GRUPO I

Um grupo de físicos conseguiu obter uma fotografia do funcionamento quântico dos eletrões num átomo de hidrogénio. Obter uma imagem do interior de um átomo não é fácil. A mecânica quântica torna-o impossível; em vez de ser possível descrever onde se encontram as partículas, a teoria quântica apenas permite descrever a função de onda. Estas ondas assemelham-se a ondas sonoras, mas, ao contrário destas últimas, descrevem a probabilidade de encontrar uma partícula.

Espera-se que o método também se possa aplicar átomos mais complexos e, assim, melhorar a compreensão da física atómica por detrás das reações químicas e da nanotecnologia.

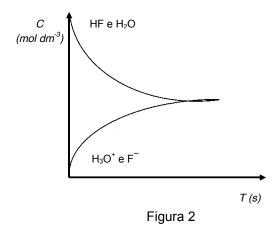
A Figura 1 representa o espetro de emissão de um átomo de hidrogénio.

Baseado em news.sciencemag.org.

Figura 1

- 1. A carga do cerne do átomo de hidrogénio é
 - (A) 2.
 - **(B)** 1.
 - **(C)** 0.
 - (D) + 1.
- **2.** Quando um átomo de hidrogénio, no estado fundamental, é excitado, e o seu eletrão passa para n = 2, ocorre
 - (A) absorção de energia na zona do infravermelho.
 - (B) emissão de energia na zona do infravermelho.
 - (C) absorção de energia na zona do ultravioleta.
 - (D) emissão de energia na zona do ultravioleta.
- **3.** Considere um átomo cuja configuração eletrónica seja [He] 2s² 2p². Este átomo apresenta ______ do que um átomo cuja configuração eletrónica seja _____ .
 - (A) menor raio atómico (...) [He] 2s⁵
 - (B) maior raio atómico (...) [He] 2s² 2p⁴
 - (C) maior energia de ionização (...) [He] 2s² 2p⁶
 - (D) menor energia de ionização (...) [He] 2s²

4. Embora seja o elemento mais abundante no universo, o hidrogénio é um elemento muito raro na atmosfera terrestre. Indique a propriedade do hidrogénio a que se deve esse facto.


GRUPO II

O ácido fluorídrico ($K_a = 5.6 \times 10^{-4}$, a W °C) é uma substância perigosa, uma vez que, embora não atue sobre a pele, quando em contacto com esta, entra no corpo e ataca o cálcio dos ossos, enfraquecendo o osso e podendo mesmo degradá-lo. Este ácido é muito utilizado na produção de fármacos e na indústria petroquímica.

A reação do ácido fluorídrico com a água pode ser traduzida pela seguinte equação química:

HF (aq) + H₂O (I)
$$\leftrightarrow$$
 H₃O⁺ (aq) + F⁻ (aq), Δ H = - 13 kJ mol⁻¹

A Figura 2 representa, graficamente, a evolução do equilíbrio da reação acima indicada.

Baseado em www.infoescola.com.

- 1. De acordo com a descrição, o ácido fluorídrico deveria ser classificado como
 - (A) Inflamável.
 - (B) Nocivo.
 - (C) Corrosivo.
 - (D) Oxidante.
- 2. Na reação em questão, um exemplo de par ácido/base seria
 - **(A)** HF / H_3O^+ .
 - **(B)** H_3O^+/HF^+ .
 - **(C)** H_2O / H_3O^{\dagger} .
 - **(D)** H_3O^+ / H_2O .

