ANÁLISE MATEMÁTICA III

2009/10

1º teste Duração: 2h30

- Este teste consta de duas partes e termina com a palavra FIM, a que se segue a cotação. A soma das cotações das questões da primeira parte é 15 valores, mas o máximo que um aluno poderá ter com a resolução de questões dessa parte é 12 valores. Para conseguir ter mais do que 12 valores, o aluno deverá responder também às questões da segunda parte, a qual está cotada para 8 valores. Em suma, designando por c_1 a cotação que o aluno obtiver na primeira parte e por c_2 a cotação que obtiver na segunda parte, a sua cotação final será obtida através da expressão $\min\{c_1, 12\} + c_2$.
- Todos os raciocínios devem ser convenientemente justificados.

1^a parte

- 1. Considere a curva parametrizada pelo caminho $r(t) = (t\cos(2\pi t), t\sin(2\pi t)), t \in [0, 3].$
 - (a) Esboce a curva e indique o sentido em que é descrita.
 - (b) Calcule as rectas tangente e normal à curva em r(1).
 - (c) Mostre que o caminho tem rapidez crescente.
- 2. Suponha que, sobre um ponto material de massa 2 kg, actua a força

$$F(t) = (t, 1 - t^2, 2e^{-t})$$

em cada instante t e represente por r(t) a posição do ponto no mesmo instante. Determine r sabendo que a posição e velocidade iniciais são, respectivamente, (1,0,1) metros e (0,1,1) metros/segundo.

3. Seja D a região do 1º quadrante do plano y0z definida pela conjunção das seguintes condições:

$$y+z \leq 4$$
$$yz+4y \leq 12.$$

- (a) Esboce D.
- (b) Calcule o volume de $[0,4] \times D$.

2^a parte

- 4. Seja $f(x,y) := e^{(1/x)\ln(1+xy)}$.
 - (a) Determine o domínio de definição de f, esboce-o e diga se é aberto, fechado, ambas ou nenhuma das coisas.
 - (b) Seja k um número real dado. Calcule, caso exista,

$$\lim_{(x,y)\to(0,k)} f(x,y).$$

5. Sejam $r:[a,b]\to\mathbb{R}^n$ um caminho seccionalmente suave e $f:r([a,b])\to\mathbb{R}^n$ tais que $f\circ r$ é seccionalmente contínua. Seja $p:=r\circ u$ uma reparametrização de r. Mostre que

$$\int_{p} f \cdot dp = \int_{r} f \cdot dr \quad \text{no caso de } p \text{ manter o sentido de } r;$$

$$\int_p f \cdot dp = -\int_r f \cdot dr \quad \text{no caso de } p \text{ inverter o sentido de } r.$$

 \mathbf{FIM}

Cotação:

1.(a) 1,5; (b) 2; (c) 1,5; 2. 4; 3.(a) 3; (b) 3; 4.(a) 1; (b) 3; 5. 4.

ANÁLISE MATEMÁTICA III

2009/10

2º teste Duração: 2h30

- Este teste consta de duas partes e termina com a palavra FIM, a que se segue o formulário e a cotação. A soma das cotações das questões da primeira parte é 15 valores, mas o máximo que um aluno poderá ter com a resolução de questões dessa parte é 12 valores. Para conseguir ter mais do que 12 valores, o aluno deverá responder também às questões da segunda parte, a qual está cotada para 8 valores. Em suma, designando por c_1 a cotação que o aluno obtiver na primeira parte e por c_2 a cotação que obtiver na segunda parte, a sua cotação final será obtida através da expressão $\min\{c_1,12\}+c_2$.
- Todos os raciocínios devem ser convenientemente justificados.

1^a parte

- 1. Sejam f(x, y, z) := (0, z, 2y) um campo vectorial e S a porção de superfície do parabolóide $y = 5 x^2 z^2$ para a qual $y \ge 1$.
 - (a) Construa uma parametrização para S, não se esquecendo de indicar o domínio também.
 - (b) Obtenha uma equação para o plano tangente a S no ponto $P \equiv (1, 4, 0)$.
 - (c) Calcule, usando directamente a definição, o integral de superfície

$$\iint_r \operatorname{rot} f \cdot \hat{n} \, dS$$

para uma parametrização r(u,v) de S relativamente à qual seja positiva a segunda coordenada de $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$.

