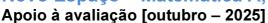
Novo Espaço – Matemática A, 12.º ano



Data: ___ - ___ - _

Nome: ____

Ano / Turma: _____ N.º: ____

1. Os 11 jogadores de uma equipa de futebol, com as camisolas numeradas de 1 a 11, irão participar no Dia Aberto do clube, com vista a promover a atividade física.

Destes 11 jogadores irão ser escolhidos 4 que irão colocar as suas camisolas em sequência, para uma atividade.

- 1.1. Quantas sequências diferentes, atendendo aos números das camisolas, se podem formar apenas com camisolas com número par?
- 1.2. Indica o número de sequências diferentes em que a camisola com o maior número seja a 6.
- 2. Seis amigos compraram bilhetes para um concerto: quatro para a plateia em pé (sem lugares marcados) e dois para a bancada, os lugares J - 21 e J - 22.
- 2.1. De quantas maneiras se podem distribuir os seis bilhetes pelos seis amigos?

(A)
$${}^{6}C_{4} \times 2!$$

(B)
$${}^{6}A_{4} \times 2$$

(C)
$${}^{6}C_{2} \times 4$$

(B)
$${}^{6}A_{4} \times 2$$
 (C) ${}^{6}C_{2} \times 4!$ (D) ${}^{6}A_{4} \times {}^{2}C_{2}$

2.2. Dos seis amigos, o Vítor quer assistir ao concerto calmamente sentado e a Joana e a Clara querem pular e dançar o concerto inteiro.

Calcula o número de maneiras de distribuir os seis bilhetes pelos seis amigos, respeitando as opções do Vítor, da Clara e da Joana.

3. Num pote estão cinco bolas, numeradas de 1 a 5. Extrai-se, ao acaso, uma bola do pote. Se sair um número par, lança-se um dado tetraédrico perfeito com os vértices numerados de 1 a 4, caso contrário, lança-se um dado cúbico perfeito com as faces numeradas de 1 a 6.

Qual é a probabilidade de sair o número 3 no dado tetraédrico? 3.1.

(A)
$$\frac{2}{5} \times \frac{1}{4}$$

(B)
$$\frac{2}{5} \times \frac{1}{6}$$
 (C) $\frac{3}{5} \times \frac{1}{4}$

(C)
$$\frac{3}{5} \times \frac{1}{4}$$

(D)
$$\frac{3}{5} \times \frac{1}{6}$$

- 3.2. Calcula a probabilidade de os dois números obtidos, o do pote e o do respetivo dado, serem iguais.
- 4. Considera uma caixa com dez bolas numeradas de 1 a 10. Sabe-se que quatro bolas são amarelas e seis bolas são pretas.

As bolas irão ser misturadas e extraem-se duas, de forma aleatória.

Calcula a probabilidade de retirar duas bolas com a mesma cor e número ímpar.

Apresenta o resultado na forma de fração irredutível.

5. Numa escola do Ensino Secundário estão matriculados 162 estudantes no 12.º ano. Ao organizar-se a viagem de finalistas, a escolha final, como destino, vai-se realizar entre Praga e Viena.

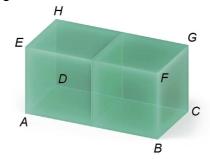
A comissão organizadora recolheu os seguintes dados:

- $\frac{4}{9}$ dos estudantes são do sexo masculino;
- metade das alunas prefere Praga como destino para a viagem de finalistas;
- $\frac{1}{4}$ dos estudantes do sexo masculino prefere Viena como destino para a viagem de finalistas.
- **5.1.** Mostra que o número de rapazes que prefere Praga como destino é igual a 54.
- **5.2.** Escolhe-se um estudante ao acaso e sabe-se que prefere Viena como destino para a viagem de finalistas.

Calcula a probabilidade de o estudante ser do sexo feminino.

Apresenta o resultado na forma de fração irredutível.

6. Na figura está representado um paralelepípedo [ABCDEFGH] formado por dois cubos geometricamente iguais.



Dos vértices do paralelepípedo serão escolhidos, ao acaso, três.

Qual é a probabilidade de ser escolhido pelo menos um vértice de cada cubo?

(A)
$$\frac{13}{19}$$

(B)
$$\frac{3}{7}$$

(C)
$$\frac{6}{7}$$

(D)
$$\frac{5}{8}$$

7. Considera uma linha do Triângulo de Pascal em que a soma dos dois elementos centrais é igual a $^{2026}C_{2014}$.

Qual é o penúltimo elemento da linha anterior do Triângulo de Pascal?

- (A) $^{2026}C_{2025}$
- **(B)** $^{2025}C_{2023}$
- **(C)** 2025
- **(D)** 2026

8. Considera o desenvolvimento de $\left(x + \frac{1}{\sqrt{x}}\right)^{12}$.

Determina o termo independente deste desenvolvimento.

9. Seja E, conjunto finito, o espaço amostral associado a uma experiência aleatória, sendo A e B dois acontecimentos ($A \subset E$ e $B \subset E$), em que B não é o acontecimento certo. Mostra que:

$$1 - P(\overline{A} \cup B) = P(\overline{B}) \times P(A \mid \overline{B})$$

10. Considera um saco com n bolas brancas e n+1 bolas pretas. Vão-se extrair, aleatoriamente, duas bolas do saco, uma após a outra, sem reposição. Sabe-se que a probabilidade de as duas bolas serem da mesma cor é igual a $\frac{11}{23}$.

Determina o valor de n.

FIM

Cotações

Questões	1.1.	1.2.	2.1	2.2.	3.1.	3.2.	4.	5.1.	5.2.	6.	7.	8.	9.	10.	Total
Cotação (pontos)	18	10	10	12	10	10	18	18	14	18	10	18	18	16	200