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Tutorial II: Robust and accurate splitting schemes

Model problem. We consider the model problem of the Tutorial I, that we repeat here for the sake of convenience: find the fluid velocity
u : Ω × R+ → R2, the pressure p : Ω × R+ → R, the solid vertical displacement η : Σ × R+ → R and the solid vertical velocity
η̇ : Σ× R+ → R such that 

ρf∂tu− divσ(u, p) = 0 in Ωf × R+,

divu = 0 in Ωf × R+,

u · n = 0, σ(u, p)n · τ = 0 on Γ1 × R+,

σ(u, p)n = −Pn on Γ2 × R+,

σ(u, p)n = 0 on Γ4 × R+,

(1)


u · n = η̇, u · τ = 0 on Σ× R+,

ρsε∂tη̇ − c1∂2xη + c0η = −σ(u, p)n · n on Σ× R+,

η̇ = ∂tη on Σ× R+,

η = 0 on ∂Σ× R+,

(2)

with the given initial conditions u(0) = u0, η(0) = η0 and η̇(0) = η̇0.

Numerical methods. In this tutorial, the time–discretization of the interface coupling in (1)-(2) will be performed using a projection
based semi-implicit coupling scheme and a Robin-Neumann explicit coupling scheme. These two numerical methods are implemented
in the FreeFem++ script files fsi-SI.edp and fsi-RN.edp, respectively.

Part I: Projection based semi-implicit coupling

Applied to the coupled problem (1)-(2) this time–splitting method reads as follows: for n ≥ 1, find un : Ω → R2, pn : Ω → R,
ηn : Σ→ R and η̇n : Σ→ R such that

1. Explicit part (fluid viscous step): 
ρf∂τu

n − 2µdivε(un) = −∇pn−1 in Ωf ,

un · n = 0, 2µε(un)n · τ = 0 on Γ1,

2µε(un)n = 0 on Γ2 ∪ Γ4.

un · n = η̇n−1, un · τ = 0 on Σ.

(3)

2. Implicit part:

a) Fluid projection step: 

−∆pn = − τ
ρf

divun in Ωf ,

∂pn

∂n
= 0 on Γ1,

p = P (tn) on Γ2,

p = 0 on Γ4,

∂pn

∂n
= −ρ

f

τ

(
η̇n − η̇n−1

)
on Σ.

(4)

b) Solid step: 
ρsε∂τ η̇

n − c1∂2xηn + c0η
n = −σ(un, pn)n · n on Σ,

η̇n = ∂τη
n on Σ,

ηn = 0 on ∂Σ.

(5)
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Here, the symbol ∂τxn
def
= (xn − xn−1)/τ stands for the first-order backward difference. This coupling scheme requires the solution,

at each time-step, of the heterogenous system of equations (4)-(5) which couples the dynamics of pn and (η̇n, ηn). Note, however,
that the computation of fluid velocity un through step (3) is uncoupled with (4)-(5). This explains the terminology semi-implicit. The
FreeFem++ script file fsi-SI.edp implements three partitioned solution algorithms for the coupled system (4)-(5):

• Fixed-point iterations with static relaxation (options method=1 and dymrel=0);

• Fixed-point iterations with Aitken’s dynamic relaxation (options method=1 and dymrel=1);

• Robin-Neumann (RN) iterations with a fixed Robin coefficient (option method=2).

Exercise 1: Robustness. The purpose of this exercise is to illustrate numerically that, in spite of not being fully implicit, the stability of
the above semi–implicit scheme is robust with respect to the added-mass effect. The reason for this is that all these stability issues are
circumvent via the coupling between (4) and (5). In this exercise we will choose the option method=2.

1. Run the command FreeFem++ fsi-SI.edp. Do you observe a stable or unstable approximation?. Did you get the same kind
of behavior with the script fsi-EXP.edp in Tutorial I?. Explain the answer.

2. Investigate the impact of ρf , ρs ,ε, L and R on the stability of the approximations. What do you observe?. Explain the results.

