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Abstract. A scientifically disciplined, learning-oriented approach to mathe-

matics education is illustrated through examples and detailed comparison to
articles in the March 2011 Special Issue on Education of the Notices of the

American Mathematical Society. Many of the Notices articles focus on teacher

education, with an underlying presumption that the current teacher corps is
not sufficiently competent. The analysis here suggests that the teachers are

competent enough, but the methodology they have been taught to use may

not be competent. In other words, significantly better outcomes may require
profound changes in educational philosophy and teacher-education programs.
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1. Introduction

This article1 gives a perspective on K-12 mathematics education that differs
from standard approaches in several ways. First, the focus is directly on individual
learning rather than on teaching, and conclusions about teaching are driven by
learning considerations. Second, the perspective developed bottom-up from micro-
scale observations. It owes much to cognitive neuroscience, but little to educational
philosophy since this has little traction at micro scales. Third, it developed top-
down in terms of educational level. Our eventual goal is to produce competent
citizens and capable scientists and engineers. To do this, college faculty need certain
skills from high school; to develop these skills, high-school teachers need certain
outcomes from middle school; and so on. In particular, long-term needs impose
strong constraints on elementary education. Finally the account draws on modern
professional practice. These features are described a bit more in the next section,
and in the preface to [7].

Much of the output from this approach is also micro-scale: highly-effective ways
to treat fractions, polynomial multiplication, word problems, etc., but not much
about how these might be put together in a course or curriculum. In other words, a
toolkit without assembly instructions. Section 3 illustrates this through examples.
Topics are fractions, word problems, multiplication of polynomials, and partial
fractions in both integers and polynomials. The examples are middle- and high-
school topics because the issues are clearer and the alternatives richer, but many
of the conclusions apply to lower grades as well. Many of the examples are taken
from [1], and comparisons are made in the final section.

Section 4 describes potential implications for teaching. There are several points
related to the description as “a toolkit without assembly instructions”. First, the
teaching implications are mainly strategies to make the tools work, so do not address
“assembly” issues such organizing or presenting the material. This is in contrast
to educational-philosophy approaches that provide assembly instructions without
much toolkit, and focus more on pedagogy and content-independent methodology.
The second point is that the suggestions are relevant only for people who want
to use the tools effectively. They are not method-independent assertions about
teaching.

The second subsection directly concerns teaching. The first provides a coherent
context: a description of mathematics developed to help make sense of mathemat-
ical aspects of common features. The final section concerns teacher preparation
relevant to this approach. Among other things it throws light on why study of
advanced topics does not seem to improve K-12 teaching.

The final Section, 5, contrasts some of these conclusions with articles in March
2011 special issue on education of the Notices of the American Mathematical Soci-
ety, [1]

2. Background

The most significant background for this material is extensive (over a thousand
hours) one-on-one diagnostic work with students2. The procedure is that I go to
them when they need help. I review their work, diagnose the specific problem, and

1This is the full version. The abridged version omits some examples and the final section on
comparisons with [1].

2In the Math Emporium at Virginia Tech.
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show them how to fix it to avoid a recurrence.This is not tutoring. The students
do most of the talking and most of the work, and I leave to let them finish on their
own as soon as they are past the specific difficulty. The focus on diagnosis also
helps students see how to diagnose and correct their own errors.

The context for the diagnostic work is a computer-tested engineering calculus
course that I developed. Diagnosis of problems provides feedback for the course-
ware: it is designed to emphasize structure and encourage work habits that avoid
these problems. The material is also designed so that pre-existing learning errors
will cause serious difficulty. The goal is to expose these errors so they can be
diagnosed and repaired.

A final ingredient is an extensive bottom-up analysis of contemporary mathe-
matical practice, [6]. This draws on my own research experience, editorial work,
work on publication policy, cognitive neuroscience, history of mathematics, the
work with students mentioned above, and many other sources. It is well-known
that modern professional practice is quite different from that in the nineteenth cen-
tury, and from models used in education and most philosophical accounts. It was
no surprise to find that contemporary practice is better adapted to the subject.
It was unexpected to find that, within the subject constraints, it is much better
adapted to human cognitive facilities. It seems that contemporary practice is not
just for freaks: carefully understood, it can be a powerful resource for education.

These experiences have given a fine-grained perspective on mathematical learning
and its difficulties. Moreover the perspective directly concerns individual learning:
not teaching, and not learning mediated by teachers. I have almost forty years of
traditional classroom teaching experience, and found—to my dismay—that teaching
is not nearly as closely connected with learning as I had believed.

3. Examples

Explicit problem-oriented methods for student use are the main products of the
science-of-learning approach and correspondingly are the core of this essay. But
isolated novelties are of limited value, so enough of these must be given so they
can be seen to fit together. An unconventional approach to fractions in the first
section, for example, is shown to give effective contexts for partial fractions in both
the integers (§3.3) and polynomials (§3.3). Similarly an unconventional procedure
for multiplying polynomials in §3.4 is adapted to find coefficients in polynomial
partial fractions in §3.3, and a modular-arithmetic approach to a tricky word prob-
lem in §3.2 is related to partial fractions in both integers and polynomials. Many
more examples and interconnections are given in [7]. The polynomial multiplication
procedure, for instance, is adapted to give an algorithm for multiplying multi-digit
integers in Proof projects for teachers and Neuroscience experiments for mathemat-
ics education.

3.1. Fractions. These are a perennial source of trouble, and there seem to be two
reasons. First, a fraction is a name for something, not the thing itself. Of course
all our symbols are names, not things. This point is a bit subtle for elementary
education, and if only one name is used then imprecision (“2 is a number”) seems
harmless. But the expression 9

4 = 2.25 really means “these are both names for
the same thing”. The different names encode different properties, and we want to
work with both because we want to exploit the different information they encode.
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Identifying the names with the number makes this obscure and confusing. There
is further discussion of names in §4.2.2.

The second point about fractions is that they specify things implicitly. The
name 2.25 encodes an explicit procedure for assembling a number from single-digit
integers and powers of 10. Fractions and names such as

√
2 encode properties that

determine the thing, but do not encode a procedure. See the comments below, and
in §4.2.2.

3.1.1. Definition. A faction is a name that encodes a property. Specifically, � = a
b

means that � has the property b� = a.

3.1.2. Examples.

(1) The decimal 2.25 is entitled to the name 9
4 because it satisfies 4× 2.25 = 9.

(2) Is a−2 ?= a2−4
a+2 ? To find out, see if it has the property (a+2)×�

?= a2−4.
Trying it gives

(a+ 2)× (a− 2) = a2 − a2 + 2a− 4 = a2 − 4,

so the answer is ‘yes’.
(3) Is a

x + b
y

?= a+b
x+y ? To see if the defining property is true, clear denominators

(multiply by xy(x + y)). We get a(y(x + y)) + b(x(x + y)) ?= (a + b)(xy).
Expanding and canceling gives ay2 + bx2 ?= 0. This hardly ever works, so
the answer in general is ‘no’.

(4) Express a
x + b

y as a fraction. Plan: first give this a neutral name, � =
a
x + b

y . Expressing it as a fraction, � = r
s , means we want to find r, s so

that s� = r. The original expression is given in terms of fractions so to
learn anything about it we have to clear denominators and use the defining
property. Multiply by xy to get xy� = xy( a

x + b
y ) = ya+xb. But comparing

with what we want shows that � = ya+xb
xy

3.1.3. Notation. I explain the reasons for nonstandard notations � and ?=.
First, �. If we are trying to find a fraction name for something, we need another

name to use during the process. The thing is usually given with a compound name
(e.g. 2

a + 7 × 2
b ) but it is hard to work with this and still think of it as a single

object. It helps to use a temporary name, e.g “let A = 2
a + 7 × 2

b ”. But using a
symbol means we have three symbolic names in play. Using a neutral placeholder,
�, seems to be less confusing. This is obviously temporary, encodes no structure,
and has no hidden significance.

The notation ?= addresses problems with very sloppy use of ‘=’. In common
use this can mean “define x by. . . ”; “it is always true that. . . ”; “is it always true
that. . . ?”, or “determine when it is true that. . . ”. The equation alone is incomplete
and the intended meaning is to be inferred from context . This ambiguity becomes
invisible to experts, but students—and many teachers—do not understand it and
it is a great source of confusion (see question 2, p. 390, in [5]). Computers don’t
understand it either, and the programming language of Mathematica provides at
least six different symbols for different meanings of ‘=’. In the example here we want
to begin with an equality posed as a question, and end with the same expression as
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an assertion. Confusion is inevitable if the notation does not display the difference
between the two.

3.1.4. Comments. The ‘property-encoding name’ point of view dissipates much of
the confusion about fractions. Sure the rules are different. If we are combining
things with a special properties (encoded in the names), and want to see that these
properties give the outcome a similar structure, then we use manipulations appro-
priate to the property. For example we could add integer fractions by converting
them to decimals and adding these. This would give the right number, but would
not display it as a fraction. The same is true for square roots, or for that mat-
ter, decimals. 1.23 + 45.6 already specifies a number, and decimal arithmetic is
necessary to find the decimal name for this number, not to find the number.

