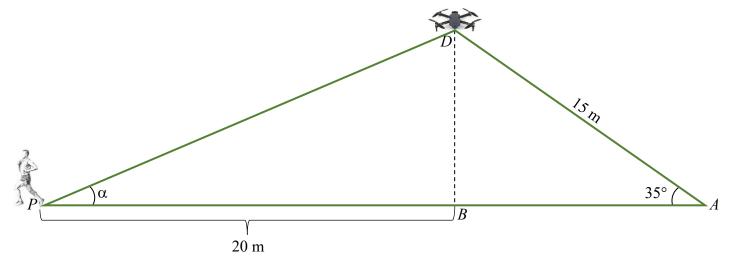
Francisco www.esffranco.edu.pt (2025/2026)	1.º TESTE DE	MATEMÁTICA A – 11.º 16
1.º Período	13/10/2025	Duração: 90 minutos
Nome:		N.º:
Classificação:	Ор	rofessor:

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresenta sempre o valor exato.

1. No desenho a seguir (que não está à escala), um atleta efetua um treino com um *drone* a filmar.



Num certo instante e tal como a figura sugere:

- o *drone* encontra-se a 15 metros de um ponto A, segundo um ângulo de amplitude 35° com a horizontal;
- o atleta está do outro lado e o seu pé (ponto P) faz, com a horizontal, um ângulo de amplitude α em relação ao drone:
- a projeção do *drone* no chão (ponto *B*) encontra-se a 20 metros do ponto *P*.

Determina, em graus, a amplitude α , com arredondamento às décimas.

Se usares cálculos intermédios, conserva, pelo menos, três casas decimais.

2. Seja β um ângulo agudo de um triângulo retângulo e tal que $\frac{tg \ \beta}{sen \ \beta} = \sqrt{6}$. Qual é o valor de $\cos \beta$?

(A)
$$\frac{1}{\sqrt{7}}$$

(B)
$$\frac{1}{\sqrt{6}}$$

(C)
$$\sqrt{37}$$

(D)
$$\sqrt{38}$$

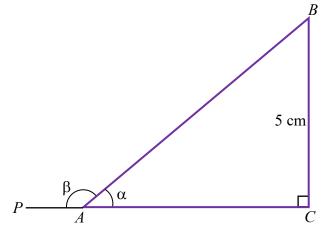
3. Considera o triângulo [ABC], retângulo em C.

Sabe-se que:

- $\overline{BC} = 5$ cm;
- α é a amplitude do ângulo BAC ;
- β é a amplitude do ângulo PAB, sendo P um ponto no exterior do triângulo mas pertencente à reta AC.
- **3.1.** Supõe, nesta alínea, que $\alpha=40^\circ$.

Determina, em centímetros e com arredondamento às unidades, o perímetro do triângulo [ABC].

Se usares cálculos intermédios, conserva, pelo menos, três casas decimais.



- **3.2.** Supondo agora que sen $\alpha=\frac{5}{8}$, determina, sem usar a calculadora, o valor de $\cos\,\beta$.
- **4.** Considera, na figura ao lado, o octógono regular [ABCDEFGH], inscrito numa circunferência de centro O.

Nessa circunferência, está também assinalado o ponto P, pertence ao arco BC, e tal que $A\hat{O}P=80$, 5° .

Completa o texto seguinte, selecionando a opção correta para cada espaço, de acordo com as condições dadas.

Escreve, na folha de respostas, apenas cada um dos números, \mathbf{I} , \mathbf{II} , \mathbf{III} e \mathbf{IV} , seguido da opção, \mathbf{a}), \mathbf{b}) ou \mathbf{c}), selecionada. A cada espaço corresponde uma só opção.

Um ângulo cujo lado origem é $\dot{O}A$ e cujo lado extremidade é $\dot{O}D$ pode ter amplitude igual a $\underline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$



A amplitude do ângulo cujo lado origem é $\dot{O}A$ e cujo lado extremidade é <u>II</u> pode ser representado por $270^\circ + 360^\circ \times 4$.

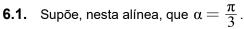
A amplitude do ângulo AOP é, em radianos e com aproximação às décimas, igual a $_$ \blacksquare \blacksquare .

Supondo que o raio da circunferência é igual a 3 cm, o comprimento do arco EH é, em cm, igual a **IV**.