- **3.** Numa situação em que a reação do ácido fluorídrico com a água, após atingir o estado de equilíbrio, fosse sujeita a intensa agitação durante um período de tempo considerável, verificar-se-ia que
 - (A) a concentração de H₃O⁺ aumentaria.
 - (B) a reação evoluiria mais rapidamente no sentido direto.
 - (C) a reação evoluiria mais lentamente no sentido direto.
 - (D) a concentração de H₂O aumentaria.
- **4.** Numa solução de 3 dm³ em equilíbrio, a W °C, em que K_w nessas condições seja 2,3 × 10⁻³, a quantidade de água é (para efeitos de resposta, considere irrelevante o volume de ácido)
 - (A) 0,2 mol.
 - (B) 0,7 mol.
 - (C) 1,0 mol.
 - (D) 1,2 mol.
- **5.** Considere que, quando a concentração de *HF* se aproxima de 100%, a acidez da solução decresce devido ao seguinte equilíbrio:

$$2 \text{ HF (aq)} \leftrightarrow \text{H}^+ (aq) + \text{FHF}^- (aq)$$

Calcule o pH da solução num determinado instante em que as concentrações de HF e FHF^- são 0,15 mol dm⁻³ e 0,1 mol dm⁻³, respetivamente, e Q é 6,7 × 10⁻⁴.

GRUPO III

A balança é um instrumento muito útil no nosso dia-a-dia. Com o avanço da tecnologia, as balanças tornaram-se cada vez mais precisas, permitindo a medição cada vez mais rigorosa de massas em laboratório.

Quando se coloca um objeto sobre uma balança, este exerce sobre ela uma força e a balança exerce, sobre o objeto, uma força da mesma intensidade, que se anulam. A escala de uma balança é calibrada de forma a mostrar a décima parte do valor do módulo da força que o objeto exerce sobre ela.

A figura 3 representa a imagem de uma balança analógica e do seu mostrador, cuja unidade de massa é a unidade de massa do sistema internacional.

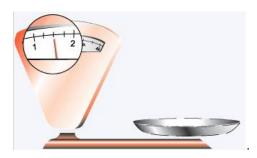


Figura 3

- 1. Por que motivo a "escala de uma balança é calibrada de forma a mostrar a décima parte do valor do módulo da força que o objeto exerce sobre ela"?
- 2. O valor correto que o indicador no mostrador da balança da figura 3 indica é
 - (A) $1,500 \pm 0,125$ g.
 - **(B)** 1,50 ± 0,25 g.
 - (C) $1,50 \pm 0,25$ kg.
 - **(D)** $1,500 \pm 0,125 \text{ kg}$.
- **3.** Um elevador de massa 700 kg que transporta uma pessoa cuja massa é 75 kg. Este elevador pode efetuar um movimento em ambos os sentidos, segundo um eixo *yy*.
- **3.1.** Admita que o conjunto *elevador + passageiro* efetua um movimento ascendente, partindo de uma posição de repouso na origem do referencial e que o elevador percorre uma distância de 14 metros. Sabendo que apenas 75% da energia fornecida ao ascensor do elevador é utilizada no motor e que cada kWh tem um custo de € 0,21, calcule o custo associado a este movimento.
- **3.2.** Considere, agora, que o elevador descreve um movimento ascendente com aceleração constante de 3 m s^{-2} . Calcule o erro relativo da massa do passageiro indicado pela balança, se este medir a sua massa enquanto o elevador efetua este movimento.
- **3.3.** Numa situação em que o conjunto *elevador + passageiro + balança* esteja numa situação limite de queda livre, a massa indicada pela balança será
 - (A) 0 kg.
 - (B) 75 kg.
 - (C) 100 kg.
 - (D) 750 kg.

GRUPO IV

A maioria dos minerais constituintes das rochas gerados em profundidade torna-se instável nas condições superficiais, experimentando uma decomposição química. O oxigénio, por exemplo, é muito importante na meteorização química, através de reações de oxidação-redução. Muitos minerais, como as piroxenas e as olivinas, contêm ferro na sua constituição que, na presença de oxigénio, pode originar um mineral novo, de cor avermelhada, a hematite.

A equação que traduz esta reação química é

4 FeO (s) +
$$O_2$$
 (g) \leftrightarrow 2 Fe₂ O_3 (s).

Dias da Silva, Amparo, et al.Terra, Universo de Vida (2012).