2. Considere o sólido Q definido pela conjunção das condições

$$z^2 \ge 3(x^2 + y^2), \quad x^2 + y^2 + z^2 \le 4 \quad \text{e} \quad z \ge 0.$$

- (a) Descreva Q em coordenadas esféricas.
- (b) Calcule

$$\iiint_{O} z^2 \, dx dy dz.$$

- 3. Considere o problema de determinar os extremos absolutos de f(x,y) := xy sujeita à condição $x^2 + 4y^2 = 4$.
 - (a) Justifique que tais extremos absolutos existem.
 - (b) Determine os maximizantes e minimizantes absolutos.

2^a parte

4. Calcule novamente o integral considerado em 1.(c), mas desta feita através do uso do Teorema de Stokes (não se esqueça de justificar por que o pode fazer).

5. Sejam $f: D \subset \mathbb{R}^n \to \mathbb{R}$ e $r: I \subset \mathbb{R} \to \mathbb{R}^n$ tais que $r(I) \subset D$, e $g = f \circ r$. Seja t_0 um ponto de acumulação de I tal que $r(t_0) \in \text{int } D$. Prove que se r e f são, respectivamente, diferenciáveis em t_0 e $r(t_0)$ então g é diferenciável em t_0 e

$$g'(t_0) = \nabla f(r(t_0)) \cdot r'(t_0).$$

\mathbf{FIM}

Formulário

(apenas simbologia sumária é apresentada, de acordo com a notação usual ou a convencionada no texto de apoio; nada é referido sobre as hipóteses que validam as fórmulas)

coordenadas esféricas: $x = \rho \cos \theta \sin \varphi$; $y = \rho \sin \theta \sin \varphi$; $z = \rho \cos \varphi$

T. Stokes:
$$\iint_{r} \operatorname{rot} f \cdot \hat{n} \, dS = \int_{r \circ \alpha} f \cdot d(r \circ \alpha)$$

Cotação:

$$1.(a)\ 1;\ (b)\ 2;\ (c)\ 3;$$
 $2.\ (a)\ 2;\ (b)\ 2;$ $3.(a)\ 1;\ (b)\ 4;$ $4.\ 4;$ $5.\ 4.$

mini-teste 1: turma TP3; tipo V	Ouração:	0h15
---------------------------------	----------	------

Nome:			
N Mec	Curso:		

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a curva parametrizada pelo caminho:

$$r(t) = (3\cos t, 3\sin t, t^{3/2}), \quad t \in [0, 5].$$

Determine o comprimento do arco desta curva.

mini-teste 1: turma Tp1 - A	Duração: 0h15

Nome:	
N Mec	Curso:

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Esboce o conjunto dos pontos de \mathbb{R}^2 que satisfazem

$$x = 2\sinh t, \quad y \le 2\cosh t, \quad t \in \mathbb{R},$$

indicando qual o seu interior, a fronteira e o fecho.

mini-teste 1: turma Tp1 - B	Duração:	0h15

Nome:	
N Mec.	Curso:

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Considere uma circunferência parametrizada por $b(t) = (\cos(t), \sin(t)), \ t \in [0, 2\pi]$. A equação de um objecto que se desloca linearmente do centro para a periferia desta circunferência é assim descrito por

$$r(t) = tb(t).$$

Determine e interprete o vector aceleração a que o objecto é sujeito durante este movimento.

			,
mini-teste 2:	turma Tp1 - A	Duração:	0h15

Nome:			
N Mec	Curso:		

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Considere a função $f(x,y) = \frac{xy}{x^2+y^2}$.
 - (a) Justifique que f é diferenciável em $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (b) Use a aproximação linear para estimar o valor de f(0.8, 2.1).