The precise definition also clarifies the status of the strange rules. According to
the definition, if you want to do anything with fractions you have to begin by clear-
ing denominators. The rules provide shortcuts. For instance “divide by inverting
and multiplying” is not pulled out of some dark place at random, but conveniently
summarizes the outcome of a longer calculation that uses the definition.

3.2. Word problems. This is a crucial topic because contemporary educators
put great emphasis on word problems. The contemporary approach is problematic,
however. There is an abstract discussion in §4.2.4; here I illustrate the use of
modeling to avoid the problem.

A mathematical model is a translation of a real-world or word problem to a
symbolic form suitable for mathematical analysis. The key feature is that little or
no analysis is done during modeling, and no modeling is done during analysis of
the model. Five examples are given. The first comes from the article of Heaton
and Lewis [4] in the Notices special issue, and the approach used here is contrasted
with theirs in §5.3. The second is a typical number-and-word problem with little
mathematical content. The third illustrates the use of algebra to explore a problem
about statistics. The fourth and fifth illustrate deficiencies of “trick problems”.

3.2.1. Example 1: Chicken nuggets. The “chicken nugget conundrum3” is:
Chicken nuggets are available in three size boxes: six, nine, and
twenty. What is the smallest number of nuggets that you cannot
get by ordering combinations of these three sizes?

3.2.2. Mathematical model. The mathematical model for the chicken nugget prob-
lem is:

What is the smallest integer that cannot be expressed as 6a+ 9b+
20c, with a, b, c nonnegative integers?

Note that this is a direct translation, without any mathematical processing at all.
The work from now on is entirely mathematical, with no cognitive overhead or
confusion about food or boxes.

The model makes the mathematical issues much clearer. The greatest common
divisor of 6, 9, and 20 is 1 so any integer can be expressed as combination if negative
coefficients are allowed. The restriction on realization comes from the restriction
to nonnegative coefficients. The assumption is not explicit in the problem so it is
easy to miss, especially if the problem is not modeled. Someone impressed with

3A ‘puzzler’ from the National Public Radio program Car Talk.
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the “debit” explanation of negative numbers might even question its validity: “can
one get 3 nuggets by getting a box of 9 and an empty 6-nugget box, putting 6
in the empty box and selling it back to the restaurant? You did not say this is
not allowed.” In any case this makes the question more subtle than a congruence
problem. Another complication is that primes 2, 3, and 5 are involved, and both
of the smaller ones appear in two of the given numbers.

3.2.3. Solution. A solution is presented for future reference. Set k = 6a+ 9b+ 20c.
We want to estimate the coefficients in terms of information about k.

Modular arithmetic should be the obvious approach. To get information about
the coefficient c, work modulo the greatest common divisor of the other two de-
nominators, namely 3. Mod 3 the equation becomes k

3≡ 20c
3≡ 2c. Multiplying by

2 (the inverse of 2, mod 3) gives 2k
3≡ c. This determines c mod 3, and since 3× 20

can be expressed as a (nonnegative) combination of 6 and 9, we can assume c is 0,

1, or 2. This gives the first conclusion: if k
3≡ 20c for 0 ≤ c < 3, then k ≥ 20c.

Next suppose k
3≡ 20c with c = 0, 1, or 2, and k ≥ 20c. Then k− 20c = 3m ≥ 0,

and k can be realized if and only if 3m can be realized as a nonnegative combination
of 6 and 9. Or equivalently, if m can be realized as 2a + 3b for nonnegative a, b.
This is a smaller version of the original problem, and can be done the same way
(i.e. reduce mod 2 or 3 to relate m and one of the coefficients). Eventually we
see that 1 is the only nonnegative integer that cannot be realized in the smaller
problem, so the largest in the original problem is 2 × 20 + 1 × 3. We could also
easily list all non-realizable integers.

3.2.4. Example 2: Leaky fuel tank.

A car begins a trip with 40 liters of fuel and drives at a constant
speed 70 km/hr. At this speed the car gets 12 km/liter, but it
runs out of fuel after 360 km. Apparently the fuel tank is leaking.
What is the rate (liter/hr) of the leak4?

3.2.5. Model. The rate of loss is (fuel Lost)/(Time); denote this by L/T . There are
two rate equations, and the relation of (fuel Lost) to (fuel Used):

(1) (speed, km/hr)(Time, hr) = (distance, km)
(2) (distance rate, km/liter)(Used, liter) = (distance, km)
(3) (Lost, liter) = (total, liter) - (Used, liter)

Now put in the numbers from the problem statement:

(1) 70T = 360
(2) 12U = 360
(3) L = 40− U

Solve to get T = 36/7, U = 30, L = 10, and therefore L/T = 70/36 = 35/18 ' 1.94
liters/hour.

4Adapted from another ‘puzzler’ from Car Talk. This has been translated from miles and
gallons so I won’t be embarrassed if someone from a modern country reads it.
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3.2.6. Discussion. The first step is to write the rate equations in a “symbolic” form
designed to be easily and reliably remembered. Neither numerical values nor any
analytic reasoning are done in this step. Trying to look ahead, for instance “I need to
know the time, so write the speed rate equation as (time)=(distance)/(speed). . . ”
invites confusion. This problem is significantly more difficult without modeling
because there are so many opportunities for such confusions.

Note also that the rate equations are written with units, so dimensional analysis
can be used as a check that they are correct. In particular, the rate in the fuel use
equation is given as a distance rate (km/liter) rather than a fuel rate (liter/km).
The latter seems more logical (see the next problem), and confusion on this point
is likely to be a source of error.

The final step is to substitute numbers into the symbolic forms, and then solve.
This is routine, and easy because the analysis is protected from cognitive confusion
with modeling.

3.2.7. Example 3: Fuel efficiency. This illustrates a common way to misuse sta-
tistics. Comparison with the degraded version illustrates the benefits of symbols
rather than the usual inert numbers.

A regulatory agency wants to promote development of fuel-efficient
cars. The regulations require a certain average efficiency to pro-
vide automakers flexibility and incentive: they can offer inefficient
models if these are balanced by super-efficient ones. However an en-
vironmental group claims that if the regulators use the traditional
km/liter measure of automotive efficiency then more-efficient mod-
els will actually lead to increased fuel use. Are they right? Which
measure should be used to avoid this?

3.2.8. Symbolic specific problem. Suppose there is a target efficiency T km/liter.
A manufacturer sells two models: an efficient one that gets rT km/liter for some
efficiency multiplier r > 1, and an inefficient one that gets b km/liter so that the
average of rT and b is T .

(1) Find the average of the fuel required by the two models to go distance
d. Express this as the product of the fuel required by a car with average
efficiency T , and a function h(r).

(2) Plot h(r) (by calculator or computer) on the interval [1, 1.8]. For which
efficiency multipliers r does the two-model fleet use more fuel than average-
efficiency cars?

(3) Evaluate h(r) for r = 4/5 and 5/3. Find r so that the two-model fleet uses
twice as much fuel as a fleet of average-efficiency cars.

(4) Explain what could theoretically happen if the automakers developed a car
with efficiency twice the target (i.e. r = 2).

3.2.9. Discussion. The previous problem provides an appropriate template for the
modeling step, so an explicit solution is not given here.

Better measure? Here we are interested in total fuel use. The km/liter measure
has rate equation

(fuel, liter) =
(distance, km)

(distance rate, km/liter)
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so it is inversely related to fuel use. But standard statistical methods are additive:
they work well if the data has a linear structure, poorly otherwise. This explains
why the km/liter measure works poorly. The linearly related efficiency measure is
the inverse, the fuel rate in liter/km with rate equation

(fuel, liter) = (distance, km)(fuel rate, liter/km)

3.2.10. Degraded specific problem. The regulatory agency sets 12 km/liter as the
target efficiency. A manufacturer sells two models: an efficient one that gets 18
km/liter and an inefficient one that gets b km/liter so that the average of 18 and b
is 12.

(1) Find the average of the fuel required by the two models to go 100 km.
Compare to the fuel required by a car with average efficiency 12.

(2) Repeat for high-efficiency rate 20, and 22. Describe the pattern you see as
the better efficiency increases.

The use of specific numbers is typical of contemporary practice. This makes it easier
to do without modeling, and more accessible to direct evaluation on a calculator.
On the other hand a great deal of mathematical structure has been hidden. The
average fuel use as a function of the upper efficiency is now represented by a few
numerical values. These suggest part of the pattern, but do not make obvious the
infinite limit at upper efficiency 24. Further, the use of a specific numerical target
hides the fact that the controlling parameter is (max efficiency)/(target efficiency),
called r in the first version. All this structure emerges from essentially the same
work done symbolically.

The use of numerical values is also a favorite tactic of test designers. The first
version is a single problem. Plugging in numbers gives a large number of seemingly
different problems. But don’t we want students to see structure and patterns?
Destroying it for the convenience of test design is not appropriate.

3.2.11. Example 4: quarter-full fuel tank. This5 illustrates a difficulty with trick
problems.

A trucker’s fuel gage is broken, and rather than fix it he puts a
stick in the tank and measures the length that gets wet by the fuel.
The tank is a circular cylinder with horizontal axis. He knows that
when the wet length is half the diameter then he has a half tank
of fuel. What length corresponds to a quarter tank of fuel?

