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Tutorial I: Stiff Dirichlet-Neumann Coupling

Model problem. The purpose of this tutorial is to illustrate the stiff nature of the Dirichlet-Neumann coupling in incompressible fluid-
structure interaction. As example, we consider the propagation of a pressure-wave within an elastic straight tube in two-dimensions (see
Figure 1). Assuming that the displacements of the interface are infinitesimal and that the Reynolds number in the fluid is small, the
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Physical data:

E = 0.75 ⇥ 106 dynes/cm2

⌫ = 0.5

µ = 0.035 P⇢s = 1.1 g/cm3
⇢f = 1.0 g/cm3✏ = 0.1 cm

 Space discretization: P1 for the solid, P1/P1 stabilized for the fluid

Figure 1: Geometrical configuration and external boundary conditions.

mechanical system can be modeled by a simplified linear model problem in which the fluid is described by the Stokes equations, in the
fixed domain Ωf , and the structure by a generalized string model in the fluid-structure interface Σ. All the geometrical and constitutive
non-linearities are hence neglected. The resulting coupled problem reads as follows: find the fluid velocity u : Ω × R+ → R2, the
pressure p : Ω × R+ → R and the solid vertical displacement η : Σ × R+ → R and the solid vertical velocity η̇ : Σ × R+ → R such
that





ρf∂tu− divσ(u, p) = 0 in Ωf × R+,

divu = 0 in Ωf × R+,

u · n = 0, σ(u, p)n · τ = 0 on Γ1 × R+,

σ(u, p)n = −Pn on Γ2 × R+,

σ(u, p)n = 0 on Γ4 × R+,

(1)





u · n = η̇, u · τ = 0 on Σ× R+,

ρsε∂tη̇ − c1∂2
xη + c0η = −σ(u, p)n · n on Σ× R+,

η̇ = ∂tη, on Σ× R+,

η = 0 on ∂Σ× R+,

(2)

and complemented with the given initial conditions u(0) = u0, η(0) = η0 and η̇(0) = η̇0. The constants ρf and ρs denote, respectively,
the fluid and solid densities and ε is the solid thickness. The fluid Cauchy-stress tensor is given by the relationσ(u, p)

def
= −pI+2µε(u),

with ε(u)
def
=

1

2

(
∇u+ ∇uT

)
and where µ stands for the fluid dynamic viscosity. All units will be expressed in the CGS (centimetre-

gram-second) system. The physical parameter for the fluid are ρf = 1.0 and µ = 0.035, and for the solid we take ρs = 1.1, c1
def
=

Eε

2(1 + ν)
, c0

def
=

Eε

R2(1− ν2)
, with ε = 0.1, the Young modulus E = 0.75 · 106 and the Poisson ratio ν = 0.5. The fluid domain is

given by Ωf = [0, L]× [0, R] and the fluid-solid interface by Σ = [0, L]× {R}, with L = 6 and R = 0.5. A sinusoidal pressure-wave
P (t) = Pmax(1 − cos(2tπ/T ∗))/2, with maximum Pmax = 2 · 104, is prescribed on the inlet boundary Γ4 during T ∗ = 5 · 10−3

seconds. Zero pressure is imposed on Γ2 and a slip condition is enforced on the lower boundary Γ1. For the solid we set η = 0 on the
extremities x = 0, L.

