FSI Lectures

Miguel A. Fernández (Inria & UPMC, France)

Tutorial I: Stiff Dirichlet-Neumann Coupling

Model problem. The purpose of this tutorial is to illustrate the stiff nature of the Dirichlet-Neumann coupling in incompressible fluidstructure interaction. As example, we consider the propagation of a pressure-wave within an elastic straight tube in two-dimensions (see Figure 1). Assuming that the displacements of the interface are infinitesimal and that the Reynolds number in the fluid is small, the

$$\boldsymbol{\sigma}(\boldsymbol{u},p)\boldsymbol{n} = -P(t)\boldsymbol{n}$$

$$\boldsymbol{\Omega}^{\mathrm{f}} = [0,6] \times [0,0.5]$$

$$\boldsymbol{\sigma}(\boldsymbol{u},p)\boldsymbol{n} = \boldsymbol{0}$$

$$\boldsymbol{\sigma}(\boldsymbol{u},p)\boldsymbol{n} = \boldsymbol{0}$$

Figure 1: Geometrical configuration and external boundary conditions.

mechanical system can be modeled by a simplified linear model problem in which the fluid is described by the Stokes equations, in the fixed domain $\Omega^{\rm f}$, and the structure by a generalized string model in the fluid-structure interface Σ . All the geometrical and constitutive non-linearities are hence neglected. The resulting coupled problem reads as follows: find the fluid velocity $\boldsymbol{u} : \Omega \times \mathbb{R}^+ \to \mathbb{R}^2$, the pressure $p : \Omega \times \mathbb{R}^+ \to \mathbb{R}$ and the solid vertical displacement $\eta : \Sigma \times \mathbb{R}^+ \to \mathbb{R}$ and the solid vertical velocity $\dot{\eta} : \Sigma \times \mathbb{R}^+ \to \mathbb{R}$ such that

$$\begin{cases} \rho^{f}\partial_{t}\boldsymbol{u} - \operatorname{div}\boldsymbol{\sigma}(\boldsymbol{u}, p) = \boldsymbol{0} \quad \text{in} \quad \Omega^{f} \times \mathbb{R}^{+}, \\ \operatorname{div}\boldsymbol{u} = 0 \quad \text{in} \quad \Omega^{f} \times \mathbb{R}^{+}, \\ \boldsymbol{u} \cdot \boldsymbol{n} = 0, \quad \boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{n} \cdot \boldsymbol{\tau} = 0 \quad \text{on} \quad \Gamma_{1} \times \mathbb{R}^{+}, \\ \boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{n} = -P\boldsymbol{n} \quad \text{on} \quad \Gamma_{2} \times \mathbb{R}^{+}, \\ \boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{n} = \boldsymbol{0} \quad \text{on} \quad \Gamma_{4} \times \mathbb{R}^{+}, \\ \boldsymbol{u} \cdot \boldsymbol{n} = \dot{\eta}, \quad \boldsymbol{u} \cdot \boldsymbol{\tau} = 0 \quad \text{on} \quad \Sigma \times \mathbb{R}^{+}, \\ \rho^{s} \epsilon \partial_{t} \dot{\eta} - c_{1} \partial_{x}^{2} \eta + c_{0} \eta = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \cdot \boldsymbol{n} \quad \text{on} \quad \Sigma \times \mathbb{R}^{+}, \\ \dot{\eta} = \partial_{t} \eta, \quad \text{on} \quad \Sigma \times \mathbb{R}^{+}, \\ \eta = 0 \quad \text{on} \quad \partial \Sigma \times \mathbb{R}^{+}, \end{cases}$$
(2)