This sounds like a typical geometry problem that can be solved by a clever trick or
insight. One can waste a lot of time looking for the trick, but there isn’t one. To
prove there is no trick we find an equivalent problem. A nontrivial integration and
trig identities show this is equivalent to the following:

• Find s > 0 so that cos(s) = s
• define d by ( s

2 )2 = d2 − d4, then
• the length of wet stick corresponding to 1/4 tank is 1 − d (approximately

0.5960) times the radius of the tank.
The quadratic formula can be used to express d explicitly in terms of s using square
roots, and conversely knowing d solves cos(s) = s, so this has equivalent difficulty.
But this is not an elementary problem.

5Yet another ‘puzzler’ from Car Talk.
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The point is that trick problems are artificially contrived, and small changes give
identical-sounding problems that are impossible with elementary methods. Trick
questions give misleading impressions of the power of the methods and the nature
of mathematics. This is a problem with Euclidean-style geometry, which is mostly
tricks limited to special cases. For further discussion see §5.5.

3.2.12. Example 5: crossing the river. Another example paraphrased from [4]:
A group of adults and children on a camping trip come to a river.
They find a boat that can hold one adult or two children. Anyone
in the group can safely row across the river by themselves. If there
are four adults and two children on the trip, is it possible to get
all of them across the river? If yes, how many one-way trips across
the river will it take?

3.2.13. Model. We model this in terms of moves:
• A corresponds to an adult taking the boat from the first shore to the second;
C,C2 correspond to one or two children taking the boat. Denote the number
of adults and children by a, c respectively.
• A sequence of crossings corresponds to a list (or “word”) in which moves

and their inverses alternate. For instance AA−1 corresponds to an adult
taking the boat across and then coming back.
• A sequence is “allowable” if every initial segment has total exponent on A

in [0, a] and total exponent on C in [0, c]. For instance AA−1C2C−1 is an
allowable sequence if a, c are not too small, but C2A−1C−1A is not because
the initial segment C2A−1 has −1 total exponent on A.
• When is it possible to have an allowable sequence with total exponents a, c?
• What is the minimal length of such a sequence?

There are so few allowable sequences without immediate cancellations that the
solution to the original problem can be found essentially by trying all possibilities.
I describe the general solution.

First note that if c ≥ 2 then C2C−1 is an allowable sequence of even length with
net effect C. Iterating this gives an allowable sequence with total exponent c − 1,
and ends with C−1. Omit this final move to get a sequence with exponent c. The
total length of his sequence is 2c− 3.

Returning to the word problem, if there are at least two children then all of the
children can get across the river.

Now look for a similar even-length sequence with total effect A. It must start
with C2 or the next move will just cancel it. The second move must be C−1 for
the same reason. The next move can be A. The fourth move must be C−1: A−1

would defeat the purpose and C−2 is not allowable. We are thus led to C2C−1AC−1.
Iterating this gives an allowable sequence with total A exponent a, and C exponents
between 0 and 2.

Combining the moves above shows: if c ≥ 2 then any pair a, c can be realized, by
a sequence of moves of length 4a+ 2c− 3). This is the minimal length. Minimality
can be proved by induction on a but this is not really elementary.

3.2.14. Discussion. This problem does not connect with much of anything. Most
modifications of the rules, to have the boat carry one adult and one child, or up
to three children, for instance, make the problem trivial. Variations with three
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passenger types, one of which might eat one of the others, are even more contrived
and still fail to illustrate mathematical structure. Like so many trick problems, this
seems to be a clever dead end.

3.3. Integer partial fractions. The objective here is to tie together the previous
two sections, and foreshadow a standard rational-function topic in §3.5. This might
also illustrate that there are lots of interesting problems within mathematics.

First, a theorem. Theorems are great labor-savers: they explain what you can
do with complete confidence, and what the limits are. In this case, for instance,
you should expect that attempts to separate non-relatively-prime factors will fail
in some way.

Theorem 1. If b and c are relatively prime, then fractions with denominator bc
can be expanded as a

bc = x
b + y

c , for some x, y.

This is true essentially whenever the terms make sense (any commutative ring)
and is an immediate consequence of the definition of relatively prime. a, b are rel-
atively prime if there are m,n so that am + bn = 1. This is the correct general
definition but it is cumbersome to use, and in practice (integers here, and real poly-
nomials in §3.5) one uses refinements of both ‘relatively prime’ and the expansion.

Theorem 2. (Refinements for integers):
(1) For integers, ‘relatively prime’ is the same as ‘have no common factor’

(except 1, of course).
(2) if b1, b2 . . . bn are pairwise relatively prime then there is a unique expansion

a

b1 × · · · × bn
=
r1
b1

+
r2
b2

+ · · ·+ rn
bn

+ q

with all the ri

bi
proper fractions and q an integer.

For integer fractions, a
b proper means that b > a ≥ 0; see §3.5 for the polynomial

version. Note that the version for a single factor, a
b = r

b + q with r
b proper, is the

usual quotient-with-remainder expression for a÷ b.
This refinement is true because the Euclidean algorithm works in the integers.

In fact there is an algorithm for the numerators in the expansion, based on the
extended Euclidean algorithm (see the Wikipedia entry). The algorithm is cum-
bersome and a bit obscure, so a modular-arithmetic approach is used here.

3.3.1. Problem. Express 47/180 as a sum of an integer and proper fractions with
prime-power denominators.

3.3.2. Solution. 180 = 22325 so the partial fraction expansion is of the form a
4 +

b
9 + c

5 + d.
The first step must be to clear denominators: fractions are defined implicitly,

and we must convert to an explicit form to work with them (see §3.1). This gives

47 = (4 · 9 · 5)(
a

4
+
b

9
+
c

5
+ d) = 9 · 5a+ 4 · 5b+ 4 · 9c+ 4 · 9 · 5d.

Reduce mod 4 to get 47
4≡ 3

4≡ 45a
4≡ a. This means a = 3 + 4r, and the

numerator that gives a proper fraction is 3. Next reduce mod 9 to get 2
9≡ 2b, so

b
9≡ 1. Finally reduce mod 5 to get 2

5≡ c.
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We now know that 47/180 = 3
4 + 1

9 + 2
5 + d, with d an integer. We can find d by

converting the partial fractions back to a common denominator, but we could also
use a calculator. The left side is approximately 0.2611, while the fractions on the
right add up to about 1.2611. Since d is an integer it must be −1, and

47/180 =
3
4

+
1
9

+
2
5
− 1

3.3.3. Back to chicken nuggets. We could reformulate the mathematical model of
the chicken-nugget problem as: For which a is there a partial fraction expansion

a

180
=

�
30

+
�
20

+
�
9

with nonnegative numerators? Or equivalently, as a sum of proper fractions with
denominators 30, 20, and 9, and a nonnegative integer?

As mentioned in the discussion of the problem, there is always an expansion
if negative numerators are allowed. This situation is not covered by Theorem 1
because the factors are not pairwise relatively prime, but thinking about this case
clarifies the role of the hypotheses in the theorem. There is always an expansion

a

b
=
r1
b1

+
r2
b2

+ · · ·+ rn
bn

+ q

if every prime power divisor of b also divides one of the bi. The numbers in the
chicken-nugget problem satisfy this condition. The expansion is unique if the bi are
relatively prime. This is not true in the problem, and examples are easy to find.
The existence and uniqueness observations together give the theorem because if b
is the product of the bi then bi relatively prime implies the prime-power divisor
condition.

In the opposite direction, the denominator-cleared form of the 47/180 problem
above is: obtain 47 by adding multiples of 45, 20 and 27. The appearance of the
−1 in the answer shows that it cannot be done with nonnegative coefficients.

3.4. Multiplying polynomials. This section illustrates how careful attention to
cognitive issues and mathematical structure can significantly extend the problem
types students can do. The main cognitive concern is that different activities (here
organization, addition, and multiplication) should be separated as much as possible.
Structure is used to make the procedure flexible; see the next section for a variation.
See [7] for detailed discussion and extensions.

3.4.1. Problem. Write the product (2y3 + y2− 9)(−y2 + 5y− 1) as a polynomial in
y, in standard form.

Here “standard form” means coefficients times powers of the variable, with expo-
nents in descending order. The factors are given in this standard form. Sometimes
ascending order is used.

3.4.2. Solution. The first step is purely organizational. We see that the outcome
will be a polynomial of degree 5 so set up a template for this:

y5( ) + y4( ) + y3( ) + · · ·
Next scan through the factors and put coefficient products in the right places. To
get the y3 coefficient, for example, begin with the leftmost term in the first factor.
Record the coefficient, (2). The exponent is 3, so the complementary exponent is
0. Beginning at the right in the second factor, we see that the coefficient on y0 is
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−1, so we record this as a product (2)(−1). Now move one place to the right in the
first factor and record coefficient (1). The exponent is 2 so look for complementary
exponent 1 in the second factor. The coefficient on this is 5, so record this as (1)(5).
Again move one place to the right in the first factor and record coefficient (−9).
The exponent is 0 so we look for complementary exponent 3 in the second factor.
There is none, so we record coefficient 0 as (−9)(0). The template will now look
like

· · ·+ y3
(
(2)(−1) + (1)(5) + (−9)(0)

)
· · ·

It is quite important that no arithmetic be done in the organizational phase, not
even (1)(5) = 5. Also, we usually quit scanning the first factor when complementary
exponents are above the degree of the second, but it is better to record overruns
such as (−9)(0) than to worry about this. The reason is that even trivial on-the-fly
arithmetic requires a momentary break in focus that significantly increases error
rates in both organization and arithmetic. For the same reason, every coefficient is
automatically enclosed in parentheses whether they are needed or not.

