
a
rt

ig
o
 c

ie
n
tí
fi
co

4
ro

b
ó
ti
ca

Monocular Visual Odometry 
in Robots for Agriculture using 
Fisheye Cameras

ro
b

ó
ti

ca
 1

1
9

, 2
.o

 T
ri

m
es

tr
e 

d
e 

2
0

2
0

OpenCL-based optimization approach applied to the VO meth-

od is proposed recurring to the Raspberry Pi’s GPU to overcome 

the performance limitations of this microprocessor. The central 

unity of the system is the VO method. This one is publicly avail-

able on the official Libviso2 repository (https://github.com/srv/

viso2) and can work standalone, giving a primary estimation of 

the robot motion. A sensing system,constituted by a planar laser 

and a gyroscope,is also proposed to support and solve the main 

limitations monocular VO. The first is used to calculate the mo-

tion scale due to the unavailability of depth information result-

ant from a monocular VO system. The last is used as a support 

to VO in rotations and it is fused with VO recurring to a Kalman 

Filter (KF). The system output is a homogeneous transformation 

[R|t] between consecutive image frames.

Monocular Visual Odometry: As represented in Figure 

2, the monocular VO system is composed of three main sub-

systems:

1. Application of a camera model that converts 2-D feature 

pixels in the omnidirectional image in3-D unit vectors.

2. A Random sample consensus (RANSAC) approach to select 

the inliers from the entire set of 3-Dunit vectors.

3. Motion estimation using the epipolar constraint and linear 

triangulation.

So, to deal with the fisheye camera high distortion, a state-of-

the-art camera calibration toolbox was used, allowing to per-

form conversions such as, for example, from an image pixel into 

a 3-D unit vector, and from a 3-D world point into an image 

pixel, considering the lens distortion. With these capabilities,is 

proposed an adaptation of the state-of-the-art Libviso2 to es-

A
n

d
ré

 S
il

v
a

 A
g

u
ia

r 
(a

n
d

re
.s

.a
g

u
ia

r@
in

e
sc

te
c.

p
t)

; A
rm

a
n

d
o

 J
o

rg
e

 S
o

u
sa

 (
a

so
u

sa
@

fe
.u

p
.p

t)
; F

il
ip

e
 N

e
v

e
s 

d
o

s 
S

a
n

to
s 

(f
b

sa
n

to
s@

in
e

sc
te

c.
p

t)

F
a

c
u

ld
a

d
e

 d
e

 E
n

g
e

n
h

a
ri

a
 d

a
 U

n
iv

e
rs

id
a

d
e

 d
o

 P
o

rt
o

 

IN
E

S
C

 T
E

C
 –

 I
n

st
it

u
to

 d
e

 E
n

g
e

n
h

a
ri

a
 d

e
 S

is
te

m
a

s 
e

 C
o

m
p

u
ta

d
o

re
s,

 T
e

c
n

o
lo

g
ia

 e
 C

iê
n

c
ia

L.
 F

A
S

T-
F

U
S

IO
N

: A
n

 Im
p

ro
ve

d
 A

cc
u

ra
c

y 
O

m
n

id
ir

e
c

ti
o

n
a

l V
is

u
a

l O
d

o
m

e
tr

y 
S

ys
te

m
 w

it
h

 S
e

n
so

r 
Fu

si
o

n
 a

n
d

 G
P

U
 O

p
ti

m
iz

a
ti

o
n

 f
o

r 
E

m
b

e
d

d
e

d
 L

o
w

 C
o

st
 

H
a

rd
w

a
re

. A
p

p
l. 

S
ci

.2
0

1
9

, 9
, 5

5
1

6
.

The main statement that this work 

pretends to defend is:

It is possible to track the motion of a robot with 

moderated accuracy using a single fisheye

camera and common sensors on top of a low-cost 

microprocessor in an outdoor environment. 

Figure 1. Global systemarchitecture [1].

The proposed system aims to localize in real-time a ground 

robot in an agricultural environment. As shows in Figure 1, a 

fusion of common sensors with a monocular omnidirectional 

Visual Odometry (VO) algorithm is performed. The entire system 

runs on top of a low-cost microprocessor, a Raspberry Pi 3B. An 

Figure 2. Omnidirectional Visual Odometry Scheme [1].



a
rt

ig
o
 c

ie
n
tí
fi
co

5
ro

b
ó
ti
ca

timate the camera motion. To do so, the matching procedure 

from the original approach is reused and the epipolar geometry 

approach is recreated to work with omnidirectional cameras. 