and complemented with the given initial conditions $\boldsymbol{u}(0) = \boldsymbol{u}_0$, $\eta(0) = \eta_0$ and $\dot{\eta}(0) = \dot{\eta}_0$. The constants $\rho^{\rm f}$ and $\rho^{\rm s}$ denote, respectively, the fluid and solid densities and ϵ is the solid thickness. The fluid Cauchy-stress tensor is given by the relation $\boldsymbol{\sigma}(\boldsymbol{u}, p) \stackrel{\text{def}}{=} -p\boldsymbol{I} + 2\mu\boldsymbol{\varepsilon}(\boldsymbol{u})$, with $\boldsymbol{\varepsilon}(\boldsymbol{u}) \stackrel{\text{def}}{=} \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\rm T} \right)$ and where μ stands for the fluid dynamic viscosity. All units will be expressed in the CGS (centimetregram-second) system. The physical parameter for the fluid are $\rho^{\rm f} = 1.0$ and $\mu = 0.035$, and for the solid we take $\rho^{\rm s} = 1.1$, $c_1 \stackrel{\text{def}}{=} \frac{E\epsilon}{2(1+\nu)}$, $c_0 \stackrel{\text{def}}{=} \frac{E\epsilon}{R^2(1-\nu^2)}$, with $\epsilon = 0.1$, the Young modulus $E = 0.75 \cdot 10^6$ and the Poisson ratio $\nu = 0.5$. The fluid domain is given by $\Omega^{\rm f} = [0, L] \times [0, R]$ and the fluid-solid interface by $\Sigma = [0, L] \times \{R\}$, with L = 6 and R = 0.5. A sinusoidal pressure-wave $P(t) = P_{\rm max}(1 - \cos(2t\pi/T^*))/2$, with maximum $P_{\rm max} = 2 \cdot 10^4$, is prescribed on the inlet boundary Γ_4 during $T^* = 5 \cdot 10^{-3}$ seconds. Zero pressure is imposed on Γ_2 and a slip condition is enforced on the lower boundary Γ_1 . For the solid we set $\eta = 0$ on the extremities x = 0, L.

Numerical methods. The spatial discretizations of the fluid and of the structure will be based on piece-wise affine continuous finite elements and compatible on the interface (matching meshes). The following Brezzi-Pitkäranta pressure stabilization operator $\gamma_{\rm p} \int_{\Omega^{\rm f}} \frac{h^2}{\mu} \nabla p \cdot \nabla q$, $\gamma_{\rm p} = 10^{-3}$, is added to the Stokes bilinear form in order to avoid the *inf-sup* compatibility issues. Here, h stands for the spatial mesh parameter. With regard the time-discretisation, we will for simplicity consider a simple backward Euler time-stepping in the bulk terms of the fluid $(1)_{1,2}$ and of the solid $(2)_2$. The time-discretization of the interface coupling $(2)_{1,2}$ will be performed using either a implicit coupling scheme or a Dirichet-Neumann explicit coupling scheme. These two numerical methods are implemented in the FreeFem++ script files fsi-SI.edp and fsi-DN.edp, respectively.

Exercise 1: Energy balance. We assume that P = 0 in (1)–(2). Show that the following energy identity holds for t > 0

$$\frac{\rho^{\mathrm{f}}}{2} \|\boldsymbol{u}\|_{0,\Omega^{\mathrm{f}}}^{2} + \frac{\rho^{\mathrm{s}}\epsilon}{2} \|\dot{\eta}\|_{0,\Sigma}^{2} + \frac{c_{1}}{2} \|\partial_{x}\eta\|_{0,\Sigma}^{2} + \frac{c_{0}}{2} \|\eta\|_{0,\Sigma}^{2} = \frac{\rho^{\mathrm{f}}}{2} \|\boldsymbol{u}_{0}\|_{0,\Omega^{\mathrm{f}}}^{2} + \frac{\rho^{\mathrm{s}}\epsilon}{2} \|\dot{\eta}_{0}\|_{0,\Sigma}^{2} + \frac{c_{1}}{2} \|\partial_{x}\eta_{0}\|_{0,\Sigma}^{2} + \frac{c_{0}}{2} \|\eta_{0}\|_{0,\Sigma}^{2} - 2\mu \int_{0}^{t} \|\boldsymbol{\varepsilon}(\boldsymbol{u})\|_{0,\Sigma}^{2}.$$
 (3)

What does this identity guarantee?.