The first arithmetic step is to do the multiplications:

y5
(
(2)(−1)︸ ︷︷ ︸
−2

)
+ y4

(
(2)(5)︸ ︷︷ ︸

10

+ (1)(−1)︸ ︷︷ ︸
−1

)
+ y3

(
(2)(−1)︸ ︷︷ ︸
−2

+ (1)(5)︸ ︷︷ ︸
5

+ (−9)(0)︸ ︷︷ ︸
0

)
+ · · ·

The second arithmetic step is to do additions:

y5((2)(−1)︸ ︷︷ ︸
−2

) + y4((2)(5)︸ ︷︷ ︸
10

+ (1)(−1)︸ ︷︷ ︸
−1︸ ︷︷ ︸

9

) + y3((2)(−1)︸ ︷︷ ︸
−2

+ (1)(5)︸ ︷︷ ︸
5

+ (−9)(0)︸ ︷︷ ︸
0︸ ︷︷ ︸

3

) + · · ·

Additions and multiplications are separated because, again, switching back and
forth invites errors. Note also that this pattern requires essentially no organizational
activity during the arithmetic steps: everything is in standard places, and outcomes
are written just below inputs.

The final result is

y5(−2) + y4(9) + y3(3) + y2(8) + y1(−45) + 9

3.4.3. Discussion. Standard high-school practice is to restrict to product of bino-
mials, and use the intelligence-free algorithm with acronym “FOIL”. This is so
ingrained that many students say “FOIL it out” rather than “expand”, even when
the factors are not binomials. However this algorithm mixes organization and arith-
metic enough that some students have trouble even with this simple case, and since
the expansion step is not adapted to the eventual goal, a second sorting step is
needed. Finally, the near-exclusive focus on binomials makes larger terms foreign
territory. Some students are at a loss about how to deal with them, others general-
ize incorrectly from the pattern, and almost all are anxious and hesitant. A better
algorithm fixes all this, and opens up a much wider world.

3.5. Polynomial partial fractions. The final example brings together fractions,
partial fractions, polynomial multiplication, and even modular arithmetic. Theorem
(1) in §3.3 applies, but as in that section we need a refinement.

Theorem 3. (Refinement for polynomials):
(1) For polynomials ‘relatively prime’ is the same as ‘have no common factor’,

and the same as ‘have no common roots’ (including complex roots).



SCIENCE-OF-LEARNING 13

(2) If b1, b2 . . . bn are pairwise relatively prime real-coefficient polynomials then
there is a unique expansion

a

b1 × · · · × bn
=
r1
b1

+
r2
b2

+ · · ·+ rn
bn

+ q

with ri, q polynomials and each ri

bi
a proper fraction.

A polynomial fraction is called proper if the degree of the numerator is strictly
smaller than the degree of the denominator. The term has the same significance as
the integer version even though the definitions are different. As with integers, q is
the result of division (the “quotient”) and the ri are remainders.

This is statement almost identical to the integer statement. This emphasizes
commonality of the underlying structure, but the main reason is efficiency: since
the underlying structures are the same, a maximally efficient statement for one
context will also be maximally efficient for the other.

3.5.1. Problem. Find the real partial-fraction expansion of the polynomial fraction

3x3 + 2x+ 9
(4x2 − 4x+ 1)(x2 − 2x+ 3)

3.5.2. Solution, setup. The first quadratic in the denominator factors as (2x− 1)2,
but these factors cannot be separated because they are not relatively prime. The
second quadratic has complex roots so it can be factored over the complexes as a
product of linear terms. These could be separated in a partial-fraction expansion
over C, but not over R. The denominators in the partial fractions are therefore the
two quadratics. Finally, the input fraction is proper so the expansion cannot have
a (non-fraction) polynomial term (note this conclusion is special to polynomials: it
does not work for integers).

Both pieces in the expansion have denominators of degree 2, and we know that
the numerators have smaller degree. The expansion is therefore of the form

3x3 + 2x+ 9
(4x2 − 4x+ 1)(x2 − 2x+ 3)

=
ax+ b

4x2 − 4x+ 1
+

cx+ d

x2 − 2x+ 3

As usual, to work with fractions we have to clear denominators. This gives

(1) 3x3 + 2x+ 9 = (ax+ b)(x2 − 2x+ 3) + (cx+ d)(4x2 − 4x+ 1)

I describe two ways to find the unspecified coefficients.

3.5.3. Solution, linear-algebra approach. Equation (1) is an equality of polynomials,
so the coefficients must be equal. The coefficient equations give the linear system
that determines a–d.

The plan is as follows: for each exponent n scan through the products above
and pick out coefficients on xn, exactly as in the section on polynomial products.
Recording coefficients gives

x3 : 3 = a(1) + c(4)
x2 : 0 = a(−2) + b(1) + c(−4) + d(4)
x1 : 2 = a(3) + b(−2) + c(1) + d(−4)
x0 : 9 = b(3) + d(1)
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Writing this linear system in matrix form gives
1 0 4 0
−2 1 −4 4

3 −2 1 −4
0 3 0 1




a
b
c
d

 =


3
0
2
9


For this approach a good problem statement is “find a linear system that determines
the coefficients. . . ”, so this would the solution to the problem.

If a full solution is required then the problem statement should be “find a linear
system that determines the coefficients, and then solve to find the expansion”.
Requiring explicit display of the intermediate step has two functions: first, if the
final answer is wrong then the intermediate step can be used to locate errors. The
second reason is to ensure that students carefully formulate the intermediate step,
especially if the system is to be solved by hand. Many will try to save writing (and
thinking) by solving on the fly as coefficients are found (e.g. for the x3 coefficient
writing a = 3 − 4c and using this to eliminate a). They could use this strategy
to solve the system after it is set up, but mixing the steps increases the error rate
and in the long term will limit the problems they can handle. In the long run they
would enter
LinearSolve[{{1,0,4,0},{-2,1,-4,4}, {3,-2,1,-4},{0,3,0,1}},{3,0,2,9}]

in a computer-algebra system6, and obtain ( 319
81 ,

214
81 ,−

19
81 ,

29
27 ).

As a final note, if the input fraction were not proper then the q term in Theorem
3 would be nonzero. It can be included in the cleared-denominator form (1) and
handled the same way. Most approaches recommend first using long division to
get q (the quotient) and a proper fraction (with remainder as numerator), and
then expanding the proper fraction. The division algorithm gives the coefficients
in the quotient, so the remaining coefficients give a smaller linear system. But
division takes a lot more work. The extra part of the larger linear system has lower
triangular coefficient matrix so is quick and easy to solve.

3.5.4. Solution, modular arithmetic approach. In the integer version there is no ana-
log of the linear algebra approach, but modular arithmetic is successful. There is a
polynomial analog of modular arithmetic that I illustrate by finding the coefficients
c, d in equation (1).

The plan is that we want to work modulo the polynomial factor on the other
term, x2 − 2x+ 3, so set x2 − 2x + 3 ≡ 0. Technically we are working in the
quotient ring R[x]/(x2 − 2x + 3). In practice we write the imposed identity as
x2 ≡ 2x − 3 and use this to reduce second and higher-order terms. For instance
x3 = x(x2) ≡ x(2x− 3) = 2x2− 3x ≡ 2(2x− 3)− 3x = x− 6. Equation (1) reduces
to

5x− 9 ≡ (cx+ d)(2x− 3).

Expand the right side and reduce the second-order term to get 5x − 9 ≡ (−3c +
4d)x+ (−12c− 11d).

We now apply the fact that if two degree-one polynomials are equivalent modulo
a degree-2 polynomial then they must actually be equal. (The technical context is

6This is Mathematica syntax.
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that this is a Gröbner basis for the polynomial quotient ring.) The coefficients on
the two sides must therefore be equal and we get the system of equations(

−3 4
−12 −11

)(
c
d

)
=
(

5
−9

)
This implies (c, d) = (− 19

81 + 29
27 ), as before. Clearly, the other term can be done

the same way.
A version of this is commonly used as a shortcut: working modulo a degree-

one polynomial x − r is the same as evaluating at x := r. If the factors of the
denominator are distinct linear terms (i.e. no complex or repeated roots), and if
it is easy to do arithmetic with the roots (i.e. rational), then the coefficients can
be obtained by evaluations. Some high-school courses use this method exclusively.
This is a bad idea, in the same way that restricting to quadratics with integer
roots is a bad idea: it enables easy methods that don’t work in more general (and
realistic) cases.

In general the modular-arithmetic version seems to take longer than linear al-
gebra. It is worth exploring to illustrate similarities between the integer and poly-
nomial situations. It is also good to give students multiple tools, and sometimes
hybrids can be used to good effect. For example, if there are n unknown coefficients
then the goal is to find n linear equations that determine them. The routine system
comes from coefficients in the polynomial equation. However if there is a root at
which polynomials can be easily evaluated (e.g. small integer) then the evaluation
can be used to get one linear equation that is often simpler than the ones from co-
efficients. Replace one of the coefficient equations with this to get an easier system.
This comes with a caution: the system from polynomial coefficients is guaranteed
to be nondegenerate, so can always be solved. Replacing one of the equations may
give a degenerate system. It is a good strategy because the failures are very rare,
but students should know how to recognize a failure and what to do about it (go
back to the routine system).