Our system, instead of using 2-D pixel-based feature matches, 

used 3-D unit vectors instead. In this, instead of projecting the 

line that contains the previous camera centre and the scene 

point into the current image plane – the so-called epipolar line 

– it is projected into the current unitsphere. With this configu-

ration, epipolar curves are obtained, instead of epipolar lines. 

This means that a point on the unit sphere correspondent to 

the current image that matches a point on the unit sphere cor-

respondent to the last image lies on an epipolar curve. With 

this,the RANSAC input is prepared, the entire set of 3-D unit 

vector matches, and this method can be used to solve for the 

essential matrixE. So, for each iteration, a random sample of size 

eight (eight-point algorithm) is selected, from the total set of 

unit vectors and the following equation is solved

 v p iE v c i = 0 (2)

for each one, where v
pi
 and v

ci
 represent a 3-D unit vector match 

between consecutive images Using single value decomposition 

(SVD), the solution of E is extracted. To calculate the set of inliers 

the original Libviso2 approach if followed – iterate through all 

the matches and use the Sampson Distance to filter the out-

liers. At the end of all the RANSAC iterations, the final set of 

matches is available and is used to refine the essential matrixE. 

Then we extract the camera motion[R|t]from it. However, for a 

given essential matrix E there are four different solutions for the 

current camera matrix. To extract the correct solution, a linear 

triangulation approach is used. Solving a linear equation for all 

the matches considering the four possible [R|t] solutions and 

choosing the one that presents the higher number of 3-D trian-

gulated points with positive depth results in the final solution 

for the camera motion. However, since only information about 

one camera is being used, the notion of depth is not available. 

So, the extracted [R|t] solution is computed up to a scale factor 

α – the motion scale.

Motion Scale Calculation: To complement the camera 

motion estimation from our omnidirectional VO approach, apla-

nar LIDAR sensor is considered to recover the scale factor. This 

approach is divided into four essential steps:

1. Transformation of the range measurement of the LIDAR into 

the camera referential frame.

2. Projection of the LIDAR measures in the camera referential 

frame into the omnidirectional image.

3. Search for associations between image features and LIDAR 

measures in the omnidirectional image.

4. Scale calculation using the associations found.

To perform the transformation of the range measures to the 

camera referential frame, we measured the physical distance 

from the camera centre to the LIDAR. We apply a transformation 

H to the range measures to convert them to the desired referen-

tial. After that, to obtain the range measures as 2-D pixel points 

in the omnidirectional image, the camera model is applied. The 

final set of 2-D range measures are the ones who are mapped 

inside the omnidirectional image, i.e., the ones who are inside 

the camera field of view. The next step consists in associating 

the LIDAR measures projected into the image with 2-D feature 

points present in the current image frame. To do so, a search on 

the 2-D LIDAR measures neighbourhood is computed. Figure 

3 shows the real projection of LIDAR measures in the omnidi-

rectional image in black and the associated features in white. 

After matching 2-D feature points with 2-D range measures, 

it is possible to estimate the scale factor. These feature points 

were already triangulated using their respective matches in the 

previous image frame. Thus, we already have a set of matches 

between the 2-D LIDAR measures and 3-D triangulated feature 

points, and, consequently, between the 3-D world points ex-

tracted from the range measures and 3-D triangulated image 

feature points. So, the scale factor is the average of the relation 

between the norm of the triangulated matched features and 

the distances measured by the LIDAR that are matched. This fac-

tor is directly applied to the translation vector extracted from 

the essential matrix E.

Figure 3. LIDAR measurements projection in the omnidirectional image and 

2-D feature association with them [1].

