

Teste de avaliação n.º 1

Matemática A

12.º ANO DE ESCOLARIDADE

Nome:	∣ N.º: ∣ Turma:				
Duração do teste: 90 minutos	Tolerância: 10 minutos	Ano Letivo: 2025/26			

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor.

Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

Nas respostas aos itens de escolha múltipla, selecione a opção correta.

Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1.	A Sofia tem, numa caixa, 8 velas de lavanda, 5 de baunilha e 3 de canela.
	Quer encher um cesto com uma ou mais velas para oferecer à sua amiga Ana.
	Sabendo que as velas do mesmo tipo são iguais entre si,
	de quantas maneiras diferentes pode ser o conteúdo do cesto que a Sofia vai oferecer
	à Ana?

- 2. Um treinador de basquetebol tem 8 garrafas de água iguais para distribuir pelos 6 jogadores da sua equipa, antes de começar o jogo.
 De quantas maneiras pode fazer a distribuição se cada jogador receber pelo menos uma garrafa?
- **3.** De quantas formas diferentes se pode dividir um conjunto de 4 pessoas em dois grupos, cada um com 2 elementos?
 - **(A)** 4!
- (B) ${}^{4}A_{2}$
- C) 4C_2
- (**D**) $\frac{{}^{4}C_{2}}{2}$

- 4. Na estante de uma biblioteca há:
 - 4 livros diferentes sobre História, numerados de 1 a 4;
 - 2 livros iguais sobre Matemática;
 - 3 livros iguais sobre Geografia.

Quer-se colocar todos os livros numa fila na estante.

Quantas sequências diferentes de livros é possível formar?

- **(A)** 120
- **(B)** 10 080
- **(C)** 15 120
- **(D)** 30 240

5. Uma caixa contém 10 bolas numeradas de 1 a 10.

Serão realizadas quatro extrações, anotando-se o número da bola extraída e repondo-

-a novamente na caixa, formando um número de quatro algarismos.

Quantos desses números têm pelo menos dois algarismos iguais?

6. Numa empresa, está a decorrer um processo de recrutamento para um cargo. Os candidatos são divididos por sexo e experiência prévia:

	Candidatos com experiência	Candidatos sem experiência
Candidatos do sexo masculino	5	3
Candidatos do sexo feminino	4	2

Considere as proposições seguintes:

- I. O número de "candidatos do sexo feminino ou com experiência" é igual ao número de "candidatos do sexo feminino" somado com o número de "candidatos com experiência".
- II. Três dos candidatos passaram à segunda fase do processo de recrutamento: dois do sexo feminino e um do sexo masculino. O número de possibilidades para essa seleção é:

$${}^{6}C_{2} + {}^{8}C_{1}$$

Justifique que as proposições I e II são falsas.

Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

7. Uma galeria vai colocar 5 quadros diferentes numa fila numa parede.

Dois desses quadros são de artistas específicos: um da Celeste e outro do Armindo.

Pretende-se que o quadro da Celeste fique sempre à esquerda do quadro do Armindo.

Sabe-se que o número de formas de organizar os quadros nessas condições pode ser dado por:

$$\frac{5!}{2} = 60$$

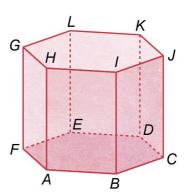
- **7.1.** Explique cuidadosamente o raciocínio que conduz à expressão apresentada.
- 7.2. Começando por escolher a posição do quadro do Armindo na fila e depois colocando os restantes, obtém-se uma expressão diferente para o mesmo número de formas de dispor os 5 quadros em fila, com o da Celeste à esquerda do quadro do Armindo.

Apresente essa expressão e explique como pensou.

8. Considere o prisma hexagonal regular [ABCDEFGHIJKL] representado na figura.

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com os dados apresentados na tabela.

Escreva, na folha de respostas, apenas cada um dos números, I, II, III e IV, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.