4. Mathematics and teachers

As explained in the introduction, the primary output from the science-of-learning
approach is a toolkit of techniques, definitions, etc. designed for student use. This
does not come with assembly instructions: how to put it all together to get courses
and a curriculum is the job of teachers. Getting the components to actually work,
however, puts strong constraints on methodology. Implications for methodology
are described in the second subsection. The first provides a convenient context.
The final subsection draws conclusions about teacher preparation.

4.1. Mathematics. This is an overview of structure and practice of mathematics,
formulated to suggest use by young learners, and to guide development of material
for young learners. These are extracts from a description of mathematics developed
bottom-up from details and concrete observations, [6], but what makes it valuable is
that it accurately encodes and organizes methodological constraints of the micro-
scale material here and in [7]. This description has little in common with the
hypothetical constructs of philosophers.
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4.1.1. Reliability. Mathematics has evolved a set of explicit rules of reasoning with
the following astounding property: arguments without rule violations have com-
pletely reliable conclusions7! People have trouble learning to use these rules effec-
tively because rules in most other systems are sufficiently vague and ineffective that
precision is a waste of time, while in mathematics anything less than full precision
(no rule violations) is a waste of time. However mathematical rules are simple
compared to those of the tax code, religions, politics, physical science, etc. Most
people can master the basics, and within its domain of applicability this can be a
powerful enabling technology.

4.1.2. Potential proofs. For users the key enabling concept ([6] §?) is potential
proof : a record of reasoning, using methods of established reliability, and detailed
enough to check for errors. Potential proofs in this sense are very common. The
scratch work done by a child multiplying multi-digit integers by hand provides a
record of reasoning that can be checked for errors. When teachers tell students
to “show your work” they mean “provide a record of reasoning. . . ”. The basic
method is already in wide use, and the potential-proof description mainly clarifies
the features and activities needed to make it fully effective.

In these terms a “real” proof is a potential proof that has been checked (and
repaired if necessary) and found to be error-free. However the benefits come from
reasoning and checking. Errors happen. A flawed first attempt with sufficient
detail can provide a framework for diagnosis and improvement. A flawed first
attempt with insufficient detail is useless and the user must start again from scratch.
Focusing on the formal and error-free aspects of completed proofs therefore distracts
from the features that actually provide power to users.

4.1.3. Definitions. The next point is that precise reasoning about something is only
possible when the thing is described precisely. Vague or intuitive things are inac-
cessible to mathematics. This is not to say intuition is irrelevant, but effective
mathematicians do not work directly with intuitions. They make a precise descrip-
tion that they hope will realize their intuition, work with it for a while, and if it
doesn’t do what they want then they junk it and try again with a different pre-
cise description. In some areas these false starts probably account for 50% of all
mathematical effort, and when a really good precise description is finally found it
is a prize and a treasure. The idea that mathematical definitions are random is as
nonsensical as the idea that mathematics can be done with intuitions.

Concise modern definitions provide the precision needed for mathematical rea-
soning, but the format itself is not forced by the job to be done. Details of the
format seem to have evolved to be effective for human use; see [6] §?. In other
words, precise definitions are another enabling technology for people, not unnatu-
ral constructs.

4.1.4. Limits of mathematics. The final point is that the need for complete precision
limits the scope of mathematics. In particular, nothing in the physical world can
be described with mathematical precision, so mathematical methods do not apply
directly. People applying mathematics accommodate this with an intermediate step:
a symbolic mathematical model is developed to represent the physical situation,
and it is the model that is analyzed mathematically. Mathematical conclusions

7For all practical purposes; see [6] §? for nuances.
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about the model are reliable in a way that the connection between the physical
situation and the model cannot be, and working without a model confuses this
structural difference. In Section 3.2 I emphasized the importance of modeling to
avoid cognitive interference. Cognitive and structural differences should probably
be seen as different reasons to separate the two activities, rather than cognitive
interference seen as resulting from structural difference. There are plenty of things
(e.g. multiplication and addition) that to some degree interfere cognitively but are
not deeply different structurally. Or put more directly, brains are strange things
and it is a serious mistake to imagine that brain structure reflects the structures
we imagine in the world.

4.2. Teaching. These suggestions summarize methodology needed to make the
examples like those in §3 work effectively. However they should be thought of as
ways to avoid known modes of failure rather than as certain paths to success. This
reflects the scientific approach: success in science is not direct, but a matter of
recognizing and learning to avoid ways to fail.

These suggestions are strongly at odds with mainstream educational methodol-
ogy. Put another way, there are many modes of failure that mainstream methods
do not avoid. This point is sharpened in the section on teacher preparation.

4.2.1. Precision. Precision makes mathematical work go smoothly, and this is par-
ticularly true in elementary mathematics. Sloppy thinking that is harmless to
experienced users can seriously confuse beginners. Section §5.1 describes confusion
about fractions resulting from failing to distinguish between things and names for
them; between representatives of an equivalence class and the equivalence class;
and from common ambiguity in the use of ‘=’. The following subsections suggest
ways to avoid these and other problems.

4.2.2. Names. Distinguishing between things and names for things may seem far
too sophisticated for second-graders, and it would be a mistake to formulate this
as an abstract idea. However simply doing it as a matter of routine could clarify
many things:

• Fractions and decimals are different names, not different things (§3.1). Try-
ing to make sense of them as different things cannot be successful.
• Expressions like 34.1/5.2 and 7.7 + 22.2 specify numbers. Performing the

indicated operations is not “finding the numbers” but expressing them as
decimals, i.e. finding the decimal names.
• We are on a first-name basis with the integers 0 . . . 10 and a few others

(π, e). Everyone else has a compound name. The Babylonians used a base-
60 system, which meant they had to be on a first-name basis with the first
60 integers! This was way too many for easy use.
• The Roman numeral system has a lot of numbers known by first names:

1=I, 5=V, 10=X, 50=L, 100=C, 500=D, 1000=M,. . .. This is awkward
and is one reason we don’t use it anymore.
• “John + Alice” is carved on a tree. If we decide “John” is a name for 5,

and “Alice” is a name for 7, what is the number that corresponds to the
carving?

There are further possibilities. Customary names for numbers often do not reflect
mathematical structure. 13, for instance, is a compound name but “thirteen” is
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a cognitive unit. Cross-cultural neuroscience studies suggest that the cognitive
overhead associated with customary names makes arithmetic more difficult. Use of
“math names” (a sequence of digits; “one three” for 13 for example) might therefore
make arithmetic easier. See Neuroscience experiments for mathematics education
in [7] for more detail.

Finally, indirect names encode a property that characterizes something. Being
more explicit about the nature of indirect names would clarify the standard exam-
ples, including fractions and roots. This might also help liberate us from obsolete
notational constraints. For example “the largest real root of 5x5 − 3x3 + 2x + 1”
specifies a number just as well as

√
37 does, and these days it can be numerically

approximated just as easily. Currently we focus on quadratic polynomials because
the quadratic formula provides names for the roots in terms of square roots. But
this is a strong constraint and the resulting mindset (“quintics are impossible”) is
a liability in the long run. Is it time to outgrow this?

4.2.3. Definitions. Important objects and properties (fraction, prime, relatively
prime, proper fraction, . . . ) should be given brief and genuinely precise definitions.

• These definitions should be constructed primarily by professional math-
ematicians. Professionals hone and fine-tune definitions to be brief and
effective, and will ensure that they are compatible with later material.
• Students should be required to memorize them so they can be reproduced

exactly. Definitions provide anchor points, and understanding nucleates
and deepens around the definition. This is particularly true for weaker
students.
• Explanations of what a definition ‘means’ should be given after the defini-

tion, not before. Putting the explanation first almost guarantees confusion.

Compared to current educational practice this is very rigid, but it is essentially the
way mathematicians approach unfamiliar material, and it works. More precisely,
less rigid approaches take longer, are less effective, and were abandoned when this
approach became available about a century ago.

Is this approach reasonable in education? Well-crafted definitions evoke mathe-
matical objects with the economy and grace of poetry. Asking students to memorize
them is like asking them to memorize unusually powerful poems. There are not so
many that this is unreasonable, and if it is done consistently it will become rou-
tine. Students will also see quick payoffs because good definitions are immediately
functional.

Current practice avoids concise definitions, ostensibly to focus on “understand-
ing”. Students may be invited to put the idea in their own words or even make
up their own version. This seems to be a carryover from philosophy. If one thinks
of mathematical things as tools, then it makes sense to provide students with the
sharpest versions and focus on using them. Philosophical ideas are not particularly
functional as tools, and in that tradition the emphasis is on “understanding” and
appreciating ideas rather than actually trying to use them.

In a mathematical approach students might still be invited to rephrase definitions
once they can do so with precision, but if they get it wrong they must be told so.
To do otherwise deprives them of a solid foundation and will cause trouble later.
Corollaries are that students should be invited to reformulate definitions only if the
teacher has the time and expertise to diagnose the reformulations for correctness,
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and only if it seems likely that students can understand, accept, and benefit from
corrections.