		,
mini-teste 2: turma	Tp1 - B	Duração: 0h15

Nome:			
N Mec.	Curso:		

- ullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Considere a parametrização de uma superfície S dada por

$$r(\theta,z) = (\sqrt{z}\cos\theta, \sqrt{z}\sin\theta, z), \quad (\theta,z) \in [-\pi/2, \pi/2] \times [0,2].$$

- (a) Determine o plano tangente a S no ponto $P = r(\pi/4, 1)$.
- (b) Dê uma expressão para o cálculo da área de S.

mini-teste 1: turma Tp2; tipos I e III Duração: 0h15

Nome:	
N Mec	.Curso:

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. O seguinte caminho representa a equação do movimento de um objecto de massa $m=10~\mathrm{kg}$:

$$r(t) = (3\cos t, 3\sin t, t), \quad t \ge 0,$$

movimento este expresso em metros (e t em segundos).

- (a) A curva associada a este movimento está bem orientada?
- (b) Determine os vectores velocidade e aceleração a que o objecto se encontra sujeito no instante $t = 7\pi/3$ seg, bem como a força exercida sobre o objecto.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP3; tipos I e VI Duração: 0h15

Nome:		
${ m N^o~Mec.}$	_Curso:	

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere o caminho dado por $r(t)=(t^2,\sin t),\ t\in[-\frac{\pi}{2},\frac{\pi}{2}[$, e designe por C a curva descrita por r.

- (a) Determine uma equação cartesiana para C e faça um esboço desta curva. [Observação: não é aconselhável tentar escrever y em função de x].
- (b) Determine, se os houver, os pontos de C onde a recta tangente é vertical.
- (c) Mostre que C é um subconjunto de \mathbb{R}^2 que não é aberto nem fechado (pode usar apenas argumentos geométricos, se preferir).

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP3; tipo II Duração: 0h15

Nome:	
Nº Mec.	Curso:

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a curva descrita pela equação cartesiana $y = \sin x, x \in [0, \frac{\pi}{2}].$

- (a) Esboce-a e determine uma parametrização r que a descreva da direita para a esquerda.
- (b) Calcule a velocidade e a aceleração com que a curva é percorrida com essa parametrização.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP4; tipos I e VI Duração: 0h15

Nome:	
Nº Mec.	_Curso:

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere o caminho dado por $r(t)=(\sin t,|t|),\ t\in[-\frac{\pi}{2},\frac{\pi}{2}],$ e designe por C a curva descrita por r.

- (a) Determine uma equação cartesiana para C e faça um esboço desta curva. [Observação: não é aconselhável tentar escrever x em função de y].
- (b) Justifique a continuidade de r e a falta de diferenciabilidade em 0.
- (c) Mostre que C é um subconjunto de \mathbb{R}^2 com interior vazio (pode usar apenas argumentos geométricos, se preferir)

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP4; tipo II Duração: 0h15

Nome:	
Nº Mec.	Curso:

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a curva C descrita pela equação cartesiana $x = \cos y, \ y \in [0, \frac{\pi}{2}].$

- (a) Esboce-a e determine uma sua parametrização $r:[0,\frac{\pi}{4}]\to C$ para a qual a rapidez seja sempre superior ou igual a 2.
- (b) Calcule a velocidade e a aceleração com que C é percorrida por r.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP4; tipo IV Duração: 0h15

Nome:			
Nº Mec.	Curso:		

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Um ponto material move-se em \mathbb{R}^3 de acordo com os dados seguintes, num sistema coerente de unidades:

- Parte de (0,0,0) com velocidade inicial (1,1,1)
- \bullet A aceleração do movimento em cada instante t é

$$r''(t) := (6t, \cos t, e^t) \quad (0 \le t).$$

- 1. Mostre que no instante t = 5 o ponto encontra-se em $(130, 6 \cos 5, e^5 1)$.
- 2. Determine uma equação para a recta tangente à curva, trajectória do ponto material, em $(130, 6 \cos 5, e^5 1)$.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 1: turma TP4; tipo V Duração: 0h15

Nome:		
Nº Mec	Curso:	