Exercise 2: Implicit coupling scheme. We consider a fully implicit Euler time-discretization of (1)-(2). Show that, assuming again P = 0, the resulting approximations $(u^n, p^n, \dot{\eta}^n, \eta^n)$ satisfy a time-semidiscrete counterpart of (3). What does this guarantee?

Exercise 3: Partitioned iterative solution of implicit coupling. The previous implicit coupling scheme requires the solution, at each time-step, of a heterogenous system of equations which couples the dynamics of (u^n, p^n) and $(\dot{\eta}^n, \eta^n)$. The FreeFem++ script file fsi-IMP.edp implements three partitioned solution algorithms for this coupled system:

- Dirichlet-Neumann (DN) iterations with static relaxation (options method=1 and dymrel=0);
- DN iterations with Aitken's dynamic relaxation (options method=1 and dymrel=1);
- Robin-Neumann (RN) iterations with a fixed Robin coefficient (option method=2).

Te purpose of this exercise is to test and compare the efficiency of these approach and, in particular, their sensitivity to the amount of added-mass effect in the system, characterized by the relation

$$\frac{\rho^{\rm t}\mu_{\rm max}}{\rho^{\rm s}\epsilon} > 1,\tag{4}$$

with $\mu_{\rm max} \approx L^2/(\pi^2 R)$.

- 1. DN iterations with static relaxation:
 - a) How many iterations are approximately needed at each time-step?.
 - b) Tune the relaxation parameter omega0 in order to improve the convergence speed of the iterations.
 - c) For a given value of omega0 which guarantees convergence, investigate the impact of ρ^{f} , ρ^{s} , ϵ , L and R on the convergence speed. Explain the results.
- 2. Repeat points 1(a) and 1(c) with the dynamic relaxation variant. Does this improves the situation?.
- 3. Repeat points 1(a) and 1(c) with the RN iterations. Which are the benefits of this approach?.
- 4. How are the interface Dirichlet conditions enforced in fsi-IMP.edp?.
- 5. How are the interface fluid stresses evaluated in fsi-IMP.edp?.

Exercise 4: Explicit coupling scheme. We consider now an explicit Dirichlet–Neumann coupling scheme for the time–discretization of (1)–(2). The interface coupling $(2)_{1,2}$ is hence discretized in time as follows

$$\boldsymbol{u}^{n} \cdot \boldsymbol{n} = \dot{\eta}^{n-1}, \quad \boldsymbol{u}^{n} \cdot \tau = 0 \quad \text{on} \quad \boldsymbol{\Sigma},$$
$$\rho^{s} \epsilon \partial_{\tau} \dot{\eta}^{n} - c_{1} \partial_{x}^{2} \eta^{n} + c_{0} \eta^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n}) \boldsymbol{n} \cdot \boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}.$$

A salient feature of this time-stepping scheme is that it splits the computation of (u^n, p^n) and $(\dot{\eta}^n, \eta^n)$. Assuming that P = 0, try to derive an energy estimate for the resulting approximation $(u^n, p^n, \dot{\eta}^n, \eta^n)$ as in Exercise 2.

Exercise 5: Explicit coupling scheme. The FreeFem++ script file fsi-EXP.edp implements the explicit Dirichlet-Neumann coupling scheme. Te purpose of this exercise is to illustrate numerically that the stability of this splitting scheme is dictated by the amount of added-mass effect in the system (i.e., relation (4)) and not by the discretization parameters.

- 1. Run the script fsi-EXP.edp with FreeFem++. What do you observe?. Are the results obtained similar to those provided by fsi-IMP.edp for the same set of physical and discretization parameters?.
- 2. Try reducing the time-step length tau, does this cure the problem?.
- 3. Try reducing the fluid density rhof or increasing the solid density rhos. Explain the results.