O número total de diagonais faciais do prisma hexagonal é <u>I</u> e o número total de diagonais é <u>II</u>.

Dispondo de seis cores diferentes, o número de maneiras de pintar as duas bases do prisma com a mesma cor e todas as faces laterais com cores diferentes da cor das bases é ___III___.

Se quisermos colocar uma vogal em cada uma das 6 faces laterais do prisma, podemos fazê-lo de **IV** maneiras diferentes.

I	II	III	IV
a) 18	a) 48	a) 93 750	a) 13 255
b) 30	b) 30	b) 60 480	b) 15 625
c) 15	c) 66	c) 82 780	c) 18 000

- 9. Num grupo de estudantes de teatro, sabe-se que existem 210 maneiras diferentes de escolher um par de alunos para representar uma cena em dueto. Quantos trios distintos de alunos é possível formar com esse grupo de estudantes de teatro?
- **10.** Considere o desenvolvimento de $(1 + 2x)^{2k+1}$, com $k \in \mathbb{N}$. Qual das seguintes expressões representa o coeficiente do termo em x^{k+1} ?

(A)
$$^{2k+1}C_{k+1} \times 2^{k+1}$$

(B)
$$^{2k+1}C_k \times 2^{k+1}$$

(C)
$$^{2k+1}C_{k+1} \times 2^k$$

(D)
$$^{2k+1}C_k \times 2^k$$

11. No triângulo de Pascal, considere o número:

$$B={}^{2k}C_k \ , k\geq 1$$

Sejam A e C os números imediatamente à esquerda e à direita de B na mesma linha.

Qual é o valor da razão:

$$\frac{B^2}{A \times C}$$

$$(A) \quad \frac{k+1}{k}$$

(B)
$$\left(\frac{k+1}{k}\right)^2$$

(C)
$$\frac{k}{k+1}$$

$$(D) \qquad \frac{2k+1}{2k-1}$$

12. Considere os alunos de uma turma.

Redija, no contexto desta situação, um enunciado de um problema de cálculo combinatório, inventado por si, que admita como resposta correta:

$$^{28}A_2 \times ^{26}C_3$$

No enunciado que apresentar, deve explicitar claramente:

- o número total de alunos;
- o acontecimento cujo número de maneiras possíveis de ocorrer seja dado pela expressão apresentada.

FIM

COTAÇÕES

	Item Cotação (em pontos)												
1.	2.	3.	4.	5.	6.	7.1.	7.2.	8.	9.	10.	11.	12.	Total
20	20	10	10	20	10	20	20	10	20	10	10	20	200

SUGESTÃO DE RESOLUÇÃO

1.

Velas de lavanda: 8 velas \rightarrow pode escolher 0, 1, 2, ..., 8 \rightarrow 9 possibilidades

Velas de baunilha: 5 velas \rightarrow pode escolher 0, 1, 2, ..., 5 \rightarrow 6 possibilidades

Velas de canela: 3 velas \rightarrow pode escolher 0, 1, 2, 3 \rightarrow 4 possibilidades

Como as escolhas são independentes, isto é, a Sofia pode escolher qualquer quantidade de lavanda, qualquer quantidade de baunilha e qualquer quantidade de canela, multiplicamos as possibilidades:

$$9 \times 6 \times 4 = 216$$

No entanto, este número inclui também a situação em que a Sofia não escolhe nenhuma vela e por isso retiramos esse caso:

$$216 - 1 = 215$$

O cesto da Sofia pode ser preenchido de 215 maneiras diferentes, garantindo que há pelo menos uma vela.

2. Como cada jogador tem de receber pelo menos uma garrafa, o treinador começa por dar uma garrafa a cada jogador. Ainda sobram 8 - 6 = 2 garrafas.

Ou as duas garrafas que sobram vão para o mesmo jogador, o que pode acontecer de 6 maneiras diferentes, uma por jogador, ou as duas garrafas vão para jogadores diferentes, o que pode acontecer de ${}^6C_2=15$ maneiras.