I	II	III	IV
a) 130°	a) $\dot{O}H$	a) 1,2	a) $\frac{9\pi}{4}$
b) -225°	b) $\dot{O}G$	b) 1,3	b) $\frac{3\pi}{4}$
c) –215°	c) $\dot{O}F$	c) 1,4	c) $\frac{135\pi}{4}$

- **5.** Um automóvel percorreu 8 km. Supondo que cada pneu tem 130 cm de diâmetro, quantas voltas completas deu cada pneu do automóvel?
 - (A) 980
- **(B)** 979
- **(C)** 1959
- **(D)** 1958

- 6. Na figura junta estão representados, em referencial o. n. xOy:
 - · o círculo trigonométrico;
 - o triângulo [ABO], sendo A um ponto pertencente à circunferência e do primeiro quadrante, e B um ponto do semieixo positivo Oy e com a mesma ordenada de A;
 - a reta t, tangente à circunferência no ponto (1,0);
 - o ângulo, de amplitude α , que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta $\dot{O}C$, sendo C um ponto da reta t.



Qual é o valor da área do triângulo [ABO]?

(A)
$$\frac{1}{8}$$

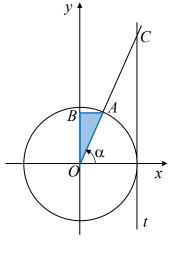
(B)
$$\frac{\sqrt{5}}{10}$$
 (C) $\frac{\sqrt{3}}{8}$

(C)
$$\frac{\sqrt{3}}{8}$$

(D)
$$\frac{1}{10}$$

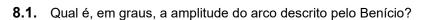
6.2. Supõe agora que o ponto C tem ordenada $\sqrt{5}$.

Determina, sem usar a calculadora, as coordenadas do ponto A.



- Determina para que valores de k se verifica a condição $\cos x = 2 \frac{k}{4} \land x \in [0^\circ, 120^\circ]$. 7.
- 8. A Praça de Mouzinho de Albuquerque, mais conhecida como Rotunda da Boavista, é uma praça circular e é a maior praça do Porto.

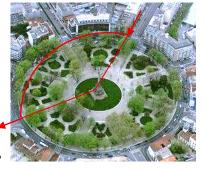
Quando se dirige para o emprego, o Benício entra na rotunda numa zona e sai por outra zona, descrevendo um arco de amplitude $\frac{4\pi}{5}$ radianos, percorrendo 252 metros.



8.2. Determina a área do setor circular de amplitude $\frac{4\pi}{5}$ radianos.

Apresenta o valor em metros quadrados, com arredondamento às unidades.

Se usares cálculos intermédios, conserva, pelo menos, três casas decimais.

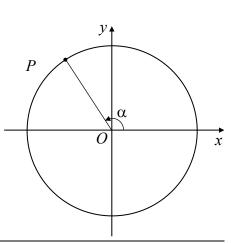


9. Considera, no círculo trigonométrico da figura, o ponto P do segundo quadrante e pertencente à circunferência.

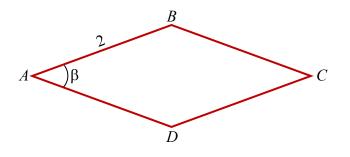
Seja α o ângulo que tem por lado origem o semieixo positivo Ox e por lado extremidade o segmento [OP].

Sabendo que a abcissa do ponto $P \in -\frac{\sqrt{11}}{6}$, determina, sem recorrer à calculadora, o valor de

$$\cos\left(\frac{9\pi}{2} - \alpha\right) - \sin\left(\alpha - 7\pi\right)$$



- **10.** Considera o losango [ABCD], de lado 2 e cuja amplitude de um dos ângulos agudos é β .
 - **10.1.** Mostra que a área do losango [ABCD] é dada por $8 \operatorname{sen}\left(\frac{\beta}{2}\right) \cos\left(\frac{\beta}{2}\right).$
 - **10.2.** Para um certo valor de β , sabe-se que $tg\left(\frac{\beta}{2}\right) = \frac{3}{4}$. Calcula, sem usar a calculadora a área do losango [ABCD].



Para os valores de x que dão sentido à expressão, mostra que:

$$\frac{\sin^2 x \cos x + \cos^3 x}{\operatorname{tg} x + \frac{1}{\operatorname{tg} x}} = \sin x \cos^2 x$$

FIM

COTAÇÕES

ltem															
	Cotação (em pontos)														
1.	2.	3.1.	3.2.	4.	5.	6.1.	6.2.	7.	8.1.	8.2.	9.	10.1.	10.2.	11.	
16	8	16	16	8	8	8	16	16	8	16	16	16	16	16	200

FORMULÀRIO

Comprimento de um arco de circunferência: αr

Área de sector circular: $\frac{\alpha r^2}{2}$

 $(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$