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a hélice contradomínio do caminho

$$t \mapsto r(t) := (\cos t, \sin t, t) \qquad (t \in \mathbb{R}).$$

1. Verifique que o comprimento do arco descrito por r entre o ponto r(0) = (1,0,0) e o ponto genérico r(t) é o valor s(t) dado por

$$s(t) = \sqrt{2}|t|.$$

- 2. A que distância sobre a hélice estão os pontos $(0, -1, -\frac{\pi}{2})$ e (1, 0, 0)?
- 3. Suponha que $\rho(\tau) := r\left(\frac{\tau}{\sqrt{2}}\right) \quad (\tau \in \mathbb{R}).$
 - (a) Verifique que a rapidez de ρ é 1.
 - (b) Verifique que $r(\mathbb{R}) = \rho(\mathbb{R})$, i.e., que ρ e r descrevem a mesma curva.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 2: turma TP3; tipo XIV Duração: 0h15

Nome:			
Nº Mec	Curso:		

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a superfície parametrizada definida pela expressão

$$r(t,\theta) = (\cosh t \cos \theta, \cosh t \sin \theta, \sinh t), \quad (t,\theta) \in \mathbb{R} \times [0,2\pi]$$

(recorde que $\sinh t = \frac{e^t - e^{-t}}{2}$ e que $\cosh t = \frac{e^t + e^{-t}}{2}$).

- 1. Determine o plano tangente à superfície no ponto $r(0, \pi/2)$.
- 2. Identifique a superfície em termos cartesianos e esboce-a.

ANÁLISE MATEMÁTICA III

2009/10

Nome:		
Nº Mec	Curso:	

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere as funções f e g definidas pelas expressões

$$f(t) = (e^t, \cos t, \sin t)$$
 e $g(u, v, w) = (uv, \sin(u+w)).$

- 1. Estude a diferenciabilidade destas funções.
- 2. Use a regra da cadeia para calcular a matriz jacobiana de $g\circ f.$

mini-teste 2: turma TP3 - tipos XIV e XV Duração: 0h15

Nome:		
N Mec	Curso:	

- ullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Considere o campo vectorial f(x,y,z)=(x,y,z) e a superfície S definida por $z^2=x^2+y^2, \quad -2\leq z\leq 0.$
 - (a) Estabeleça uma parametrização para a superfície dada.
 - (b) Calcule o fluxo do campo vectorial dado através de S, no sentido da origem para a superfície.

mini-teste 2: turma TP3 - tipos XIV e XV Duração: 0h15

Nome:			
N Mec.	Curso:		

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina e deverá ser resolvido na folha de enunciado.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.
- 1. Considere o campo escalar f(x, y, z) = z e a superfície S definida por

$$x^2 + y^2 + z^2 = R^2, \quad z \le 0.$$

- (a) Estabeleça uma parametrização para a superfície dada.
- (b) Calcule o $\iint_S f(x, y, z) dS$.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 2: turma TP4; tipos XIII e XV Duração: 0h15

Nome:		
Nº Mec	Curso:	

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a função f definida pela expressão

$$f(x, y, z) = x^2 - y^2 + z^2.$$

- 1. Identifique a superfície de nível f(x, y, z) = 1 e esboce-a.
- 2. Escreva uma expressão, tão explícita quanto possível, cujo cálculo nos permita obter a área da porção da superfície de nível f(x,y,z)=1 correspondente aos valores de x, y e z tais que $1 \le x^2 + z^2 \le 4, y \ge 0$.

ANÁLISE MATEMÁTICA III

2009/10

Duração: 0h15

mini-teste 2: turma TP4; tipos X e XII

Nome:			
Nº Mec	Curso:		

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere as funções f e g definidas pelas expressões

$$f(s,t) = (s+t, s-t, st, s^2, t^2)$$
 e $g(u, v, x, y, z) = (x^2 - u, y - v^2, z^2)$.