4.2.4. Word problems. Word problems have two components: the word part, and
the mathematical core. Serious users employ mathematical models as an interme-
diate step to separate these activities. Contemporary educators, in contrast, are
philosophically committed to word problems as a different format rather than a
different activity. They encourage a holistic approach with reasoning ‘in context’,
and discourage modeling.

Historically, systematic use of modeling developed in the seventeenth century,
and was an essential part of the ‘scientific revolution’. The contemporary educa-
tional approach follows sixteenth century practice. But this has been obsolete for
four centuries for good reasons: the two components are different both cognitively
(different brain regions) and structurally. Mixing them confuses and degrades both.
In fact cognitive interference in word problems may be the most serious single dif-
ficulty I have seen in students. For weaker students “crippling” may not be too
strong a word.

Difficulties currently caused by word problems are unnecessary: modeling can
be used easily and effectively in school mathematics. Examples are given here in
§3.2, and there are many more in [7].

Summary: in recent years mathematics educators have increased emphasis on
word problems, but insist on using an obsolete approach that makes them un-
necessarily difficult and inhibits rather than promotes mathematical development.
Fixing this would probably be the most effective single step that could be taken to
improve K-12 mathematics.

4.2.5. Technology. Modern technology is powerful, and a great deal of [7] is con-
cerned with educational applications. The issue is too complex to be usefully ad-
dressed addressed here, but I make one comment.

The traditional classroom was a tightly bound package, and technology is making
it come apart. In particular it is loosening the link between teaching and learning.
For instance calculators make teaching easier, and improve student performance on
traditional measures (test problem types). However these measures no longer have
the learning correlates they once did. Better teaching and test performance are, in
some cases, masking learning declines. A genuinely learning-oriented approach is
essential for good long-term outcomes.

4.2.6. Work templates. Students should be taught to record their reasoning in a way
that can be checked for errors (a “potential proof” in the terminology of §4.1.2).
What to do with such a record is the topic of the next section; here the concern is
with how to get them to do it.

Students will not use formats that are cumbersome or require a lot of extra
writing. Formats that are complicated or distracting are counterproductive. The
criteria for good work formats are therefore:

(1) record enough detail so reasoning can be reconstructed and checked for
errors;

(2) be compact and straightforward; and
(3) help organize the work in ways consistent with human cognitive constraints.
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Making up such a format is hard for professionals and cannot be expected of stu-
dents. Students must be provided with templates carefully designed to meet the
criteria above.

The standard formats for multi-digit multiplication and long division are well-
known examples of templates, though they are not fully satisfactory examples.
They satisfy the first two conditions, but are less successful with (3) because they
have been optimized for production arithemetic by experienced users rather than
to provide support for beginners. A less-efficient but more supportive template for
multiplication is explored in Neuroscience experiments for mathematics education
in [7]. This template for numbers is largely derived from a template for multiplying
polynomials described in §3.4.2 and elsewhere.

The underbrace notation in §3.4.2 for processing parts of a complex expression
is a particularly useful template. Students do have to be shown how to carefully
collect the processed fragments, however.

4.2.7. Reading and writing complex expressions. Working with mathematical ex-
pressions requires that they be parsed (linearized), and there are a number of ways
to do this. The logical structure encodes an “outside-in” parsing order. For exam-
ple:

5(3y2 − a) + (y − a)(y + 6a)

is the sum of two terms, and each of these terms is a product. Logically parsing to
this level gives

5(. . . ) + (. . . )(. . . ).

Terms in parentheses are deeper in the logical structure. In contrast the left-to-
right parsing used for reading gives “five times the quantity three wye squared dots”.
The encapsulation by parentheses is hard to say and may get lost. There is also an
“inside-out” parsing order reflecting the fact that processing usually begins with
innermost fragments and works out. This leads many students to ignore large-scale
structure until inner things are simplified. For instance they will want to expand
the (y − a)(y + 6a) term before even thinking about the rest of the expression.
Teaching students to use logical (outside in) parsing order extends the expressions
they can process, but the greatest benefits are in the expressions they can write.
The organizational step in the polynomial multiplication template §3.4, for instance,
uses mathematical (outside in) parsing very explicitly by writing parentheses first
and filling them in later. Another instance is the summation notation. If this is
not parsed correctly it is hard to make sense of it, and almost impossible to write
or manipulate it correctly.

I have two concrete suggestions. First, the logical structure can be emphasized
when expressions are described by teachers. For example when writing the expres-
sion above, after writing “5( ” write the corresponding closing parenthesis first, and
then fill in. Students emulate what they see. Note that this requires a dynamic
presentation: showing the end result does not show this structure. A corollary is
that to be maximally effective, texts and reference materials really should show the
process, not just the outcome (YouTube?!).

The other concrete suggestion has to do with parentheses. The customary nota-
tion is hard to parse, and elementary educators go to great lengths to avoid them
(indeed “simplify” is very close to “write without parentheses”). But this makes
complex expressions impossible and simple ones harder (see §3.4 where profligate
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use of parentheses is used to separate organization and arithmetic). Teachers often
change the order of terms and do arithmetic on the fly to avoid intermediate forms
with parentheses. These hidden operations often mystify students, and if they try
to emulate this but come out with a form that is incorrect without parentheses
then they get it wrong. The suggestion: use parentheses from the very beginning of
elementary mathematics, with a notation that is easy to parse. Paired parentheses
could be joined by an overline, for example:

5
(

3y2 − a
)

+ 3
(

(y − a)
(
y + 6a

))
4.2.8. Accuracy and diagnosis. The unique feature of mathematics is that it is
possible to achieve near 100% accuracy. Extended arguments depend on this. If
a single operation can be done with 70% accuracy then the likelihood of getting
the right answer in problems with ten operations is under 3%. If one wants 70%
accuracy in the ten-operation problem then individual operations must be done
with 97% accuracy. The point is that elementary teachers who accept 70% success
rates are not only wasting the unique potential of mathematics, but setting their
students up for failure in later courses.

The proposal is that the goal in math courses should be quality, not quantity
and not speed. Fewer problems, but expected to be 100% right. Is this reasonable
in education? Maybe not, but I sketch strategies that should make it possible to
get close.

First, students should be shown carefully-designed worked examples that they
can emulate. Sometimes it is useful to have two versions: one with reasoning made
explicit, and another that illustrates use of an efficient template or procedure in
which reasoning is not explicit but can be reconstructed from the written record.
Students who can omit minor detail without making errors can be allowed to do
so, with two provisos. One is that they should still be required to use templates
when these are designed to work for use with later problem types. For instance
Neuroscience experiments for mathematics education in [7] gives an algorithm for
multiplying multi-digit integers based on the polynomial algorithm in §3.4 and using
the same templates. Familiarity with the templates is one of the objectives. The
second proviso is that they should be required to fully record intermediate out-
comes between cognitively different steps. Examples are models in word problems,
and the intermediate between organization and arithmetic in polynomial multipli-
cation. This is a vital work habit and allowing students to skip it will cause trouble
later. Students who don’t think they need to do this should perhaps be given more
complicated problems.

The third strategy is teacher diagnosis of errors that students can’t find them-
selves. Ideally every wrong answer should corrected, either by the student or
through teacher diagnosis. For diagnosis the student should explain his reason-
ing, following his work record. If the record is illegible, steps were skipped, or
appropriate templates were not used, then the work should be redone before being
diagnosed for specific errors: it is remarkable how often this resolves the problem,
and it is valuable for students to see this. If the student has an appropriate work
record then it can be reviewed efficiently and mistakes quickly pinpointed. The
teacher should wait until the student has come to the error before doing anything,
however. Premature guesses about the difficulty are often wrong and will make con-
fusion worse. Further, the student learns more if he spots the error himself; wait
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and see if he says, “oh, now I see what went wrong”. In such cases the teacher can
ask what happened, to see if the insight is right, but if so then the teacher should
leave well enough alone and not explain further, even if a clearer description can be
given. If this approach is used systematically then errors will become remarkably
uncommon, because confusions don’t accumulate and students learn to diagnose
their own work. When teacher diagnosis is necessary it is fast and efficient.

Students unused to diagnosis may say “can you show me how to do this?” or “I
don’t even know how to start.” The teacher should say “give it a try, and let’s see
how it goes”, not “I’ll show you”. My experience is that are more open to this if
the person doing the diagnosis is not also the person who will assign a grade.

A final strategy in this approach is the occasional use of long problems. Careful
work with extensible methods should enable students to do much more complicated
problems than the ones generally assigned. They should occasionally be given such
problems, possibly as group exercises. There are two goals: first to stress their
work habits a bit to see if they are solid, and second to show them that—with good
work habits—long problems are really just more of the same, and their methods
are considerably more effective than the focus on short problems might suggest.

I close the section with a caution related to human learning. Emphasizing quality
over quantity—and carefully monitoring quality—should mean that boring repeti-
tion can be avoided: students learn at different rates, and ones who have learned the
material can progress to more elaborate problems or the next topic. However, this
does not mean students can stop as soon as they can use the methods accurately.
Learning fades if practice is stopped too soon; durable learning requires practice
or periodic reenforcement well past achievement of accuracy8. This is a delicate
balance and needs to be carefully explored.

4.3. Teacher preparation. Outcomes from K-12 education are unsatisfactory and
not improving. Angst about this has mainly focused on teacher preparation, im-
plicitly assuming that educational methodology is effective and the problem is in-
competent teachers. The discussion here suggests an alternative: teachers are fine
but the methodology is incompetent, and worse outcomes might actually reflect
better teaching of the methodology. If this is the case then the methodology has to
be straightened out before there is much point in discussing teacher preparation.

The issue is approached through analysis of two common but conflicting view-
points about advanced study.

4.3.1. Advanced study not necessary? The school-of-education argument is roughly
“our students have trouble with advanced courses and don’t get much from them.
Pedagogy is more important than content anyway.”

Wu [9] tries to give this point of view more substance by citing an article of
Begle that found no correlation between advanced coursework and better student
outcomes. Wu concludes that advanced viewpoints are irrelevant to elementary
education, and uses fractions to illustrate the reasons. However what his example
actually shows (see §5.1 below) is that imprecision and sloppy notation that are
harmless at advanced levels can render the presentation irrelevant to elementary
teaching.

8Cognitive psychologists refer to durably-learned material as “overlearned”. This term is un-
fortunate because people interpret it as “excessive”.
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I would agree that courses such as real and complex analysis are unnecessary:
they have little to do with K-12 topics and benefits to survivors is unlikely to justify
the severe attrition among potential teachers. Courses such as abstract algebra
could be more relevant. See §3.1 for a student-oriented presentation of fractions,
and Proof projects for teachers in [7] for an extended development done relatively
painlessly in commutative rings. This includes dealing with zero-divisors in general
rings; not K-12 classroom material but it certainly clarifies why having 0 in the
denominator is a bad idea. It also connects with modern themes by presenting
Grothendieck groups as just a fancy name for fraction-type constructions. Another
nice project for a course for teachers is to use modular arithmetic to prove the
existence and uniqueness of the partial-fraction expansion described in §3.3.

These examples suggest that advanced courses with appropriate topics and pre-
cision could connect nicely with K-12 topics, but the next discussion reveals a
problem with methodology.

4.3.2. Advanced study is necessary? Nearly all people with technical backgrounds
feel teachers need more mathematics, but cannot clearly articulate why. It seems
to me the essence is “my background leads me to feel that educators are doing bad
things. If they had stronger backgrounds they would feel the same way, and do bet-
ter.” Roughly, the need is for more sophistication and mathematically disciplined
thinking. The standard way to get these is subliminally from the material during
extensive study, so more study seems to be the solution.

According to Beale, however, the teachers who did have enough advanced study
to internalize the mindset don’t do any better as teachers. In fact quite a few
accomplished mathematicians have gone into education and most of them end up
doing things that make technically-oriented people cringe.

There is a disturbing explanation for this. Advanced study leads to internaliza-
tion of modern methodology. Education is modeled on a philosophical description
of mathematical practice in the nineteenth century and before9, centered around
romanticized ideas about the power of intuition. In professional practice this was
abandoned as ineffective in the early twentieth century. However educators reject
contemporary methods as inappropriate for normal humans (young ones anyway).
The bias against modern methods makes internalization from advanced courses
useless. In fact the conviction that the nineteenth century was a better time for
children is so strong that mathematicians working in education tend to buy into it,
and suspend their professional skills and methods.

4.3.3. Conclusions. Genuinely productive discussion of teacher preparation must
wait on resolution of deeper problems:

(1) Educational methodology for mathematics is stuck in the nineteenth cen-
tury.

(2) Until this changes, we cannot expect outcomes better than those of the
nineteenth century.

(3) Until this changes, advanced coursework with twentieth-century methodol-
ogy will be irrelevant.

On a brighter note, the science-of-learning methodology described above is com-
patible with modern mathematics, and advanced coursework would be relevant to
teaching based on this approach.

9For extensive historical and technical background on this see [6].
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5. Comparisons

In this section I discuss some of the articles in the Notices special issue. The
short version is that they are all seriously flawed, but to be useful (or even credible)
this needs to be explained in detail. I focus on articles with enough explicit detail
to support analysis.

5.1. H. Wu. Wu, in his article The Mis-Education of Mathematics Teachers [9],
observes that there is a chasm between advanced coursework in mathematics and
what is needed for contemporary K-12 teaching. He sees this as a problem with
advanced coursework rather than contemporary teaching.

First, Wu points out that fractions are usually presented without a definition, and
described in three incompatible ways all of which are wrong. He then asserts that
this is an instance where advanced training is irrelevant to elementary education,
because the precise mathematical definition is too complicated. I discuss the general
relevance issue in §4. Here I explain that what he describes as the mathematical
definition is also wrong, and this is part of the reason it seems too complicated.

Wu says that fractions are equivalence classes of ordered pairs. But this is obvi-
ously wrong: the fraction is an ordered pair, not the equivalence class. Describing
it as an equivalence class is a sloppy but common imprecision. The first reason for
this imprecision is the desire to identify fractions with rational numbers. There are
many fractions that represent any given rational. This is not a problem if we think
of these as names for the number, but if we don’t want to distinguish between names
and things then we have to think of fractions as equivalence classes. This confusion
is more-or-less harmless in a college class when fractions are used to construct the
rational numbers. It is not harmless in elementary education where most of the
difficulty concerns the difference between names and numbers (e.g. determining if
two fractions represent the same number).

A deeper reason for the imprecision is that an explicit description of a thing (e.g. a
decimal) automatically shows the thing exists and is well-defined. Both of these
must be established for implicit definitions. Moreover, problems with things like 2

0
show that this is not completely straightforward for fractions. Wu’s “a fraction is
an equivalence class” reflects the usual way to address this: it is short for “things
satisfying the defining property of fractions do exist, in the ring of equivalence
classes of fractions”. This is inappropriate for elementary education in the same
way as “

√
2 exists in the quotient polynomial ring Q[x]/(x2 − 2)”, but neither is

necessary. Uniqueness, not existence, is the key issue for fractions, square roots,
and certain other implicit definitions. Roughly speaking, the reasons for uniqueness
are so robust that they imply existence in an extended context (see Proof projects
for teachers of mathematics in [7] for more about this). The point is that the
feature that Wu sees as making the “real” definition excessively complicated can
be omitted without harm, and can be quickly and easily filled in as soon as students
are sophisticated enough to notice something is missing.

Another example Wu cites is the irrelevance of modern geometry courses to
the Euclidean-style geometry taught in schools. It seems to me that a connec-
tion is impossible because Euclidean geometry no longer qualifies as mathematics.
It certainly does not meet his “fundamental principles” ([9] p. 378): the objects
are not precisely defined; the arguments are not precise and can barely be con-
sidered logical; the methods are certainly not coherent with modern mathematics,
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and it is not particularly goal-oriented. Defects are analyzed in detail in [6] (see
the index); I mention only one here. Many Euclidean arguments are essentially
proof-by-example. One is supposed to choose “generic” examples that somehow
implement the universal quantifier (“for every triangle. . . ”) but there is no crite-
rion for when this is successful; it sometimes fails; and it works most of the time
only because the subject is so simple. It is a very poor model for mathematical
reasoning.

In his discussion of the need for inservice training Wu writes:

It is time for us to break out of the vicious cycle by exposing
teachers to a mathematically principled version of the mathematics
taught in K-12.

But there is no mathematically principled version of much of what is now taught
in K-12: too much is ineffective, obsolete, or plain wrong. Breaking out of the
vicious cycle will require profound changes in K-12 teaching. Wu actually gives
the argument for this, particularly in his section on “Fundamental Principles”, but
somehow draws the opposite conclusion.

The above may seem like an attack on Wu’s article, but in fact I think he is right
more than he is wrong. His “Fundamental Principles of Mathematics”, for instance,
could be more precise and purposeful but they are sensible and refreshingly free of
philosophy.

I would like to expand on some of his objections. First, fractions are not the
same as ratios. In particular, ratios interact poorly with negative numbers, and
if one wants to do vigorous arithmetic then one more-or-less has to give up one
or the other (or be very careful and sophisticated). Descarte accepted ratios as
the correct division-like operation, and consequently found negative numbers so
problematic that he referred to them as “false numbers”. Imaginary numbers were
less problematic! Ratios are related to fractions, but to equate the two is a fairly
serious falsehood. The second objection is that the ‘parts-of-a-whole’ approach is
both dysfunctional and specialized to the integers. It might be seen as an application
of integer fractions, but to present it as the definition seriously misrepresents the
concept.

5.2. Ira J. Papick. Papick’s article [5] is titled Strengthening the Mathematical
Content Knowledge of Middle and Secondary Mathematics Teachers. On p. 390 he
gives a long list of student questions that “teachers should be prepared to address
in a mathematically meaningful way.” But almost all of these questions reflect
serious confusions, misrepresentations, or outright errors in the standard curricu-
lum. Rather than preparing teachers to straighten out students who happen to
notice them, shouldn’t we straighten out the curriculum so they don’t occur? Isn’t
this better seen as a list of things that need to be fixed in contemporary K-12
mathematics? Some specifics:

• Question 2 reflects confusion due to sloppy and ambiguous use of “=”; see
§3.1.3.
• Question 3 reflects the confusion between fractions and the rational num-

bers they represent.
• Question 5 reflects egregious errors in educational use of guessing the next

term in a sequence.
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• Question 6 on 2
√

2 reflects problems that Wu [9] p. 376 addresses with his
“Fundamental assumption of school mathematics”: formulas for rationals
extend (by continuity) to real numbers. This ensures things gotten this way
won’t be false, but it is not functional as a definition. At some point the
miraculous exponential function should be introduced, and the genuinely
functional definition AB = exp(A log(A)) given. Contemplating 2

√
2 reveals

why this is a good thing.
• Question 7, on the difference between (x+3)(x−2)

x−2 and x+3, reveals an impre-
cision that teachers often abuse (and reenforce) in testing. Claiming these
are the same, and that the nonsingular version is the “right” form, enables
them to mark as wrong an answer that doesn’t include the cancellation.
Many interpretations of “simplify” are similarly problematic.
• Question 9, on the relevance of the quadratic formula in the age of calcu-

lators, reflects deep confusion in the educational community. Calculators
belong in the curriculum, but using them in ways that do not undercut
long-term learning goals is a much more subtle problem than generally
appreciated. Most current programs are counterproductive.

Papick describes a number of courses developed to help teachers deal with such
issues. The Algebra for Algebra Teachers mentioned on p. 392, for instance, has
a relevant list of topics. But it cannot connect with teaching until educational
methodology becomes much more precise and mathematical.

5.3. Ruth M. Heaton and W. James Lewis. Their article is A Mathematician-
Mathematics Educator Partnership to Teach Teachers. Lewis (the mathematician)
describes his goal as

. . . to help teachers become productive mathematical thinkers with
a toolbox of skills and knowledge to use to experiment, conjecture,
reason, and ultimately solve problems.

They describe his use of the “chicken nugget conundrum”, used as an example here
in §3.2, in one of these courses. However the description raises questions about
their definitions of “mathematical thinker”, “toolbox of skills”, etc.

First, the students did not use mathematical models. Modeling is an essential
part of the professional toolbox, but contemporary educational philosophy rejects
it (see §4.2.4). This problem has a subtle mathematical core so massive confusion
was a predictable consequence. Another consequence is that the students missed
important structure. The key ingredient mathematically is that the coefficients
(see§3.2) are nonnegative. In the chicken formulation this is an implicit property
of boxes of nuggets, and since the solutions were still phrased in terms of chicken
(see Susan’s solution, p. 398) this was never made explicit. In effect they learned
something about chicken nuggets rather than something about integers. Yet another
consequence was that (as the authors observed) the students’ explanations were long
and wordy. Professionals quit writing things out in word form in the seventeenth
century when modeling became widespread.

A second concern is that the students did not use the appropriate mathematical
tool. Eventually Susan used divisibility to justify the answer, but this is unwieldy
and the extract of her work suggests she could not have found it on her own this
way. Why was she not steered toward modular arithmetic during the mentoring
sessions? A possibility is that the description of modular arithmetic Lewis sees as
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appropriate for school use is not actually functional. This is true of Dubinsky; see
the next section.

To summarize: the authors present this as an example where success was salvaged
from unexpected disaster. But it seems to me the disaster was predictable and the
salvage fell considerably short of providing a “toolbox of skills and knowledge”. It
looks successful only from within mainstream educational theory.

5.4. Ed Dubinsky and Robert P. Moses. Dubinsky and Moses present a syn-
thesis of everything relevant, and the Civil Rights movement as well.

Dubinsky writes that at one point he realized that to significantly improve his
students’ learning he would have to better understand the process of student learn-
ing. But instead of studying students, he studied the education literature. When he
found Paget he says “. . . I knew I had come home” [3], p. 402. Some of Paget’s in-
sights are impressive, but they are abstract high-level constructs that almost invite
abuse at micro levels. For instance

If one has built appropriate [mental] structures, very early con-
cepts can be grasped easily . . . through normal life experiences . . . .
Later, with such structures, more advanced concepts can be learned
without undue difficulty via any pedagogical method that relates
the concept to the structures. If, however, one does not possess
structures appropriate for a concept, it is nearly impossible to learn
it.

This implicitly describes two different approaches, and has a very strong hidden im-
plication that they are compatible. First, it logically establishes “learning without
undue difficulty” as a criterion for “appropriate structure”, and conversely “nearly
impossible to learn it” as a criterion for the lack thereof. Logically this should
mean that downstream consequences should be a primary concern at all levels,
and in particular, elementary education should be highly constrained by the need
to support higher levels. I find this entirely reasonable. But the statement also
claims “very early concepts can be grasped easily through normal life experiences”.
The hidden implication is that early concepts grasped this way will support later
learning. Educators, including the authors and Beckmann in [2], take this hidden
implication as an article of faith. Indeed their faith is so strong that rather than
looking downstream they compartmentalize levels. Unfortunately, rather superficial
examination shows this belief to be false. I illustrate this with Dubinsky’s examples.

On page 403 he discusses strategies to help students reconcile the views of 2/3
as a process (parts of a whole) and an object that encapsulates the process. But as
Wu [9] p. 374, points out, neither of these views is mathematically sound. Perhaps
they can be “grasped through normal life experiences” but neither supports later
work, e.g. with (x + 3)/(x − 4). Shouldn’t they be discarded and replaced with
something functional, rather than reconciled?

On page 407 the authors describe a way to help students grasp modular arith-
metic, in the context of division-with-remainder:

a = qb+ r, with 0 ≤ r < b

They use a game modeled on a clock, with a student walking a units around a
circle of length b. The number of cycles is q, and the final position on the circle
gives r. The first problem is that this shows “grasp” is interpreted as the “relate
to and admire” of philosophy rather than the “exploit as a tool” of mathematics.
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In particular the “grasping” this game provides does not provide an “appropriate
structure” to support applications such as §3.2, 3.3, and 3.5.4. A more mathe-
matical objection is that modular arithmetic is concerned with equivalence classes
obtained by identifying b with 0. This does not mean the equivalence-class concept
should be used, but we should be consistent with it and there are two problems
here. First, the remainder is a particularly nice representative of the equivalence
class, but it invites confusion to identify it with the equivalence class. Second, the
quotient q is not part of modular arithmetic, and including it makes applications
significantly more difficult.

On page 407 Bob describes how “people talk’, ‘feature talk’ and questions about
trips on the Red Line in Cambridge relate to mathematics:

. . . students mathematizing these trips acquire powerful metaphors
and concepts for addition and subtraction very different from their
arithmetic metaphors for these operations . . .

Again the objective seems to be the “relate to and admire” of philosophy rather
than the “exploit as a tool” of mathematics. Similarly, he cannot have looked down-
stream: these metaphors interfere with algebra or even fluent work with numbers,
so they are more likely to be barriers to be overcome than “mental structures” that
support later learning.

Summary: many educators have unquestioning faith that any way they inter-
pret “grasping early concepts through normal life experiences” will automatically
support later learning. In most cases this faith is unjustified, and downstream
responsibilities are not being met.

5.5. Mark Saul. The International Mathematical Olympiad is the subject of Saul’s
article [8]. It is not clear why it was included in the special issue, because it focuses
more on the associated community and some of the mathematicians who have par-
ticipated than on actual content. However, it provides an opportunity to express
concerns about the trick problems used in such competitions.

Trick problems depend on a clever insight or special feature that if missed makes
them hard, and if seen makes them easy. But this gives a misleading view of the
nature and goals of mathematics, and the activities of mathematicians. First:

• Trick problems are contrived. Small variations typically give identical-
looking problems that are impossible with elementary methods; see §3.2.11
for an example. Consequently these are contests between problem designers
and students, not between nature and students.
• Many K-12 teachers take the use in competitions to mean that these prob-

lems are next step up, and talented students should be challenged with trick
problems. Longer and more involved but genuinely illuminating mathemat-
ical opportunities go unused.
• Many talented students do not have the necessary quick cleverness, or don’t

like tricks, and are turned off by this view of mathematics.
Trick problems also make competitions problematic as a recruiting tool for the

profession. Saul takes pride in the fact that some outstanding mathematicians
were first identified through their performance in competitions. But most high-
scoring competitors did not become mathematicians. In fact most mathematics,
deep work especially, is slow and methodical rather than quick and clever. Further,
the everyday power of mathematics is that persistence, appropriate techniques,
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and good work habits succeed with long, hard problems where quick cleverness is
powerless. Quick and clever people often find the long-haul tenacity required for
real accomplishment either unattractive or impossible.

The other side of this coin is that most outstanding mathematicians did not
distinguish themselves in competitions. Again, the professionally productive me-
thodical and persistent mindset does not correlate well with the quick cleverness
needed for competitions. I was put on my college Putnam team because my teach-
ers thought I had the greatest mathematical potential in the class. They were right
about professional accomplishment but wrong about the Putnam: I had the lowest
score on the team by far, and may have kept it out of national rankings.

Summary: no doubt trick problems have their place, and competitions may
require them. However they should not be presented as representing real math-
ematics, should not be the default next step for promising high-school students,
and should not be represented as ideal recruiting tools for either mathematicians
or potential users of mathematics.
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