Escola Secundária de Francisco Franco	Teste de Matemática A	10°ano/t ^a		
Ano lectivo de 2016/17	Tema: Lógica e Radicais	(duração de 90 minutos)		
	Classif:(,)valores		
Nome:	Nº /Outubro 2016	Prof ^a (Ana Freitas)		

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

- 1. Considere as seguintes afirmações:
- p: "Faz sol"
- q: "Eu levo o chapéu"

Qual das seguintes proposições traduz em linguagem simbólica a afirmação: "Não faz sol, mas levo o chapéu"?

- $(A)p \wedge q$
- $(B) \sim p \Rightarrow q$
- $(C) p \Rightarrow \sim q$
- $(D) \sim p \wedge q$
- 2. Sejam p proposição "Telefono" e seja q a proposição "Envio uma mensagem".

Qual das expressões seguintes traduz, em linguagem corrente, a proposição: $\sim p \Rightarrow q$

- (A) "Não telefono mas envio uma mensagem"
- (B) "Se não telefonar, envio uma mensagem"
- (C) "Não envio uma mensagem se telefonar"
- (D) "Envio uma mensagem se e só se telefonar"
- 3. Se a e b são duas proposições, a proposição: $\sim [(a \land \sim b) \lor b]$ é equivalente a:
- $(A) \sim a \wedge b$
- $(B) \sim a \vee \sim b$
- $(C) \sim a \wedge \sim b$
- $(D)a \lor \sim b$
- 4. Se a e b são duas proposições e $a \Leftrightarrow b$ é falsa, indique a proposição verdadeira:
- $(A)a \wedge b$
- $(B) \sim a \Longrightarrow b$
- $(C) \sim a \wedge \sim b$
- $(D) \sim a \Leftrightarrow \sim b$

5. Seja x definido por:
$$\frac{\sqrt{6} \times \sqrt[3]{36}}{\sqrt[6]{6}}$$

O valor de x é:

$$(A)\sqrt{6}$$

$$(B)\sqrt[3]{6}$$

$$(C)\sqrt[6]{6}$$

Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- 1. Considere as proposições:
- p: "A Alice sabe falar inglês"
- q: "A Alice sabe falar francês"
- r: "A Alice sabe falar italiano"
- 1.1. Traduz as proposições seguintes em linguagem simbólica utilizando as letras p, q e r.
- 1.1.1 "A Alice sabe falar inglês e francês"
- 1.1.2 "A Alice não sabe falar inglês ou não sabe falar francês"
- 1.1.3 "Se a Alice sabe falar inglês, então sabe falar francês"
- 1.2.Admitindo que $(p \Rightarrow \sim q) \lor (p \land r)$ é falsa, diga quais das três línguas sabe falar a Alice.
- 2. Sabendo que $\sim a \Rightarrow b$ é falsa, indique o valor lógico das proposições:
- $2.1. (a \lor b) \Rightarrow b$
- 2.2. $\lceil (\neg a \land b) \Leftrightarrow a \rceil \Rightarrow \neg b$
- 3. Prove, utilizando tabela de verdade: $[p \Rightarrow (p \Rightarrow q)] \Leftrightarrow (\sim p \lor q)$

p	q	~ p	$p \Rightarrow q$	$p \Rightarrow (p \Rightarrow q)$	~ <i>p</i> ∨ <i>q</i>	$[p \Rightarrow (p \Rightarrow q)] \Leftrightarrow (\sim p \lor q)$

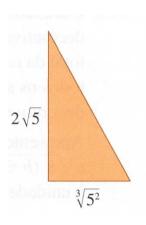
4.Utilizando as propriedades lógicas, simplifique a expressão: $[\neg a \land (a \lor b)] \Rightarrow [\neg (a \lor \neg b) \lor (a \land b)]$

$$\lceil \neg a \land (a \lor b) \rceil \Rightarrow \lceil \neg (a \lor \neg b) \lor (a \land b) \rceil$$

5: Na figura ao lado, está representado um triângulo retângulo cujas medidas dos catetos são

respetivamente
$$2\sqrt{5}$$
 e $\sqrt[3]{5^2}$

Determine a área do triângulo.



Cotações:

Grupo I – 40 pontos

1.	2.	3.	4.	5.
8	8	8	8	8

Grupo II – 160 pontos

1.1.1.	1.1.2.	1.1.3.	1.2.	2.1.	2.2.	3.	4.	5.
5	5	5	15	20	15	40	40	15

Propriedades das operações lógicas

Considere as proposições p, q e r.

Princípio de não contradição	$p \land \sim p \iff F$
Dupla negação	$\sim (\sim p) \iff p$
Princípio do terceiro excluído	$p \vee \sim p \iff V$
Comutatividade	$ p \land q \iff q \land p $ $ p \lor q \iff q \lor p $
Associatividade p.	$ (p \land q) \land r \iff p \land (q \land r) $ $ (p \lor q) \lor r \iff p \lor (q \lor r) $
Elemento neutro	$ \begin{array}{c} $
Elemento absorvente	$ \begin{array}{c} $
Distributividade p.	$ p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r) $ $ p \vee (q \wedge r) \iff (p \vee q) \wedge (p \vee r) $
Leis de De Morgan	$ \sim (p \land q) \iff \sim p \lor \sim q $ $ \sim (p \lor q) \iff \sim p \land \sim q $
Implicação e disjunção	$(p \Longrightarrow q) \Longleftrightarrow \sim p \vee q$
Implicação contrarrecíproca	$(p \Longrightarrow q) \Longleftrightarrow (\sim q \Longrightarrow \sim p)$
Transitividade da implicação	$(p \Longrightarrow q) \land (q \Longrightarrow r) \Longrightarrow (p \Longrightarrow r)$
Negação da implicação	$\sim (p \Longrightarrow q) \iff p \land \sim q$
Dupla implicação	$(p \Longrightarrow q) \land (q \Longrightarrow p) \Longleftrightarrow (p \Longleftrightarrow q)$