Teste de Avaliação

lome		N.º	_Turma	Data	/10/2022
Avaliação	E. Educação		Professor		

MATEMÁTICA - 9.º ANO

Duração (Caderno 1 + Caderno 2): 90 minutos

O teste é constituído por dois cadernos (Caderno 1 e Caderno 2).

Só é permitido o uso de calculadora no Caderno 1.

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias.

FORMULÁRIO

Números e Operações

Valor aproximado de π (pi): 3,14159

Geometria e Medida

Áreas

Polígono regular:
$$\frac{\text{Perímetro}}{2} \times \text{Apótema}$$

Trapézio:
$$\frac{\text{Base maior} + \text{Base menor}}{2} \times \text{Altura}$$

Superfície esférica:
$$4\pi r^2$$
, sendo r o raio da esfera

Superfície lateral do cone: $\pi r g$, sendo r o raio da base do cone e g a geratriz do cone

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone:
$$\frac{\text{Área da base} \times \text{Altura}}{3}$$

Esfera:
$$\frac{4}{3}\pi r^3$$
, sendo r o raio da esfera

Trigonometria

Fórmula fundamental:
$$sen^2 x + cos^2 x = 1$$

Relação da tangente com o seno e o cosseno:
$$tg x = \frac{sen x}{cos x}$$

Álgebra

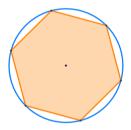
Fórmula resolvente de uma equação do segundo grau da forma $ax^2 + bx + c = 0$:

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

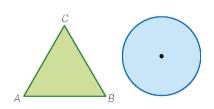
TABELA TRIGONOMÉTRICA

Graus	Seno	Cosseno	Tangente	Graus	Seno	Cosseno	Tangente
1	0,0175	0,9998	0,0175	46	0,7193	0,6947	1,0355
2	0,0349	0,9994	0,0349	47	0,7314	0,6820	1,0724
3	0,0523	0,9986	0,0524	48	0,7431	0,6691	1,1106
4	0,0698	0,9976	0,0699	49	0,7547	0,6561	1,1504
5	0,0872	0,9962	0,0875	50	0,7660	0,6428	1,1918
6	0,1045	0,9945	0,1051	51	0,7771	0,6293	1,2349
7	0,1219	0,9925	0,1228	52	0,7880	0,6157	1,2799
8	0,1392	0,9903	0,1405	53	0,7986	0,6018	1,3270
9	0,1564	0,9877	0,1584	54	0,8090	0,5878	1,3764
10	0,1736	0,9848	0,1763	55	0,8192	0,5736	1,4281
11	0,1908	0,9816	0,1944	56	0,8290	0,5592	1,4826
12	0,2079	0,9781	0,2126	57	0,8387	0,5446	1,5399
13	0,2250	0,9744	0,2309	58	0,8480	0,5299	1,6003
14	0,2419	0,9703	0,2493	59	0,8572	0,5150	1,6643
15	0,2588	0,9659	0,2679	60	0,8660	0,5000	1,7321
16	0,2756	0,9613	0,2867	61	0,8746	0,4848	1,8040
17	0,2924	0,9563	0,3057	62	0,8829	0,4695	1,8807
18	0,3090	0,9511	0,3249	63	0,8910	0,4540	1,9626
19	0,3256	0,9455	0,3443	64	0,8988	0,4384	2,0503
20	0,3420	0,9397	0,3640	65	0,9063	0,4226	2,1445
21	0,3584	0,9336	0,3839	66	0,9135	0,4067	2,2460
22	0,3746	0,9272	0,4040	67	0,9205	0,3907	2,3559
23	0,3907	0,9205	0,4245	68	0,9272	0,3746	2,4751
24	0,4067	0,9135	0,4452	69	0,9336	0,3584	2,6051
25	0,4226	0,9063	0,4663	70	0,9397	0,3420	2,7475
26	0,4384	0,8988	0,4877	71	0,9455	0,3256	2,9042
27	0,4540	0,8910	0,5095	72	0,9511	0,3090	3,0777
28	0,4695	0,8829	0,5317	73	0,9563	0,2924	3,2709
29	0,4848	0,8746	0,5543	74	0,9613	0,2756	3,4874
30	0,5000	0,8660	0,5774	75	0,9659	0,2588	3,7321
31	0,5150	0,8572	0,6009	76	0,9703	0,2419	4,0108
32	0,5299	0,8480	0,6249	77	0,9744	0,2250	4,3315
33	0,5446	0,8387	0,6494	78	0,9781	0,2079	4,7046
34	0,5592	0,8290	0,6745	79	0,9816	0,1908	5,1446
35	0,5736	0,8192	0,7002	80	0,9848	0,1736	5,6713
36	0,5878	0,8090	0,7265	81	0,9877	0,1564	6,3138
37	0,6018	0,7986	0,7536	82	0,9903	0,1392	7,1154
38	0,6157	0,7880	0,7813	83	0,9925	0,1219	8,1443
39	0,6293	0,7771	0,8098	84	0,9945	0,1045	9,5144
40	0,6428	0,7660	0,8391	85	0,9962	0,0872	11,4301
41	0,6561	0,7547	0,8693	86	0,9976	0,0698	14,3007
42	0,6691	0,7431	0,9004	87	0,9986	0,0523	19,0811
43	0,6820	0,7314	0,9325	88	0,9994	0,0349	28,6363
44	0,6947	0,7193	0,9657	89	0,9998	0,0175	57,2900
45	0,7071	0,7071	1,0000				

CADERNO 1: 20 minutos


(É permitido o uso de calculadora.)