Porto: Porto Editora. (Adaptado.)

1. A semiequação da oxidação do ferro é

(A)
$$Fe^{2+}$$
 (s) \rightarrow Fe^{3+} (s) + 1 e^{-}

(B)
$$Fe^{2+}$$
 (s) $\rightarrow 2 Fe^{3+}$ (s) + 4 e^{-}

(C)
$$Fe^{2+}$$
 (s) + 1 $e^{-} \rightarrow Fe^{3+}$ (s)

(D)
$$Fe^{2+}$$
 (s) + 4 $e^{-} \rightarrow 2 Fe^{3+}$ (s)

2. Explique por que motivo, ao fim de algum tempo, é necessário substituir as cavilhas das pontes rodoviárias.

GRUPO V

Um grupo de alunos, com o objetivo de calcular, experimentalmente, o índice de refração do acrílico em relação ao ar, utilizou um ponteiro-*laser* para criar um feixe de luz, que se fez incidir sobre uma placa de acrílico. Registaram, para cada valor do ângulo de incidência, α_i , o ângulo de refração, α_r . Os resultados foram registados na tabela 1.

Ensaio	α_{i}	α_{r}
I	20°	26°
II	30°	41°
III	40°	54°

Tabela 1

- 1. Relativamente aos fenómenos que ocorrem quando a luz atinge outra superfície,
 - 1.1. os alunos puderam verificar que, quando a luz incidia sobre a superfície de acrílico, era
 - (A) refratada.
 - (B) refratada e absorvida.
 - (C) refratada, absorvida e refletida.
 - (D) refratada, absorvida, refletida e difratada.
- **1.2.** os alunos podem assumir, graças aos seus conhecimentos, que, quando a luz atinge a superfície de contacto entre o núcleo e o revestimento da fibra ótica,
 - (A) a luz é refletida e refratada.
 - (B) ocorre o fenómeno da reflexão total da luz.
 - (C) a luz é absorvida pela superfície e ocorre, ainda, o fenómeno da reflexão total da luz.
 - (D) o corre o fenómeno da reflexão total da luz e a luz é difratada.
- **2.** A luz, ao atravessar uma placa de vidro (n = 1,5), apresentará ______ do que na placa de acrílico, uma vez que o vidro é ______ .
 - (A) maior velocidade (...) mais denso.
 - **(B)** menor velocidade (...) mais denso.
 - (C) maior velocidade (...) menos denso.
 - (D) menor velocidade (...) menos denso.
- **3.** O mesmo grupo de alunos decidiu, depois, estudar a atenuação da luz. Para tal, utilizou de novo um ponteiro-*laser* e, usando um luxímetro, mediram a iluminação luminosa para diferentes distâncias do ponteiro emissor. Os resultados estão registados na tabela 2.

Distância (<i>m</i>)	lluminação luminosa (<i>lux</i>)
1,2	184,00
2,4	71,50
3,6	34,00
4,8	12,50

Tabela 2

- 3.1. A intensidade da luz, num determinado ponto, depende
 - (A) da sua iluminação.
 - (B) da sua velocidade.
 - (C) do ângulo que o raio incidente faz com a superfície de contacto.
 - (D) do ângulo que o raio refratado faz com a superfície de contacto.

3.2. Admita que, quando a iluminação luminosa da onda eletromagnética. Calcule, para o feixe luminos de informação não seria possível. Utilize a sua calcula dos resultados experimentais.	
Rafael Vieira	Teste de Física e Química A – página 7 de 8

COTAÇÕES

GRUPO I

	GRUPO II
	GRUPO III
3.1.	
3.2.	
	GRUPO IV
	GRUPO V
1.1.	
1.1. 1.2.	

CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

GRUPO I

1. (D)	8
O cerne do átomo é constituído pelo seu núcleo e eletrões mais internos. Os eletrões de valência nã fazem parte do cerne de um átomo. O H tem 1 protão, 1 neutrão e 1 eletrão (de valência), pelo que apenas o protão (carga +1) e o neutrão (carga neutra) fazem parte do seu cerne. Como tal, a sua carga será +1.	
9 (0)	0
2. (C)	8
3. (B)	8
4	8
GRUPO II	
1. (B)	
2. (D)	8
3. (D)	8
4. (B) $ K_{a} = K_{w} \times [H_{2}O] $ $ [H_{2}O] = K_{a} / K_{w} $ $ [H_{2}O] = 0.24 \text{ mol dm}^{-3} $	8

$$n = c \times V$$

 $n = 0.24 \times 3$
 $n = 0.72 \text{ mol}$

5.	 	 . 12									

Na resposta, são apresentadas as seguintes etapas de resolução:

- A) Cálculo da concentração de H⁺ (1,51 × 10⁻⁴ mol dm⁻³);
- B) Cálculo do pH da solução (3,82).

A resposta a este item deve ser enquadrada num dos níveis de desempenho relacionados com a consecução das etapas, de acordo com a tabela seguinte.

Níveis	Descritores do nível de desempenho relacionados com a consecução das							
	etapas							
2	Na resposta, são apresentadas as duas das etapas de resolução consideradas.	12						
1	Na resposta, é apresentada apenas uma das etapas de resolução consideradas.	6						

GRUPO III

l 8
Como a balança mede o peso,] é necessário dividir o resultado por 10 para desconsiderar o efeito da
aceleração gravítica no resultado final.
2. (D)
A unidade SI da massa é o kg. O ponteiro da balança indica 1,5 kg. Como a menor divisão da escala
é 0,25 kg, a incerteza da balança, por ser analógica, é metade deste valor (0,125 kg). O resultado tem
de ser apresentado com o número correto de algarismos significativos (1,500 \pm 0,125 kg).
3.
3.1
Na resposta, são apresentadas as seguintes etapas de resolução:
A) Cálculo do trabalho realizado pelo conjunto <i>elevador + passageiro</i> durante o percurso considerado
$1.1 \times 10^5 \text{ J}$).
B) Cálculo da energia que foi necessário fornecer ao motor para efetuar aquele movimento (1,5 $ imes$ 10 5
J).
C) Cálculo do custo associado a este fornecimento de energia (8,5 × 10 ⁻³ €).

A resposta a este item deve ser enquadrada num dos níveis de desempenho relacionados com a consecução das etapas, de acordo com a tabela seguinte.

Níveis	Descritores do nível de desempenho relacionados com a consecução das							
	etapas							
3	Na resposta, são apresentadas as três etapas de resolução consideradas.	16						
2	Na resposta, são apresentadas apenas duas das etapas de resolução consideradas.	11						
1	Na resposta, é apresentada apenas uma das etapas de resolução consideradas.	5						

Na resposta, são apresentadas as seguintes etapas de resolução:

- A) Cálculo da força que a balança exerce sobre o passageiro (1200 N) e conclusão de que, por serem pares ação-reação, a força que o passageiro exerce sobre a balança é a mesma.*
- B) Cálculo da massa indicada pela balança (97,5 kg).
- C) Cálculo do erro relativo (0,3 OU 30,0 %).

A resposta a este item deve ser enquadrada num dos níveis de desempenho relacionados com a consecução das etapas, de acordo com a tabela seguinte.

Níveis	Descritores do nível de desempenho relacionados com a consecução das								
	etapas								
3	Na resposta, são apresentadas as três etapas de resolução consideradas.	16							
2	Na resposta, são apresentadas apenas duas das etapas de resolução consideradas.	11							
1	Na resposta, é apresentada apenas uma das etapas de resolução consideradas.	5							

* Caso o aluno não conclua, explicitamente, que as intensidades das forças exercidas são as mesmas, a resolução deve ser desvalorizada em 2 pontos.