Orientation Correction: After having a stable camera motion 

estimation, the need to support it in rotation-only motion types 

emerged due to high errors in the estimation in these cases. To 

do so, a gyroscope is used fusing it with the angular velocity 

resultant from the VO approach using a KF. Besides the angular 

velocity, the gyroscope bias b
i
 is also estimated in order improve 

the motion estimation accuracy. Considering the relative orien-

tation Δθ
i
 obtained by VO as controls, and the gyroscope angu-

lar velocities ω
i
 as observations, with i {x, y, z}, the state vector 

x = [ω
x 
, ω

y 
, ω

z 
, b

x 
, b

y 
, b

z 
], is computed as follows:

 ω'ik = Δ ik 
Δt

 b'ik = bik – 1

for each component {x, y, z}. We considered bias as a constant 

state ignoring flicker noise and temperature oscillations. Even 

so, this is a reasonable approximation due to the low impact of 

these two components in time-limited estimations. In addition, 

the observations model is:

 ωG
i = ω'i + b'i



a
rt

ig
o
 c

ie
n
tí
fi
co

6
ro

b
ó
ti
ca

with i {x, y, z}. This equation can be interpreted as: the angular 

velocity state is equal to the gyroscope observation minus the bias 

estimation. So, it is expected that this performs a correction of 

the angular velocity observation that is used in the compu-

tation of the state. The VO approach in some cases provides 

unrealistic estimations in pure rotations. Due to this, the co-

variance matrix of the state Q is dynamic. Both Q and the ob-

servations covariance R are initialized with constant values on 

their diagonals. The values of the diagonal of Q correspondent 

to the bias states are decreased over time, since bias is consid-

ered as a constant state. To detected and cancel the unrealistic 

peaks of angular velocity on the state, a non-linear approach 

was adopted. In this, asigmoid function that varies with the 

angular velocity states was calibrated. So, if a peak of angu-

lar velocity is detected, the sigmoid increases the covariance 

noise of the angular velocity which leads the filter to consider 

the gyroscope measure instead. In this way, it is possible to 

have in consideration two different sources of information to 

estimate the robot rotation.

Figure 4. Unified modelling language (UML) diagram of the OpenCL abstrac-

tion layer implemented.

Heterogeneous Computing Optimizations: After having the 

previously described fusion working on top of a standard com-

puter, we needed it to be fast in an embedded configuration 

to run on the robot in real-time. So, we chose a low-cost mi-

croprocessor – Raspberry Pi 3B – and tried to optimize the de-

veloped code to run on this platform. To do so, we use both 

Raspberry Pi’s CPU and GPU with parallel computing technique. 

To access Raspberry Pi’s GPU, the VC4CL (https://github.com/

doe300/VC4CL) driver was used. This is an open-source OpenCL 

1.2 implementation for Raspberry Pi’s GPU that allows the use 

of OpenCL C++. To facilitate OpenCL usage, an additional layer 

of abstraction consisting of an OpenCL-wrapper for C++ and 

ROS was developed. This allowed a communication between 

the host CPU and the device GPU using simple write and read 

routines. The implementation layout is represented in Figure 4. 

The iterative RANSAC approach was parallelized, since it is the 

most computationally expensive block of the system. For the 

GPU-based optimizations, a 16-way single instruction multiple 

data (SIMD) kernel architecture was adopted since each quad 

processing unit (QPU) of this device uses 16-way SIMD, execut-

ing an instruction with four-way data parallelism, four cycles in 

a row. This way, our approach for each routine follows the fol-

lowing pattern:

1. Load the routine input data correspondent to all the 

RANSAC iterations.

2. Write all the data to the correspondent kernel at once using 

16-way vector types.

3. Execute the kernel to all the data in a 16-way vectorized way 

and load it to a single output array.

4. Read all the output data at once and label the correspond-

ing RANSAC iteration to it.

In this way, we maximize the GPU performance using vector-

ized kernels that match with its architecture. Also, we minimize 

the data transfer delays between the host and the device by 

performing the communication only once for writing and once 

for reading.

Figure 5. Motion estimation with and without the orientation correction.

Results: Figure 5 shows the motion estimation results per-

formed our improved version of Libviso2, with all the sub-sys-

tems described. The images show the performance of Hector 

SLAM, a state-of-the-art accurate localisation algorithm (in red), 

our system without the KF (in blue), and with the KF (in green). 

Our system presents moderate accuracy, approximate with 

Hector SLAM, using low-cost hardware and running on an em-

bedded device with several performance limitations.

CONCLUSION
Our system is composed of an omnidirectional extension of the 

state-of-the-art monocular VO method Libviso2 that uses raw 

omnidirectional images, a LIDAR to calculate the motion scale, 

and a gyroscope to support the estimation in pure rotations. 

In short, we achieved real-time performance in an embedded 

configuration, and our system presented higher accuracy than 

the original Libviso2 approach. 