Exercise 2: Accuracy. The purpose of this exercise is to illustrate numerically that, in spite of not being fully implicit, the above
semi–implicit scheme delivers a comparable accuracy. In this exercise we will choose the option method=2. The scripts FreeFem++
fsi-SI.edp and FreeFem++ fsi-IMP.edp generate, respectively, the ascii files plot si.gp and plot imp.gp which
contain the displacement approximation at the final time. Using gunplot (or Matlab) you can compare both approximations. We
will also compare the accuracy of these approximation with the reference solution given in the ascii file plot ref.gp. For the
following set of space–time refinement

τ = 2 · 10−4/2i, h = 0.1/2i, i = 0, 1, 2, 3,

compare the approximations obtained with fsi-SI.edp and fsi-IMP.edp. What do you observe?

Exercise 3: Efficiency. Compare the efficiency of the partitioned solution algorithms for the coupled system (4)-(5):

1. Fixed-point iterations with static relaxation:

a) How many iterations are approximately needed at each time-step?.
b) Tune the relaxation parameter omega0 in order to improve the convergence speed of the iterations.
c) For a given value of omega0 which guarantees convergence, investigate the impact of ρf , ρs ,ε, L and R on the convergence

speed. Explain the results.

2. Repeat points 1(a) and 1(c) with the dynamic relaxation variant. Does this improves the situation?.

3. Repeat points 1(a) and 1(c) with the RN iterations. Which are the benefits of this approach?.

4. The Robin coefficient is alphaf=rhof/(rhos*eps), why?.

Part II: Robin-Neumann explicit coupling

Applied to the coupled problem (1)-(2) this explicit splitting scheme reads as follows: for n ≥ 1, find un : Ω → R2, pn : Ω → R,
ηn : Σ→ R and η̇n : Σ→ R such that

1. Fluid step (interface Robin condition):

ρf∂τu
n − divσ(un, pn) = 0 in Ωf ,

divun = 0 in Ωf ,

un · n = 0, σ(u, p)n · τ = 0 on Γ1,

σ(un, pn)n = −P (tn)n on Γ2,

σ(un, pn)n = 0 on Γ4,

σ(un, pn)n · n+
ρsε

τ
un · n =

ρsε

τ

(
η̇n−1 + τ∂τ η̇

n,?
)

+ σ(un,?, pn,?)n · n on Σ,

un · τ = 0 on Σ.

(6)
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2. Solid step (standard ”Neumann”):
ρsε∂τ η̇

n − c1∂2xηn + c0η
n = −σ(un, pn)n · n on Σ,

η̇n = ∂τη
n on Σ,

ηn = 0 on ∂Σ.

Here, we used the notation

xn,?
def
=


0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2,

for the interface extrapolations of order r.

Exercise 1: Robustness. The purpose of this exercise is to illustrate numerically that the stability of the above explicit scheme is robust
with respect to the added-mass effect. The reason for this is that the Robin condition (6)6 guarantees that the inertia of the solid is
implicit coupled with the fluid.

1. Run the command FreeFem++ fsi-RN.edp with different values of the extrapolation order r. Do you observe a stable or
unstable approximation?. Did you get the same kind of behavior with the script fsi-EXP.edp in Tutorial I?.

2. Investigate the impact of ρf , ρs ,ε, L and R on the stability of the approximations. What do you observe?.

3. For the variants with r = 0 and r = 1, take different values of τ and h. Does this compromise the stability of the method?. Do
you observe the same for the variant with r = 2?.

Exercise 2: Accuracy. The purpose of this exercise is to investigate numerically the accuracy of the above Robin-Neumann explicit
scheme. The scripts FreeFem++ fsi-RN.edp generates the ascii files plot exp0.gp, plot exp1.gp and plot exp2.gp
containing the displacement approximation at the final time, respectively, for each extrapolation variant r = 0, 1, 2. For the following
set of space–time refinement

τ = 2 · 10−4/2i, h = 0.1/2i, i = 0, 1, 2, 3,

display the approximations obtained with fsi-RN.edp, for all the values of r, and compare them with the approximation provided
by fsi-IMP.edp and the reference solution plot ref.gp. What do you observe?. What can be concluded on the Robin-Neumann
scheme with r = 1?.
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