- 1. Estude a diferenciabilidade destas funções.
- 2. Seja $(g\circ f)_2$ a segunda função coordenada de $g\circ f$. Use a regra da cadeia para calcular $\frac{\partial (g\circ f)_2}{\partial t}.$

ANÁLISE MATEMÁTICA III

2009/10

Duração: 0h15

mini-teste 2: turma TP4; tipo X

Nome:		
Nº Mec.	_Curso:	

- Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a função definida por

$$f(x,y) = \begin{cases} \operatorname{sen}\left(e^{-\frac{1}{x^2}}\right) & \operatorname{se} x \neq 0\\ 0 & \operatorname{se} x = 0 \end{cases}$$

1. Verifique que

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{2e^{-\frac{1}{x^2}}}{x^3}\cos(e^{-\frac{1}{x^2}}) & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

- 2. Mostre que f é diferenciável.
- 3. Calcule $f'_{(-1,2)}(0,-3)$.

ANÁLISE MATEMÁTICA III

2009/10

mini-teste 2: turma TP4; tipo XIII Duração: 0h15

Nome:		
Nº Mec	Curso:	

- \bullet Este mini-teste, cotado para 20 valores, contribui em 10% para a classificação final nesta disciplina.
- Não se esqueça de justificar convenientemente as suas afirmações, se necessário apresentando os cálculos intermédios que efectuar.

Considere a função f definida pela expressão

$$f(x, y, z) = z^2 - x^2 - y^2.$$

- 1. Indique para que valores de $k \in \mathbb{R}$ é que o plano z = k intersecta a superfície de nível f(x, y, z) = 1 e, para cada tal k, identifique a intersecção que obtém.
- 2. Determine o plano tangente à superfície de nível f(x, y, z) = 1 em cada um dos seus pontos (a, b, c) (e simplifique o mais possível a expressão obtida).

ANÁLISE MATEMÁTICA III

2009/10

exame de recurso Duração: 2h30

- Este teste consta de duas partes e termina com a palavra FIM, a que se segue o formulário e a cotação. A soma das cotações das questões da primeira parte é 15 valores, mas o máximo que um aluno poderá ter com a resolução de questões dessa parte é 12 valores. Para conseguir ter mais do que 12 valores, o aluno deverá responder também às questões da segunda parte, a qual está cotada para 8 valores. Em suma, designando por c_1 a cotação que o aluno obtiver na primeira parte e por c_2 a cotação que obtiver na segunda parte, a sua cotação final será obtida através da expressão $\min\{c_1, 12\} + c_2$.
- Todos os raciocínios devem ser convenientemente justificados.

1^a parte

1. Suponha que, sobre um ponto material de massa 1/3 kg, actua a força

$$F(t) := \left(-\frac{\cos t}{3}, 3e^{3t}\right)$$

em cada instante t e represente por r(t) a posição do ponto no mesmo instante. Determine r sabendo que a posição e velocidade iniciais são, respectivamente, (1,1) metros e (1,3) metros/segundo.

2. Seja C o cubo $[0,1]^3$. Calcule o integral de superfície

$$\iint_{r} f \cdot \hat{n} \, dS,$$

onde

$$f(x,y,z) := (x^2 + e^{y^2 + z^2}, y^2 + x^2 z^2, z^2 - e^y)$$

e r é uma parametrização da fronteira de C escolhida de modo a que \hat{n} aponte para o exterior do cubo.

[**Obs.:** Pode admitir hipóteses razoáveis adicionais que lhe permitam aplicar algum dos resultados dados nas aulas.]

3. Considere

$$f(x,y) := (x^2 - 1)y + y^3$$
 e $D := \{(x,y) \in \mathbb{R}^2 : y \ge 0 \land x^2 + y^2 \le 1\}.$

- (a) Determine e classifique os pontos críticos de f em int D.
- (b) Determine os extremos (e respectivos extremantes) absolutos de f em D.

2^a parte

4. Calcule, caso exista,

$$\lim_{(x,y)\to(1,-1)} f(x,y),$$

onde

$$f(x,y) := \begin{cases} \frac{\sin(x+y)}{x+y} & \text{se } y \neq -x \\ y & \text{se } y = -x \end{cases}$$
.

5. Sejam D um aberto de \mathbb{R}^n e $f:D\to\mathbb{R}$ continuamente diferenciável. Prove que, dado qualquer caminho seccionalmente suave $r:[a,b]\to D$,

$$\int_{r} \nabla f \cdot dr = f(r(b)) - f(r(a)).$$

[**Obs.:** Justifique pormenorizadamente; a simples repetição do texto de apoio não é suficiente.]