Somando os dois casos, tem-se 6 + 15 = 21.

O treinador pode fazer a distribuição de 21 maneiras diferentes.

3. Escolhendo 2 pessoas de entre 4, denominando-as por A, B, C e D, para formar o primeiro grupo, temos as seguintes 6 situações:

 $AB \rightarrow sobra CD$ $AC \rightarrow sobra BD$ $AD \rightarrow sobra BC$

CD o sobra AB BD o sobra AC BC o sobra AD

No entanto, repare-se que quando se forma um grupo, por exemplo, AB, também se forma o grupo CD, ou seja, cada divisão é contada duas vezes – uma vez para cada grupo considerado "primeiro".

Assim existem $\frac{6}{2} = \frac{{}^4C_2}{2} = 3$ formas diferentes de dividir um conjunto de 4 pessoas em dois grupos, cada um com 2 elementos.

Opção (D)

4.

Livros de História

Há 9 posições possíveis na fila.

Precisamos de colocar os 4 livros diferentes de História em 4 dessas posições. Como os livros de História são diferentes, o número de formas de escolher as suas posições é: ${}^9A_4 = 3024$

Livros de Matemática

Restam 9-4=5 posições para colocar os livros de Matemática, que são iguais. Número de formas de escolher as suas posições: ${}^5\mathcal{C}_2=10$

Livros de Geografia

Sobram 5-2=3 posições, que serão preenchidas pelos 3 livros de Geografia iguais.

Como são iguais, há apenas uma única forma de colocar.

O número total de sequências é $3024 \times 10 \times 1 = 30240$.

Opção (D)

5.

- Total de números de 4 algarismos, sem restrições: $10 \times 10 \times 10 \times 10 = 10000$
- Números com todos os algarismos diferentes: $^{10}A_4 = 5040$
- Números com pelo menos dois algarismos iguais: $10\,000 5040 = 4960$

Existem 4960 números de 4 algarismo que têm pelo menos dois algarismos iguais.

6.

- I. Para saber o número de "candidatos do sexo feminino ou com experiência", ao número de "candidatos do sexo feminino" soma-se o número de "candidatos com experiência", mas é preciso subtrair o número de "candidatos do sexo feminino com experiência" que foram contados em duplicado.
- II. É preciso combinar cada escolha de candidato do sexo feminino com cada escolha de candidato do sexo masculino. Assim, o número de hipóteses possíveis é ${}^6C_2 \times {}^8C_1$.

7.

7.1. Número total de formas de organizar os quadros sem restrições: 5! = 120 Em metade dos arranjos possíveis, o quadro da Celeste aparece à esquerda do Armindo, e na outra metade, à direita do quadro do Armindo.

Assim, o número de formas de organizar os quadros nas condições referidas é:

$$\frac{5!}{2} = \frac{120}{2} = 60$$

7.2. Para que o quadro da Celeste fique à esquerda do quadro do Armindo, o quadro do Armindo não pode estar na posição mais à esquerda.

Assim, a posição do quadro do Armindo pode ser qualquer uma das 2.ª, 3.ª, 4.ª ou 5.ª posições, o que dá 4 possibilidades.

Depois de a posição do quadro do Armindo estar definida, o da Celeste pode ocupar qualquer posição à sua esquerda.

- se o quadro do Armindo está na $2.^a$ posição, o da Celeste só pode estar na $1.^a \rightarrow 1$ possibilidade.
- se o quadro do Armindo está na 3.ª posição, o da Celeste só pode estar na 1.ª ou
 2.ª posições → 2 possibilidades.
- se o quadro do Armindo está na 4.ª posição, o da Celeste só pode estar na 1.ª, 2.ª
 ou 3.ª → 3 possibilidades.
- se o quadro do Armindo está na 5.ª posição, o da Celeste só pode estar na 1.ª, 2.ª,
 3.ª ou 4.ª → 4 possibilidades.