- 1. Dá exemplo de um número:
 - 1.1 inteiro entre $-\frac{10}{3}$ e $-\sqrt{3}$.
 - **1.2** racional, na forma de fração irredutível, entre $\sqrt{10}$ e $\sqrt{12}$.
 - **1.3** irracional entre 2 e 3.
- 2. O Pedro poupou 70 euros para comprar um jogo de computador. Quando chegou à loja, o Pedro reparou que havia uma promoção: na compra de um jogo podia trazer outro do mesmo valor tendo um desconto de 25% no preço do segundo jogo. Se o Pedro aproveitar a promoção, qual é o preço máximo do jogo que pode comprar?


- (A) 30 euros
- (B) 35 euros
- (C) 40 euros
- (D) 45 euros
- 3. Na figura ao lado, está representado um hexágono regular inscrito numa circunferência. Sabe-se que o perímetro do hexágono está entre 10,24 cm e 10,25 cm.

A qual dos intervalos de números reais pertence o perímetro, em cm, da circunferência?

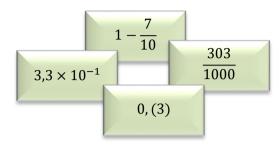
- (A)]10,72; 10,73[
- (B) [10,723; 10,733] (C) [10,72; 10,74]
- (D)]10,724; 10,734[
- 4. Na figura estão representados um triângulo equilátero [ABC] e um círculo.

Sabe-se que o perímetro do triângulo [ABC] é igual a 18 cm e que o triângulo e o círculo têm o mesmo perímetro.

Determina, em cm², o valor aproximado por defeito, a menos de uma décima, da área do círculo. Se procederes a arredondamentos nos cálculos intermédios considera três casas decimais.

Fim do Caderno 1

Cotações (Caderno 1)


1.1	1.2	1.3	2.	3.	4.
3	3	3	3	3	10

Total: 25 pontos

CADERNO 2: 70 minutos

(Não é permitido o uso de calculadora.)

5. Escreve por ordem crescente os números escritos nos cartões.

6. Considera que a e b são dois números reais positivos, tais que a < b.

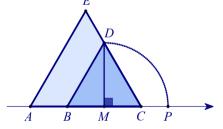
Completa com um dos sinais < ou >.

6.1
$$-a$$
 ____ $-b$

6.3
$$a^2 + 1 _ b^2 + 1$$

6.2
$$b-1$$
 ____ $a-1$

6.4
$$-\frac{2}{b}$$
 ____ $-\frac{2}{a}$


7. Na figura ao lado está representada parte da reta real e os triângulos equiláteros [ACE] e [BCD].

Sabe-se que:

• o perímetro do triângulo [ACE] é 27 cm;

•
$$\overline{AB} = \frac{1}{3} \overline{AC}$$
;

[DM] é a altura do triângulo [BCD] relativa ao lado
[BC];

• DP é um arco da circunferência de centro M e raio \overline{MP} .

Determina a abcissa do ponto P, sabendo que o ponto $\mathcal C$ tem abcissa -1.

- **8.** Consider os conjuntos $A = \begin{bmatrix} -1, \sqrt{5} \end{bmatrix}$, $B = \begin{bmatrix} 1, \pi \end{bmatrix}$ e $C = \{x \in \mathbb{R}: -3 \le x \le 1\}$.
 - **8.1** Classifica como verdadeira ou falsa cada uma das seguintes afirmações.

a)
$$-1 \in A$$

b)
$$1 \in B$$

- **8.2** Indica todos os números inteiros pertencentes ao conjunto A.
- **8.3** Indica um número irracional pertencente ao conjunto B.
- 8.4 Determina, na forma de intervalo de números reais, cada um dos conjuntos seguintes.

a)
$$A \cap B$$

9. Considera a expressão $\frac{8^9 \times 2^{-9}}{145}$.

A qual dos seguintes intervalos pertence o valor da expressão dada?

(A)
$$]0, \frac{1}{4}[$$

(C)
$$[-4,0]$$

(C)
$$[-4,0[$$
 (D) $]0,\frac{1}{4}]$

10. Sabendo que $A \cap \left[-\frac{1}{2}, \sqrt{3}\right] = \left[-\frac{1}{2}, 1\right[$, qual dos intervalos seguintes poderá ser o conjunto A?

(B)
$$]-\infty, -\frac{1}{2}[$$
 (C) $]-\infty, 1[$ (D) $]1, \sqrt{3}]$

(D)
$$]1, \sqrt{3}]$$

11. Considera a inequação abaixo e representa o seu conjunto solução na forma de intervalo de números reais.

$$\frac{3x-5}{2} - \frac{2(x-1)}{3} \ge 1 - x$$

12. Seja α um número real negativo.

Qual das seguintes inequações é equivalente à inequação ax < -3?

(A)
$$x < \frac{-3}{a}$$

(B)
$$x < \frac{3}{a}$$

(A)
$$x < \frac{-3}{a}$$
 (B) $x < \frac{3}{a}$ (C) $x > \frac{-3}{a}$

(D)
$$x > \frac{3}{a}$$

13. Numa escola, o número de raparigas do 9.º ano excede em três o dobro do número de rapazes.

Sabe-se que, nessa escola, o número total de alunos do 9.° ano é um número compreendido entre 100 e 120. Determina quantos alunos do 9.º ano tem essa escola, sabendo que o número de rapazes é um múltiplo de 5. (Sugestão: começa por traduzir o problema através de uma conjunção de duas inequações.)

FIM

Cotações (caderno 2)

5.	6.	7.	8.1	8.2	8.3	8.4	9.	10.	11.	12.	13.
8	8	8	4	4	4	8	3	3	12	3	10

Total: 75 pontos

Total (Caderno 1 + Caderno 2): 100 pontos