Numerical methods. The spatial discretizations of the fluid and of the structure will be based on piece-wise affine continuous fi-
nite elements and compatible on the interface (matching meshes). The following Brezzi-Pitkäranta pressure stabilization operator

γp

∫

Ωf

h2

µ
∇p · ∇q, γp = 10−3, is added to the Stokes bilinear form in order to avoid the inf-sup compatibility issues. Here, h

stands for the spatial mesh parameter. With regard the time–discretisation, we will for simplicity consider a simple backward Euler
time-stepping in the bulk terms of the fluid (1)1,2 and of the solid (2)2. The time–discretization of the interface coupling (2)1,2 will be
performed using either a implicit coupling scheme or a Dirichet-Neumann explicit coupling scheme. These two numerical methods are
implemented in the FreeFem++ script files fsi-SI.edp and fsi-DN.edp, respectively.
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Exercise 1: Energy balance. We assume that P = 0 in (1)–(2). Show that the following energy identity holds for t > 0

ρf

2
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2
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2
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2
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‖u0‖20,Ωf +

ρsε

2
‖η̇0‖20,Σ +

c1
2
‖∂xη0‖20,Σ +

c0
2
‖η0‖20,Σ−2µ

∫ t

0

‖ε(u)‖20,Σ. (3)

What does this identity guarantee?.

Exercise 2: Implicit coupling scheme. We consider a fully implicit Euler time-discretization of (1)-(2). Show that, assuming again
P = 0, the resulting approximations (un, pn, η̇n, ηn) satisfy a time–semidiscrete counterpart of (3). What does this guarantee?.

Exercise 3: Partitioned iterative solution of implicit coupling. The previous implicit coupling scheme requires the solution, at each
time-step, of a heterogenous system of equations which couples the dynamics of (un, pn) and (η̇n, ηn). The FreeFem++ script file
fsi-IMP.edp implements three partitioned solution algorithms for this coupled system:

• Dirichlet-Neumann (DN) iterations with static relaxation (options method=1 and dymrel=0);

• DN iterations with Aitken’s dynamic relaxation (options method=1 and dymrel=1);

• Robin-Neumann (RN) iterations with a fixed Robin coefficient (option method=2).

Te purpose of this exercise is to test and compare the efficiency of these approach and, in particular, their sensitivity to the amount of
added-mass effect in the system, characterized by the relation

ρfµmax

ρsε
> 1, (4)

with µmax ≈ L2/(π2R) .

1. DN iterations with static relaxation:

a) How many iterations are approximately needed at each time-step?.
b) Tune the relaxation parameter omega0 in order to improve the convergence speed of the iterations.
c) For a given value of omega0 which guarantees convergence, investigate the impact of ρf , ρs ,ε, L and R on the convergence

speed. Explain the results.

2. Repeat points 1(a) and 1(c) with the dynamic relaxation variant. Does this improves the situation?.

3. Repeat points 1(a) and 1(c) with the RN iterations. Which are the benefits of this approach?.

4. How are the interface Dirichlet conditions enforced in fsi-IMP.edp?.

5. How are the interface fluid stresses evaluated in fsi-IMP.edp?.

Exercise 4: Explicit coupling scheme. We consider now an explicit Dirichlet–Neumann coupling scheme for the time–discretization
of (1)–(2). The interface coupling (2)1,2 is hence discretized in time as follows

un · n = η̇n−1, un · τ = 0 on Σ,

ρsε∂τ η̇
n − c1∂2

xη
n + c0η

n = −σ(un, pn)n · n on Σ.

A salient feature of this time-stepping scheme is that it splits the computation of (un, pn) and (η̇n, ηn). Assuming that P = 0, try to
derive an energy estimate for the resulting approximation (un, pn, η̇n, ηn) as in Exercise 2.

Exercise 5: Explicit coupling scheme. The FreeFem++ script file fsi-EXP.edp implements the explicit Dirichlet–Neumann
coupling scheme. Te purpose of this exercise is to illustrate numerically that the stability of this splitting scheme is dictated by the
amount of added-mass effect in the system (i.e., relation (4)) and not by the discretization parameters.

1. Run the script fsi-EXP.edp with FreeFem++. What do you observe?. Are the results obtained similar to those provided by
fsi-IMP.edp for the same set of physical and discretization parameters?.

2. Try reducing the time-step length tau, does this cure the problem?.

3. Try reducing the fluid density rhof or increasing the solid density rhos. Explain the results.
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