Total de escolhas para o quadro da Celeste: 1 + 2 + 3 + 4 = 10 possibilidades.

Os 3 quadros restantes podem ocupar as posições restantes em qualquer ordem, ou seja, existem 3! = 6 possibilidades.

Assim, no total, o número de formas de organizar os quadros nas condições do problema pode ser escrito como $(1+2+3+4)\times 3!=10\times 6=60$.

8.

I. Cada base do prisma tem 6 arestas.

Número de diagonais de cada base: ${}^6C_2 - 6 = 9$

Número de diagonais de cada face lateral: 2

Número total de diagonais faciais: $9 \times 2 + 2 \times 6 = 30$

II. O prisma tem $6 \times 3 = 18$ arestas.

Número total de diagonais: $^{12}C_2 - 18 = 48$

III. Existem 6 cores disponíveis para pintar as bases.

Cada face lateral pode ser pintada de 5 cores.

O número de maneiras de pintar as faces do prisma nas condições do enunciado é: $6 \times 5^6 = 93750$.

IV. Cada face lateral pode ter uma de 5 vogais.

O número de maneiras diferentes de atribuir uma vogal a cada face é $5^6 = 15625$.

- I b
- II a
- III a)
- IV b

9. Seja n o número total de estudantes.

Sabe-se que ${}^{n}C_{2} = 210$.

Logo:

$$\frac{n!}{2!(n-2)!} = 210 \Leftrightarrow \frac{n(n-1)(n-2)!}{2(n-2)!} = 210 \Leftrightarrow \frac{n(n-1)}{2} = 210 \Leftrightarrow$$

$$\Leftrightarrow n^2 - n = 420 \Leftrightarrow n^2 - n - 420 = 0 \Leftrightarrow n = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-420)}}{2 \times 1} = 0 \Leftrightarrow$$

$$\Leftrightarrow n = 21 \lor n = -20$$

Conclui-se assim que o número total de estudantes é 21.

Assim, o número de trios distintos de alunos que é possível formar é $^{21}C_3 = 1330$.

10.

O termo geral é dado por
$$^{2k+1}C_p \times 1^{2k+1-p} \times (2x)^p = ^{2k+1}C_p \times 2^p \times x^p$$

Quer-se o termo em x^{k+1} , ou seja p = k + 1.

Logo, o coeficiente é $^{2k+1}C_{k+1} \times 2^{k+1}$

Opção (A)

$$\begin{aligned} \mathbf{11.} & B = {}^{2k}C_k \ , A = {}^{2k}C_{k-1} \ \mathbf{e} \ C = {}^{2k}C_{k+1} \\ & \frac{B^2}{A \times C} = \frac{\left(\frac{(2k)!}{k! (2k-k)!}\right)^2}{\frac{(2k)!}{(k-1)! (2k-k+1)!} \times \frac{(2k)!}{(k+1)! (2k-k-1)!}} = \\ & = \frac{(k-1)! (k+1)! (k+1)! (k-1)!}{(k! \, k!)^2} = \frac{(k-1)! (k+1) k! (k+1) k! (k-1)!}{k(k-1)! \, k(k-1)! \, k! \, k!} = \\ & = \frac{(k+1)(k+1)}{kk} = \left(\frac{k+1}{k}\right)^2 \end{aligned}$$

Opção (B)

12. Por exemplo:

Numa turma de 28 alunos, vai organizar-se uma atividade de grupo para uma apresentação oral.

Primeiro, vão ser escolhidos 2 representantes da turma, um para coordenador e outro para subcoordenador do grupo.

Em seguida, dos 26 alunos restantes, serão escolhidos 3 alunos para formar uma equipa de apoio aos outros 2 alunos escolhidos.

De quantas maneiras diferentes é possível formar este grupo de 5 alunos?

