither processes nor outcomes of learning are in general logically
ordered, let alone globally deductive, at least not with respect to hierarchies
that one might have thought of as natural or even canonical. For instance,
research has shown that many students who are able to correctly solve an
equation such as 7x − 3 = 13x + 15 are unable to subsequently correctly
decide whetherx = 10 is a solution (Bodin, 1993). Normally, one would
assume that knowing a complete solution to an equation, i.e. knowing ex-
actly which elements are solutions and which are not, occupies a relatively
high position in the logical hierarchy and hence will automatically lead to a
correct answer to a question concerned with a special case. Apparently this
need not be so. The explanation normally given to this phenomenon is that
solving equations resides in one (‘syntactic’) domain, strongly governed
by rules and procedures with no particular attention being paid to the
objects involved in the procedures, whereas examining whether or not a
given element solves the equation requires an (‘semantic’) understanding
of what asolution means. Furthermore, checking directly, from scratch,
whether a particular element is a solution usually involves procedures at
variance with general solution algorithms. So, the two facets of the solution
of equations, intimitely linked in the mind of the mature knower, need not
even both exist in the mind of the novice mathematical learner, let alone
be intertwined.
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The key role of domain specificity: For a student engaged in learning
mathematics, the specific nature, content and range of a mathematical
concept that he or she is acquiring or building up are, to a large part,
determined by the set of specific domains in which that concept has been
concretely exemplified and embedded for that particular student.

For an illustration of what we are talking about, a large group of Danish
12th grade students who sat, a few years ago, the final national written
examination in mathematics at the end of the most demanding mathematics
course in upper secondary school, showed severe difficulties in recognising
the object in 3-space given by the equationz = 0 as a plane. On closer
inspection, the primary reason for this turned out to be that the equation
was not explicitly stated in the standard form,ax + by + cz = d, the
main problem being thatx andy were absent in the equation. So, to these
students, the concept of a general plane in the analytic geometry of 3-space
did not comprise thex, y-plane in the formz = 0 as a special case, most
certainly because such special cases had not received much attention, if
any, in the teaching-learning activities on planes in which these students
had been engaged.

The finding at issue is closely related to the finding that students’con-
cept imagesare not identical with theconcept definitionsthey are exposed
to (Tall and Vinner, 1981; Vinner and Dreyfus, 1989; and for an over-
view, Vinner, 1991; and Tall, 1992; see also Robert, 1982). The concept
images are generated by previous notions and experiences as well as by
the examples against which the concept definitions have been tested. Sev-
eral attempts have been made to construct general theoretical frameworks
to elucidate these findings. One notable example is Vergnaud’s notion of
‘conceptual field’ (Vergnaud, 1990).

At first sight, our finding may seem to be little more than a reformu-
lation of a well-known observation belonging to the experience of any
observant and reflective teacher of mathematics at whatever level. (If this
is true, which it sometimes is, it is remarkable, though, how often the
finding remains unemployed in actual teaching practice.) But, on closer
inspection, the range and depth of the instances of this finding have far-
reaching bearings on the teaching and learning of mathematics. Thus, not
only are most ‘usual’ students unable to grasp an abstract concept, given
by a definition, in and of itself unless it is elucidated by multiple examples
(which is a well known fact), but, more importantly, the scope of the notion
that a student forms is often barred by the very examples studied to support
that notion. For example, even if students who are learning calculus or
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analysis are presented with full theoretical definitions, say ofε, δ-type, of
function, limit, continuity, derivative, and differentiability, and even if it is
explicitly stated in the textbook and by the teacher that the aim is to develop
these concepts in a general form, and even if ‘warning examples’ meant
to vaccinate against wrong conclusions caused by over-simplification are
provided, students’ actual notions and concept images will be shaped, and
limited, by the examples, problems, and tasks on which they are actu-
ally set to work. If these are drawn exclusively from objects (sequences,
functions) expressed as standard ‘molecular’ expressions composed of fa-
miliar, well-behaved standard objects on the shelves, ‘atoms’, the majority
of students will gradually tie their notions more and more closely to the
specimens actually studied, and aspects allowed by the general concepts
but not exhibited by the specific specimens will wither or even, eventu-
ally, disappear. For instance, studies show that the number of calculus
students who don’t include, say, Dirichlet’s function in their concept of
function is legion. Instead, the general concept image becomes equipped
with properties resulting from an over-generalisation of properties held by
the collection of special cases but not implied by the general concept.
Remarkably enough, this does not prevent many of the very same stu-
dents from correctly remembering and citing general theoretical definitions
without seeing any mismatch between these and properties characteristic
of special cases only. These definitions seem to just be parked in mental
compartments different and detached from the ones activated in the study
of the cases. In other words, if average students are to establish a general
notion of a mathematical concept and to understand its range, they have
to experience this range by being given opportunities to explore a large
variety of representative manifestations of the concept in various domains.