Numa situação limite de queda livre, o homem não exerce força sobre a balança nem esta sobre ele: estão ambos em queda livre com o elevador.

Pela segunda lei de Newton,

$$N - P = m (-a)$$

(sendo P a força que o passageiro exerce sobre a balança e N a força que a balança exerce sobre o passageiro)

Como está em queda livre, a = g

$$N - P = m (-g)$$

$$N - m (-g) = m (-g)$$

$$N = 0$$

Logo, a massa indicada pela balança é 0/10 = 0 kg.

GRUPO IV

1. (A)
Em FeO, o Fe apresenta número de oxidação ± 2 e, em Fe ₂ O ₃ , o número de oxidação $\pm \pm 3$. Por esse
motivo, pode concluir-se que o Fe ²⁺ cedeu 1 eletrão e foi oxidado.
2 16
Na resposta, são apresentados os seguintes tópicos:
A) As cavilhas das pontes rodoviárias contêm ferro na sua composição.
B) Na presença do oxigénio atmosférico, o Fe ²⁺ é oxidado, dando origem a Fe ³⁺ , o que enfraquece as
cavilhas das pontes.

OU

Na presença do oxigénio atmosférico, o Ferro enferruja, na consequência de reações de oxidaçãoredução, sendo enfraquecido.

C) [Perante o enfraquecimento das cavilhas,] é necessário substituí-las, como modo de prevenção contra o desabamento das pontes rodoviárias.

A classificação da resposta a este item é feita em função do enquadramento da mesma num dos níveis de desempenho, de acordo com a tabela seguinte.

Descritor	Níveis*				
Descritores do nível de desempenho no domínio específico da disciplina				2	3
	5	Na resposta, são apresentados os três tópicos de referência com: organização coerente dos conteúdos; Iinguagem científica adequada.	14	15	16
	4	Na resposta, são apresentados os três tópicos de referência com: • falhas na organização dos conteúdos e/ou na utilização da linguagem científica.	12	13	14
Níveis	3	Na resposta, são apresentados apenas dois dos tópicos de referência com: organização coerente dos conteúdos; Iinguagem científica adequada.	9	10	11
	2	Na resposta, são apresentados apenas dois dos tópicos de referência com: • falhas na organização dos conteúdos e/ou na utilização da linguagem científica.	7	8	9
	1	Na resposta, é apresentado apenas um dos tópicos de referência com: • linguagem científica adequada.	3	4	5

1.	
1.1. (C)	8
Sempre que a luz incide sobre uma superfície, é refletida, refratada e absorvida. A difração só	
ocorre quando a luz passa por fendas.	
1.2. (B)	8
O material da fibra ótica é construído de modo a que ocorra o fenómeno da reflexão total da	
luz, mas não ocorra absorção (nem refração).	
2. (B)	8
O valor mais provável do índice de refração do acrílico é 1,28. Como o índice de refração do	
vidro é 1,5, conclui-se que o vidro é um meio mais denso (mais refringente) e, por isso, a	
velocidade da radiação neste será menor.	
3.	
3.1. (A)	8
$I = E/r^2$	
$E = I \times r^2$	
Logo, a intensidade luminosa depende da iluminação luminosa (I).	
3.2.	12
Na resposta, são apresentadas as seguintes etapas de resolução:	
A) Obtenção da equação da regressão linear, a partir dos resultados experimentais obtidos	
(I = -0.02d + 4.42);	
B) Cálculo da distância para a qual a iluminação luminosa é 2 (121 m).	

A resposta a este item deve ser enquadrada num dos níveis de desempenho relacionados com a consecução das etapas, de acordo com a tabela seguinte.

Níveis	Descritores do nível de desempenho relacionados com a consecução das	Pontuação
	etapas	
2	Na resposta, são apresentadas as duas das etapas de resolução consideradas.	12
1	Na resposta, é apresentada apenas uma das etapas de resolução consideradas.	6