	Teste de Matemática A
	2025 / 2026
Teste N.º 2	
Matemática A	
Maternatica A	
12.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica de tin	ita azul ou preta.
Não é permitido o uso de corretor. Risque ac	quilo que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada i	tem.
As cotações dos itens encontram-se no final	do enunciado.
Na resposta aos itens de escolha múltipla, s	elecione a opção correta. Escreva na folha de
espostas o número do item e a letra que ide	ntifica a opção escolhida.
Na resposta aos restantes itens, apresente to	odos os cálculos que tiver de efetuar e todas as
ustificações necessárias. Quando para u	m resultado não é pedida a aproximação,
apresente sempre o valor exato.	

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base } \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n \, e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{\frac{i\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \mathbf{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=\,u'+\,v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \ v'}{v^2}$$

$$(u^n)' = n u^{n-1} u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Considere um código constituído por 5 vogais.

Quantos códigos distintos é possível constituir utilizando exatamente duas vogais "a" e, no máximo, duas vogais "e"?

- **(A)** 960
- **(B)** 880
- **(C)** 630
- **(D)** 260
- 2. Considere, de um baralho de cartas completo, as 13 cartas do naipe de espadas: ás, três figuras (rei, dama e valete) e mais nove cartas (do 2 ao 10). As cartas vão ser dispostas, ao acaso, sobre uma mesa, lado a lado, de modo a formarem uma sequência de cartas.

Qual é o número de sequências diferentes que é possível construir, de modo que a carta ás fique numa das extremidades e não fiquem duas figuras lado a lado?

(A) ${}^{10}C_3 \times 12! \times 2$

(B) $2 \times 9! \times {}^{10}A_3$

(C) $13! - 3! \times 9! \times 2$

- **(D)** $2 \times {}^{10}C_3 \times 9!$
- 3. A Inês comprou cinco canetas azuis e três canetas pretas, todas diferentes entre si.

Decidiu escolher, ao acaso, duas dessas canetas para oferecer à sua irmã.

- Qual é a probabilidade de, entre as canetas oferecidas, existir pelo menos uma caneta azul? Apresente o valor pedido sob a forma de percentagem com arredondamento às décimas.
- 4. No passado dia 28 de abril de 2025 ocorreu um corte generalizado no abastecimento elétrico, deixando toda a Península Ibérica e algumas zonas de França sem eletricidade durante várias horas. Durante este apagão, foi mobilizada uma equipa constituída por n elementos para restaurar os serviços.

Sabe-se que dois quintos dos elementos dessa equipa são engenheiros de redes elétricas e que os restantes são técnicos de campo.

Suponha que se escolhem, ao acaso e simultaneamente, dois elementos desta equipa para reunir com a ministra do Ambiente e Energia.

Sabendo que a probabilidade de terem sido selecionados dois engenheiros é igual a $\frac{22}{145}$ determine o número de elementos que integraram a equipa mobilizada para restaurar os serviços. Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- resolva a equação, sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos.

- 5. Numa associação de solidariedade social, existem 25 voluntários a trabalhar num projeto de distribuição de refeições – alguns têm menos de 30 anos e outros têm 30 anos ou mais. Sabe-se que:
 - 60% dos voluntários são rapazes e 40% são raparigas;
 - $\frac{2}{\epsilon}$ dos rapazes têm menos de 30 anos;
 - $\frac{3}{5}$ das raparigas têm 30 anos ou mais.

A Marta e o Rui participam neste projeto, e ambos têm menos de 30 anos.

Pretende-se formar, ao acaso, de entre os 25 voluntários, uma equipa de 6 elementos.

Determine a probabilidade de a equipa ser constituída pela Marta, pelo Rui, por outro voluntário com menos de 30 anos (rapaz ou rapariga) e por três voluntários (rapazes ou raparigas) com 30 anos ou mais. Apresente o resultado na forma de dízima, arredondado às milésimas.

- 6. Seja E, conjunto finito, o espaço amostral associado a uma certa experiência aleatória e sejam A e B dois acontecimentos $(A \subset E \in B \subset E)$. Sabe-se que:
 - $5P(\bar{A} \cup \bar{B}) = 2 + 5P(A \cap B)$
 - $P(B) = \frac{3}{r}$

Determine o valor de $P((\overline{A \cup B}) \cup A)$. Apresente o resultado na forma de fração irredutível.

- 7. Considere a sucessão (u_n) de termo geral $u_n = \frac{2-5n}{n+3}$. Seja f a função, de domínio $\mathbb{R}\setminus\{-5\}$, definida por $f(x) = \frac{1}{2x+10}$. O $\lim f(u_n)$ é igual a:
 - **(A)** −∞
- **(B)** 0
- **(C)** −5
- (D) $+\infty$

8. Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{-2x^3 - x^2 + 6x}{x^2 + 6x + 8} & \text{se } x > -2\\ -7 & \text{se } x = -2\\ \frac{7\sqrt{x^2 - 3} - 7}{2x + 4} & \text{se } x < -2 \end{cases}$$

- **8.1** Averigue, recorrendo a processos exclusivamente analíticos, se a função é contínua em x=-2.
- **8.2** Qual é a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa -1?
 - **(A)** $y = \frac{26}{9}x + \frac{11}{9}$

(B) $y = -\frac{6}{25}x + \frac{11}{25}$

(C) $y = \frac{26}{9}x + \frac{103}{27}$

(D) $y = \frac{25}{6}x + \frac{131}{125}$

8.3 Seja $g: \mathbb{R}^+ \to \mathbb{R}$ uma função tal que:

$$\bullet \quad \lim_{x \to +\infty} \frac{g(x) \times (6x-5)}{3x^2 + x} = 2;$$

a reta r é assíntota oblíqua ao gráfico de g.

Para um certo número real a > 0, sabe-se que a reta secante ao gráfico de f nos pontos de abcissas a e 2 é perpendicular à reta r.

Determine, recorrendo à calculadora, o valor de a, com arredondamento às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- represente, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s) que lhe permitem resolver a equação.
- **9.** Seja f a função, de domínio $]1, +\infty[$. Sabe-se que:
 - f é definida por $f(x) = \frac{\sqrt{x^4-1}}{x-1}$;
 - $\bullet \quad \lim_{x \to +\infty} \frac{f(x)}{x} = 1.$

Estude a função f quanto à existência de assíntotas verticais e de assíntotas oblíquas ao seu gráfico e, caso existam, escreva as respetivas equações.

10. De uma função real de variável real h, sabe-se que h'(-2) = -3.

Então,
$$\lim_{x\to -2} \frac{h(-2)-h(x)}{x^2+x-2}$$
 é igual a:

(C)
$$-2$$

(D)
$$-1$$

11. Num reservatório, o nível da água varia continuamente ao longo do dia. O reservatório tem capacidade máxima de a metros de altura (a > 0). Seja $h: [0, a] \to [0, a]$ a função contínua que associa a cada instante x horas (medido a partir da meia-noite até a horas) a altura h(x) (em metros) da água nesse instante.

Prove que existe, pelo menos, um instante $c \in [0,a]$ tal que o nível da água no reservatório, nesse instante, é exatamente igual a a-c.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.	7.	8.1	8.2	8.3	9.	10.	11.	TOTAL
10	10	20	18	20	18	10	18	10	18	18	10	20	200