The danger of forming too restricted images of general concepts seems
to be particularly manifest in domains – such as arithmetic, calculus, lin-
ear algebra, statistics – that lend themselves to an algorithmic ‘calculus’,
in a general sense, i.e. a system of formalisable operations and manip-
ulations in a symbolic setting, the virtue and strength of which exactly
is to replace the continual, and often conceptually demanding, evocation
of fundamental notions and concepts by algorithmic calculations based
solely on selected aspects of the concepts. In such domains, algorithmic
manipulations – procedures – tend to attract the main part of students’ at-
tention so as to create a ‘concept filter’: Only those instances (and aspects)
of a general concept that are digestible by and relevant in the context of
the ‘calculus’ are preserved in students’ minds. In severe cases an over-
emphasis in instruction on procedures may even prevent students from
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developing further understanding of the concepts they experience through
manipulations only (Hiebert and Carpenter, 1992).

The present finding shows that it is a non-trivial matter of teaching and
learning to establish mathematical concepts with students so as to be both
sufficiently general and sufficiently concrete. Research further suggests
(see, e.g., Janvier, 1985) that for this to happen, several differentrep-
resentations(e.g. numerical, verbal, symbolic, graphical, diagrammatical)
of concepts and phenomena are essential, as are the links and transitions
between these representations.

There is a large and important category of mathematical concepts of
which the acquisition becomes particularly complex and difficult, namely
concepts generated by andencapsulatingspecific processes. Well-known
examples of this are the concept of function as anobject, encapsulating the
mechanisms thatproduce the valuesof the function into an entity (which
can further play the role of an element in some space of functions, or that
of an unknown in a differential equation), and the concept of derivative,
encapsulating the processes of differentiating a function pointwise, and
of amalgamating the outcomes into a new function. Another example is
the concept of quotient set (and structure) arising from an equivalence
relation which in turn is an encapsulation of the process of determining
whether or not given pairs of objects are equivalent in the original set. This
process-object duality, so characterstic of many (but not all) mathematical
concepts, is referred to in the research literature by different terms, such
as ‘tool-object’ (Douady, 1991), ‘reification’ (Sfard, 1991, and Sfard and
Linchevski, 1994), ‘procept’, a hybrid of process and concept, (Tall, 1991,
Chapter 15). It constitutes the following finding:

Obstacles produced by the process-object duality: The process-object
duality of mathematical concepts that are constituted as objects by en-
capsulation/reification of specific processes typically gives rise to funda-
mental learning obstacles for students. They often experience considerable
problems in leaving the process level and entering the object level. Some
students are able to establish notions of both the processes underlying a
certain concept and of that concept as an object, but are unable to establish
links between the two.

In addition to influencing the learning of mathematics, the syndrome un-
covered in this finding gives rise to corresponding teaching difficulties as
well. For example, many students conceive of an equation as signifying a
prompt/request to perform certain operations, without holding any concep-
tion of an equation as such distinct from the operations to be performed. To
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them, an equation simply does not constitute a mathematical entity, such
as a statement or a predicate – an issue which is, evidently, closely linked
to other diffcult matters like variables, unknowns, the roles of the equality
sign, and so forth. This undoubtedly accounts for large parts of the fact
that equations of whichever type (algebraic or differential) constitute well-
known hurdles in all teaching that focus on understanding of equations and
not just on procedures to solve them.

Undoubtedly, the notions of mathematical proof and proving are some
of the most crucial, demanding, complex, and controversial ones, in all of
mathematics education. Deep scientific, philosophical, psychological, and
educational issues are involved in these notions. Hence it is no wonder that
they have been made subject of discussion and study in didactic research to
a substantial extent over the years (for a recent discussion, see Hanna and
Jahnke, 1996; see also Alibert and Thomas, 1991). Here, we shall confine
ourselves to indicating but one finding pertinent to proof and proving in
the teaching and learning of mathematics.

Students’ alienation from proof and proving: There is a wide gap be-
tween students’ conceptions of mathematical proof and proving and those
held in the mathematics community. Typically, at any level of mathematics
education in which proof or proving are on the agenda, students experience
great problems in understanding what a proof is (and is not) supposed
to be, and what its purposes and functions are, as they have substantial
problems in proving statements themselves, except in highly standardised
situations. They tend to perceive proof and proving as strange freemasonry
rituals into which mathematical professionals indulge but which are not
really meant to be comprehended by ordinary human beings.

Research further suggests that students’ conceptions of what it means,
to them, to convincingly establish the truth of a mathematical statement,
are often centrered around either direct intuitive insight (‘I can see it has
to be true’), an amount of empirical evidence provided by special cases, or
generic examples that ‘contain it all in one’. Moreover, many students who
are able to correctly reproduce a (valid) proof in oral or written form,
do not see the proof to have, in itself, any bearing on the truth of the
proposition arrived at by means of the proof.

The fact that proof and proving represent such great demands and chal-
lenges to the learning of mathematics implied that proof and proving have
received, in the 1980’s and 1990’s, a reduced emphasis in much mathem-
atics teaching. Rather than investing major efforts in training ‘performing
monkeys’, with limited success, mathematics educators have concentrated
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on the provision of meaning and sense of mathematical ideas, notions, and
activities to students. However, there seems to be a growing recognition
that there is a need to revitalise (not just revive) proof and proving as
central components in mathematics education – and not the least so in the
light of the challenges to the classical notions of mathematical verification
generated by modern computer systems. For instance, this recognition is
the basis of a large ongoing research project in Italy (‘Theorems in School:
From History and Epistemology to Cognitive and Educational Issues’),
directed by P. Boero, M. Bartolini Bussi, and others. Also there is grow-
ing evidence that it is possible to successfully meet, in the teaching of
mathematics, parts of the demands and challenges posed by proof and
proving, while at the same time furthering the fostering of mathematical
meaning and sense-making with students. Literature on this topic also
shows (see, for example, Alibert and Thomas, 1991) that it is possible
to design and stage teaching–learning environments and situations that
facilitate the bridging of the gap between students’ conceptions of math-
ematical proof and proving and those characteristic of mathematics as a
discipline. An extensive data base of literature on proof and proving, as-
sembled and maintained by N. Balacheff, is accessible on the World Wide
Web (International Newsletter on the Teaching and Learning of Mathem-
atical Proof, at http://www-eiah.imag.fr/eiah/).

The last finding to be discussed here, briefly, is to do with the role
and impact of information technology (calculators and computers and their
software) on the teaching and learning of mathematics. As this is perhaps
the single most debated issue in mathematics education during the last
two decades, and one which has given rise to large amounts of research
(for recent overviews, see Balacheff and Kaput, 1996; Ruthven, 1996; and
Heid, 1997), we can touch upon one or two aspects only. Let us do this by
formulating the following finding:

The marvels and the pitfalls of information technology in mathematics
education: Information technology gives rise to major transformations of
mathematics education in all respects. Research shows that it has opened
avenues to new ways of teaching and learning which may help to greatly
expand and deepen students’ mathematical experiences, insights, and abil-
ities. However, it further shows that this does not happen automatically
but requires the use of technology to be embedded with reflection and care
into the overall design and implementation of teaching-learning environ-
ments and situations, of which IT-activities are but one amongst several
components.
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The more students can do in and with information technology in math-
ematics, the greater is the need for their understanding, reflection, and
critical analysis of what they are doing. So, in spite of what one might have
expected because of the new opportunities offered by information techno-
logy, IT increases rather than decreases the demands on the teaching and
learning of mathematics.

In other words, it is not a smooth and simple matter of ‘just doing it’
to make information technology assume a role in mathematics education
which serves to extend and amplify students’ general mathematical capa-
cities rather than replacing their intellects. There is ample research evid-
ence for the claim that when it is no longer our task to train the ‘human
calculator’ as was (also) the case in the past, parts of the traditional drill do
become obsolete. But this does not imply that students’ no longer need to
be able to perform basic operations themselves. We have yet to see research
pointing out exactly what and how much procedural ability is needed for
understanding the processes and products generated by the technology.

One other pitfall of information technology indicated in the research
literature, is that the technological system itself (hardware and software)
can form a barrier and an obstacle to learning, either by simply becoming a
new and not necessarily easy topic in the curriculum, or by distracting stu-
dents’ attention so as to concentrate on properties of the system rather than
on the learning of mathematics. Once again, for this instance of ‘the tail
wagging the dog’ to be avoided it is essential that information technology
be assigned a role and place in the entire teaching-learning landscape on
the basis of an overall reflective and analytic educational strategy. Where
this happens, calculators and computers can give students access to math-
ematical experiences, insights, and abilities which otherwise demand years
of dedication and hard work.

4. CONCLUSION

In a single paper it is not possible just to touch upon all major aspects and
areas of the didactics of mathematics. So, it has been out of the question
to do justice to the field, let alone to the thousands of researchers who
have contributed to founding, shaping and developing it. Instead of the few
findings put forward here, the selection of which was partly motivated by
expectations concerning their potential interest to research mathematicians
and other mathematics professionals, hosts of other findings could have
been selected for discussion with no lesser right and relevance. Here is
one:
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There is no automatic transfer from a solid knowledge of mathematical
theory to the ability to solve non-routine mathematical problems, or the
ability to apply mathematics and perform mathematical modelling in com-
plex, extra-mathematical contexts. For this to happen both problem solving
and modelling have to be made object of explicit teaching and learning,
and there is ample evidence that it is possible to design teaching settings
so as to foster and solidify these abilities.

And here is another one:
Many of the assessment modes and instruments in current use in math-
ematics education fail to provide valid insight into what students know,
understand, and can achieve, in particular as far as higher order know-
ledge, insight and ability are concerned. No single assessment instrument
is sufficient for this purpose; balanced sets of instruments are needed.
There is a general and increasing mismatch between established assess-
ment modes and the ends and goals pursued by contemporary mathemat-
ics education. Nevertheless, appropriate (valid and reliable) assessment
modesare at our disposal, but are not put into large scale use because
they tend to contradict external demands for inexpensive, fast, and easy
assessment procedures that yield simple and summative results which are
easy to record and communicate.

Important findings concerning the values and efficiency ofcollaborat-
ive learningandinnovative teaching approaches and forms of study, such
as project work; the significance of carefully balanced, innovativemul-
tifaceted curricula, elucidating historical, philosophical, societal, applica-
tional and modelling aspects of mathematics; the impact ofsocial, cultural
and gender factorson mathematics education; and many others, have not,
regrettably, been given their due shares in this presentation. The same is
true with the findings contributed by impressive bodies of research on the
teaching and learning of specific mathematicaltopics, such as arithmetic,
abstract and linear algebra, calculus/analysis, geometry, discrete mathem-
atics, and probability and statistics, and with the findings represented by
the instrumentalinterpretative theoriesof Brousseau (on ‘situations’, and
‘didactical contracts’ in mathematics education), of Chevallard (on the
so-called ‘didactical transposition’), of Fischbein (on intuition), and of
Mellin-Olsen (on ‘learning rationales’). Also the extensive and elaborate
piece of didactical engineering (design and construction) contributed by
the Freudenthal school (Freudenthal, de Lange, and several others) at the
University of Utrecht (the Netherlands) has been left out of this survey.

Nevertheless, the findings which we have been able to present suffice
to teach us two lessons which we might want to callsuper-findings. If we
want to teach mathematics, with satisfactory or desirable results, to stu-
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dents other than the rather few who can learn mathematics without being
taught, or the even fewer who cannot learn mathematics irrespective of
what and how they are taught, two matters have to be kept in mind at all
times:

1. We have to be infinitely careful not to jump to conclusions and make
false inferences about the processes and outcomes of students’ learning of
mathematics. Wrong or simplistic assumptions and conclusions are always
close at hand.

2. If there is something we want our students to know, understand, or be
able to do, we have to make it the object of explicit and carefully designed
teaching. Because of 1., there is no such thing as guaranteed transfer of
knowledge, insight and ability from one context or domain to another.
Transfer certainly occurs and can be brought about, but if it is to take place
in a controlled way it has to be cultivated.
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