FIM

Formulário

(apenas simbologia sumária é apresentada, de acordo com a notação usual ou a convencionada no texto de apoio; nada é referido sobre as hipóteses que validam as fórmulas)

T. Green:
$$\iint_D g_x(x,y) - f_y(x,y) dx dy = \int_x f(x,y) dx + g(x,y) dy.$$

T. Stokes:
$$\iint_{r} \operatorname{rot} f \cdot \hat{n} \, dS = \int_{r \circ \alpha} f \cdot d(r \circ \alpha).$$

T. Gauss:
$$\iiint_{Q} \operatorname{div} f(x, y, z) \, dx \, dy \, dz = \iint_{r} f \cdot \hat{n} \, dS.$$

Cotação:

ANÁLISE MATEMÁTICA III

2009/10

teste global Duração: 2h30

• Este teste consta de duas partes e termina com a palavra FIM, a que se segue o formulário e a cotação. A soma das cotações das questões da primeira parte é 15 valores, mas o máximo que um aluno poderá ter com a resolução de questões dessa parte é 12 valores. Para conseguir ter mais do que 12 valores, o aluno deverá responder também às questões da segunda parte, a qual está cotada para 8 valores. Em suma, designando por c_1 a cotação que o aluno obtiver na primeira parte e por c_2 a cotação que obtiver na segunda parte, a sua cotação final será obtida através da expressão $\min\{c_1,12\}+c_2$.

• Todos os raciocínios devem ser convenientemente justificados.

1^a parte

- 1. Sejam f(x,y,z):=(0,z,2y) um campo vectorial e S a porção de superfície do parabolóide $y=5-x^2-z^2$ para a qual $y\geq 1$.
 - (a) Construa uma parametrização para S, não se esquecendo de indicar o domínio também.
 - (b) Obtenha uma equação para o plano tangente a S no ponto $P \equiv (1, 4, 0)$.
 - (c) Calcule o integral de superfície

$$\iint_r \operatorname{rot} f \cdot \hat{n} \, dS$$

para uma parametrização r(u,v) de S relativamente à qual seja positiva a segunda coordenada de $\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}$.

2. Suponha que, sobre um ponto material de massa 1/3 kg, actua a força

$$F(t) = (-\frac{\cos t}{3}, 3e^{3t})$$

em cada instante t e represente por r(t) a posição do ponto no mesmo instante. Determine r sabendo que a posição e velocidade iniciais são, respectivamente, (1,1) metros e (1,3) metros/segundo.

- 3. Considere o problema de determinar os extremos absolutos de f(x,y) := xy sujeita à condição $x^2 + 4y^2 = 4$.
 - (a) Justifique que tais extremos absolutos existem.
 - (b) Determine os maximizantes e minimizantes absolutos.

2^a parte

4. Calcule, caso exista,

$$\lim_{(x,y)\to(1,-1)} f(x,y),$$

onde

$$f(x,y) := \begin{cases} \frac{\sin(x+y)}{x+y} & \text{se } y \neq -x \\ y & \text{se } y = -x \end{cases}$$
.

5. Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e $r:I\subset\mathbb{R}\to\mathbb{R}^n$ tais que $r(I)\subset D$, e $g=f\circ r$. Seja t_0 um ponto de acumulação de I tal que $r(t_0)\in \operatorname{int} D$. Prove que se r e f são, respectivamente, diferenciáveis em t_0 e $r(t_0)$ então g é diferenciável em t_0 e

$$g'(t_0) = \nabla f(r(t_0)) \cdot r'(t_0).$$

\mathbf{FIM}

Formulário

(apenas simbologia sumária é apresentada, de acordo com a notação usual ou a convencionada no texto de apoio; nada é referido sobre as hipóteses que validam as fórmulas)

T. Stokes:
$$\iint_r \operatorname{rot} f \cdot \hat{n} \, dS = \int_{r \circ \alpha} f \cdot d(r \circ \alpha)$$

Cotação: