

1.
$$\lim \left(\frac{2n-a}{2n}\right)^n = \lim \left(1 - \frac{a}{2n}\right)^n = \lim \left(1 - \frac{\frac{a}{2}}{n}\right)^n = e^{\frac{a}{2}} = \sqrt{e^a}$$
Opção (D)

2. A sucessão das áreas dos quadrados estão em progressão geométrica de razão $\frac{1}{4}$.

A soma das áreas é dada por

$$S_n = 9 \times \frac{1 - \left(\frac{1}{4}\right)^n}{1 - \frac{1}{4}} = 9 \times \frac{1 - \left(\frac{1}{4}\right)^n}{\frac{3}{4}} = 12 \times \left(1 - \left(\frac{1}{4}\right)^n\right)$$

Como
$$\forall n \in \mathbb{N}, \ 1 - \left(\frac{1}{4}\right)^n < 1, \text{ então } \forall n \in \mathbb{N}, \ 12 \times \left(1 - \left(\frac{1}{4}\right)^n\right) < 12.$$

3.1.
$$f(x) = \begin{cases} \frac{e^{x-1} - 1}{-2x^2 + 3x - 1} & \text{se } x < 1 \\ 7 \times 2^{x-1} - 8 & \text{se } x \ge 1 \end{cases}$$

•
$$\lim_{x \to 1^{-}} \frac{e^{x-1} - 1}{-2x^{2} + 3x - 1} = \lim_{x \to 1^{-}} \frac{e^{x-1} - 1}{(x-1)(-2x+1)} =$$

$$= \lim_{x \to 1^{-}} \frac{1}{-2x+1} \times \lim_{x \to 1^{-}} \frac{e^{x-1} - 1}{(x-1)} =$$

$$= -1 \times \lim_{y \to 0} \frac{e^{y} - 1}{y} = -1 \times 1 = -1$$

•
$$\lim_{x \to 1^+} (7 \times 2^{x-1} - 8) = -1$$

•
$$f(1) = 7 \times 2^0 - 8 = -1$$

A função é contínua em x = 1.

Seja:
$$x-1=y$$

Se $x \to 1$, então $y \to 0$

3.2.
$$\log_2(f(x)) = x + \log_2 3 \Leftrightarrow$$

$$\Leftrightarrow \log_2(7 \times 2^{x-1} - 8) = x + \log_2 3$$

$$\Leftrightarrow \log_2(7 \times 2^{x-1} - 8) = \log_2 2^x + \log_2 3$$

$$\Leftrightarrow \log_2(7 \times 2^{x-1} - 8) = \log_2(2^x \times 3)$$

$$\Leftrightarrow \frac{7}{2} \times 2^x - 8 = 2^x \times 3 \Leftrightarrow \frac{7}{2} \times 2^x - 2^x \times 3 - 8 = 0$$

$$\Leftrightarrow \frac{1}{2} \times 2^x = 8 \Leftrightarrow 2^{x-1} = 2^3$$

$$\Leftrightarrow x = 4$$

$$4 \in [1, +\infty[$$
.

A solução é 4.

4.1. Sejam $A \in E$ os acontecimentos:

A: "entrar na primeira opção de candidatura";

E: "entrar em Engenharia".

Sabe-se que P(A) = 0.75, $P(E \cap \overline{A}) = 0.1$ e P(E|A) = 0.6.

	E	\overline{E}	
A		$P(A \cap \overline{E}) = 0,3$	0,75
\overline{A}	0,1	$P(\overline{A} \cap \overline{E}) = 0.15$	0,25
		$P(\overline{E}) = 0.45$	1

•
$$P(\overline{A}) = 1 - P(A) = 1 - 0,75 = 0,25$$

•
$$P(A \cap \overline{E}) = P(\overline{E}|A) \times P(A) = (1 - P(E|A)) \times P(A) = 0.4 \times 0.75 = 0.3$$

•
$$P(\overline{A} \cap \overline{E}) = P(\overline{A}) - P(\overline{A} \cap E) = 0,25 - 0,1 = 0,15$$

•
$$P(\overline{E}) = P(\overline{A} \cap \overline{E}) + P(A \cap \overline{E}) = 0.15 + 0.3 = 0.45$$

A probabilidade de o aluno não ter entrado num curso de Engenharia é de 45%.

4.2. ${}^{7}C_{3} \times {}^{5}C_{2} \times 5! \times 7!$

Opção (B)

5.1. Para x < 0, tem-se:

$$f'(x) = (-2x+1)' \times e^{2-x^2} + (-2x+1)(e^{2-x^2})'$$

$$= -2 \times e^{2-x^2} + (-2x+1) \times (-2x)(e^{2-x^2})$$

$$= (-2+4x^2-2x)e^{2-x^2}$$

$$= (4x^2-2x-2)e^{2-x^2}$$

Cálculo auxiliar:

$$f'(x) = 0 \Leftrightarrow$$

$$\Leftrightarrow (4x^2 - 2x - 2)$$

$$\Leftrightarrow (4x^2 - 2x - 2)e^{2-x^2} = 0$$

$$\Leftrightarrow 2x^2 - x - 1 = 0$$

$$\Leftrightarrow x = -\frac{1}{2} \lor x = 1$$

x		$-\frac{1}{2}$	0
$4x^2-2x-2$	+	0	-
e^{2-x^2}	+	+	+
f'(x)	+	0	-
f	7		7

$$f$$
 é crescente em $\left]-\infty, -\frac{1}{2}\right[$

$$f$$
 é decrescente em $\left] -\frac{1}{2}, 0 \right[$

Máximo:
$$f\left(-\frac{1}{2}\right) = 2e^{\frac{7}{4}}$$

5.2.
$$y = mx + b$$

$$m = \lim_{x \to +\infty} \frac{\ln\left(e^x - 1\right) - 2x}{x} = \lim_{x \to +\infty} \left(\frac{\ln\left(e^x - 1\right)}{x} - 2\right)$$

$$\lim_{x \to +\infty} \left(\ln\left(e^x \left(1 - \frac{1}{e^x}\right)\right)\right) = \lim_{x \to +\infty} \left(x + \ln\left(1 - \frac{1}{e^x}\right)\right)$$

$$= \lim_{x \to +\infty} \left(\frac{\ln\left(e^x \left(1 - \frac{1}{e^x}\right)\right)}{x} - 2 \right) = \lim_{x \to +\infty} \left(\frac{x + \ln\left(1 - \frac{1}{e^x}\right)}{x} - 2 \right)$$

$$= \lim_{x \to +\infty} \left(1 + \frac{\ln\left(1 - \frac{1}{e^x}\right)}{x} - 2 \right) = 1 + 0 - 2 = -1$$

$$b = \lim_{x \to +\infty} \left(\ln\left(e^x - 1\right) - 2x + x \right) = \lim_{x \to +\infty} \left(\ln\left(e^x - 1\right) - \ln\left(e^x\right) \right)$$

$$= \lim_{x \to +\infty} \left(\ln \left(\frac{e^x - 1}{e^x} \right) \right) = \lim_{x \to +\infty} \left(\ln \left(1 - \frac{1}{e^x} \right) \right) = \ln \left(1 - 0 \right) = 0$$

Assíntota de equação y = -x

6.1.
$$g'(x) = e^x \sin x, x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$g''(x) = (e^x \sin x)' = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x)$$

$$g''(x) = 0 \Leftrightarrow \sin x + \cos x = 0 \Leftrightarrow \cos x = -\sin x \Leftrightarrow \cos x = \sin(-x)$$

$$\Leftrightarrow \cos x = \cos\left(\frac{\pi}{2} + x\right) \Leftrightarrow x = \frac{\pi}{2} + x + 2k\pi \lor x = -\frac{\pi}{2} - x + 2k\pi, \ k \in \mathbb{Z}$$

$$\Leftrightarrow 2x = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z} \Leftrightarrow x = -\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$$

Como
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
, tem-se: $g''(x) = 0 \Leftrightarrow x \in \left\{ -\frac{\pi}{4} \right\}$

x	$-\frac{\pi}{2}$		$-\frac{\pi}{4}$		$\frac{\pi}{2}$
g''(x)		+	0	-	
g		\setminus		\bigcirc	

Proposta de resolução da prova global [maio - 2024]

No intervalo $\left[-\frac{\pi}{2}, -\frac{\pi}{4}\right]$ a concavidade é voltada para cima.

No intervalo $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$ a concavidade é voltada para baixo.

O ponto de abcissa $-\frac{\pi}{4}$ é ponto de inflexão.

6.2. Se a reta tangente ao gráfico nesse ponto é perpendicular à reta $y = -\frac{1}{2}x$, então tem declive 2.

Pretende-se mostrar que a equação g'(x) = 2 é possível no intervalo $\frac{\pi}{4}, \frac{\pi}{3}$.

 $g'(x) = e^x \sin x$, a função g' é contínua no seu domínio $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Como $\left[-\frac{\pi}{4}, \frac{\pi}{3}\right] \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ e g' é contínua em $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, conclui-se que g' é

contínua em $\left[-\frac{\pi}{4}, \frac{\pi}{3}\right]$.

 $g'\left(-\frac{\pi}{4}\right) = e^{-\frac{\pi}{4}} \sin\left(-\frac{\pi}{4}\right) < 0 \text{ e } g'\left(\frac{\pi}{3}\right) = e^{\frac{\pi}{3}} \sin\left(\frac{\pi}{3}\right) \approx 2,47 \text{ (\'e maior do que 2)}$

g' é contínua em $\left[-\frac{\pi}{4}, \frac{\pi}{3}\right]$ e $g'\left(-\frac{\pi}{4}\right) < 2 < g'\left(\frac{\pi}{3}\right)$.

Pelo Teorema de Bolzano-Cauchy, conclui-se que $\exists x \in \left[-\frac{\pi}{4}, \frac{\pi}{3} \right] : g'(x) = 2$.

7.1. Plano *ABC*: x-4y-10z=4 O vetor $\vec{n}(1, -4, -10)$ é normal ao plano

Na opção (C) um vetor diretor da reta é $\vec{u}(0, -5, 2)$.

$$\vec{n} \cdot \vec{u} = (1, -4, -10) \cdot (0, -5, 2) = 0 + 20 - 20 = 0$$

O ponto D(2, 7, 8) pertence à da opção (C).

$$(2,7,8) = (2,-3,12) + k(0,-5,2), k \in \mathbb{R}$$

$$\begin{cases} 2+0=2 \\ -3-5k=7 \Leftrightarrow \begin{cases} 2=2 \\ k=-2 \end{cases} \\ k=-2 \end{cases}$$

Opção (C)
$$(x, y, z) = (2, -3, 12) + k(0, -5, 2), k \in \mathbb{R}$$
.

7.2.
$$\cos(D\hat{C}A) = \frac{\overrightarrow{CD}.\overrightarrow{CA}}{\|\overrightarrow{CD}\| \|\overrightarrow{CA}\|}$$

O ponto C tem coordenadas (x, 0, 0) e pertence ao plano ABC.

$$x-0-0=4 \Leftrightarrow x=4$$

$$\overrightarrow{CD} = D - C = (-2, 7, 8)$$

$$\overrightarrow{CA} = A - C = (-6, 6, -3)$$

$$\cos\left(D\hat{C}A\right) = \frac{\overrightarrow{CD}.\overrightarrow{CA}}{\|\overrightarrow{CD}\|\|\overrightarrow{CA}\|} = \frac{\left(-2, 7, 8\right).\left(-6, 6, -3\right)}{\sqrt{4 + 49 + 64}\sqrt{36 + 36 + 9}} = \frac{12 + 42 - 24}{9\sqrt{117}} = \frac{10}{3\sqrt{117}}$$

Resposta: $D\hat{C}A \approx 72^{\circ}$

8. Em relação ao triângulo [OBC]

$$\cos(\pi - \alpha) = \frac{\overline{OC}}{2}$$
 Daqui resulta que: $\overline{OC} = 2\cos(\pi - \alpha) = -2\cos\alpha$

$$\sin(\pi - \alpha) = \frac{\overline{CB}}{2}$$
 Daqui resulta que: $\overline{CB} = 2\sin(\pi - \alpha) = 2\sin\alpha$

Área do triângulo [OBC]:

$$\frac{\overline{OC} \times \overline{BC}}{2} = \frac{-2\cos\alpha \times 2\sin\alpha}{2} = -2\sin\alpha\cos\alpha = -\sin(2\alpha)$$

Em relação ao triângulo [OCA]

$$\overline{OC} = 2\cos(\pi - \alpha) = -2\cos\alpha$$

Altura do triângulo [OCA] em relação à base [OC] é igual a $2\sin(\pi - \alpha) = 2\sin\alpha$.

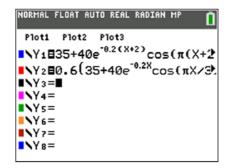
Área do triângulo [
$$OCA$$
]: $\frac{\overline{OC} \times 2\sin\alpha}{2} = \frac{-2\cos\alpha \times 2\sin\alpha}{2} = -\sin(2\alpha)$

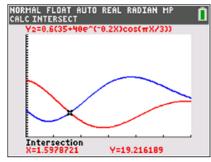
Área sombreada:
$$4\pi - (-\sin(2\alpha) - \sin(2\alpha)) = 4\pi + 2\sin(2\alpha)$$

Opção **(D)**
$$4\pi + 2\sin(2\alpha)$$

9. Janela de visualização X: [0,6] e Y:[0,80]

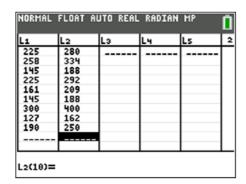
$$h(t+2) = 0,6h(t); t \in [0,6]$$

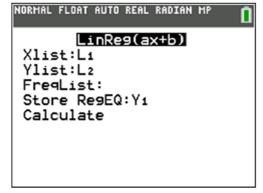




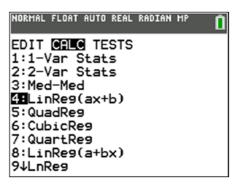
Resposta: 1,6 segundos

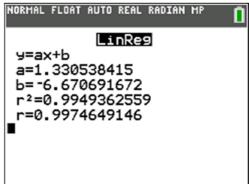
10.

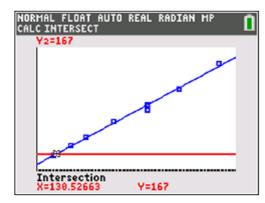




y=ax+b $a \approx 1,33$ $b \approx -6,67$ Y=1,33x-6,67







Se y=167 o valor de x, arredondado às unidades, é 131.

11. Seja z o número complexo cujo afixo é o ponto $E\left(-\sqrt{2}, -\sqrt{2}\right)$

$$z = \rho e^{\theta i}$$

$$\rho = \left| -\sqrt{2} - \sqrt{2} i \right| = \sqrt{2 + 2} = 2$$

$$\tan \theta = \frac{-\sqrt{2}}{-\sqrt{2}} = 1$$
, como E pertence ao 3.º quadrante, $\theta = \frac{5\pi}{4}$

$$z = \rho e^{\theta i} = 2e^{\frac{5\pi}{4}i}$$

Seja t o número complexo, cujo afixo é o ponto F.

$$t = 2e^{\left(\frac{5\pi}{4} + \frac{2\pi}{6}\right)i} = 2e^{\left(\frac{5\pi}{4} + \frac{\pi}{3}\right)i} = 2e^{\frac{19}{12}i}$$

Opção (C) $2e^{\frac{19}{12}i}$

12. $z = \frac{(1-i)^2 - i^{25} + 1}{1+2i}$ e $w = \sqrt{2}e^{\frac{\theta}{2}i}$, sendo $\theta \in \left[0, \frac{\pi}{2}\right]$.

$$z = \frac{\left(1-i\right)^2 - i^{25} + 1}{1+2i} = \frac{1-2i-1-i+1}{1+2i} = \frac{1-3i}{1+2i}$$

$$=\frac{(1-3i)(1-2i)}{5} = \frac{1-2i-3i-6}{5} = \frac{-5-5i}{5} = -1-i$$

z = -1 - i, na forma trigonométrica, $z = \rho e^{\alpha i}$, $\rho > 0$

$$\rho = \left| -1 - i \right| = \sqrt{1 + 1} = \sqrt{2}$$
, $\tan \alpha = \frac{-1}{-1} = 1$ e o afixo de z pertence ao 3.º quadrante.

Então,
$$\alpha = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$
.

Assim, tem-se:
$$z = \sqrt{2} e^{\frac{5\pi}{4}i}$$

$$-z = \sqrt{2} e^{\left(\pi + \frac{5\pi}{4}\right)i} = \sqrt{2} e^{\frac{9\pi}{4}i} = \sqrt{2} e^{\frac{\pi}{4}i}$$

Sendo
$$w = \sqrt{2} e^{\frac{\theta}{2}i}$$
, tem-se: $\overline{w} = \sqrt{2} e^{-\frac{\theta}{2}i} e^{-\frac{\theta}{2}i} e^{-\frac{\theta}{2}i} = \left(\sqrt{2} e^{-\frac{\theta}{2}i}\right)^4 = \left(\sqrt{2$

Assim,
$$\frac{-z}{\left(\overline{w}\right)^4} = \frac{\sqrt{2}e^{\frac{\pi}{4}i}}{4e^{-2\theta i}} = \frac{\sqrt{2}}{4}e^{\left(\frac{\pi}{4}+2\theta\right)i}.$$

$$\frac{-z}{\left(\overline{w}\right)^4}$$
 é imaginário puro quando e só quando $\cos\left(\frac{\pi}{4} + 2\theta\right) = 0$.

$$\cos\left(\frac{\pi}{4}+2\theta\right)=0 \Leftrightarrow \frac{\pi}{4}+2\theta=\frac{\pi}{2}+k\pi, \ k\in\mathbb{Z} \Leftrightarrow \theta=\frac{\pi}{8}+\frac{k\pi}{2}, \ k\in\mathbb{Z}$$

Como
$$\theta \in \left[0, \frac{\pi}{2}\right]$$
, conclui-se que $\theta = \frac{\pi}{8}$.

13.
$$x \in \mathbb{R}^+, k \in \mathbb{R}^+ \text{ e } f(x) = \frac{k}{x}.$$

Designando a abcissa de A por a, as coordenadas de A são $\left(a, \frac{k}{a}\right)$, com a > 0

$$f'(x) = \left(\frac{k}{x}\right)' = -\frac{k}{x^2}.$$

O declive da reta r é igual a f'(a), ou seja, $-\frac{k}{a^2}$ (repara que é negativo)

Uma equação da reta r é do tipo: $y = -\frac{k}{a^2}x + b$.

O ponto A pertence à reta r. Então, $\frac{k}{a} = -\frac{k}{a^2} \times a + b$.

Daqui resulta que $b = \frac{2k}{a}$.

A reta r é definida pela equação $y = -\frac{k}{a^2}x + \frac{2k}{a}$

O ponto B tem coordenadas (b, 0).

$$0 = -\frac{k}{a^2}b + \frac{2k}{a} \Leftrightarrow \frac{kb}{a^2} = \frac{2k}{a} \Leftrightarrow b = 2a.$$

Novo Espaço – Matemática A, 12.º ano

Proposta de resolução da prova global [maio - 2024]

Assim, tem-se
$$A\left(a, \frac{k}{a}\right)$$
 e $B(2a, 0)$.

A área do triângulo retângulo [*OAB*] é dada por:
$$\frac{\overline{OB} \times \frac{k}{a}}{2}$$
, ou seja, $\frac{2a \times \frac{k}{a}}{2} = k$.

Sendo a área do triângulo [OAB] igual a k (constante), conclui-se que não depende das coordenadas de A.