Novo Espaço – Matemática A 10.º ano

Proposta de Teste [Outubro 2016]

Nome:

Ano / Turma: _____ N.º: ____

Data: ___ - ___ - __

1.ª Parte

Para cada questão indica a opção que consideras correta.

1. Das duas proposições $p \in q$, sabe-se que o valor lógico de $p \Rightarrow \sim q$ é falso.

Indica qual das seguintes proposições é verdadeira.

(A) $\sim p \wedge q$

(B) $p \Leftrightarrow q$

(C) $\sim (p \wedge q)$

(D) $q \Rightarrow \sim p$

2. Em \mathbb{R} , consider os subconjuntos $B =]-2, +\infty[$ e A, tal que $B \cap \overline{A} =]-2,3]$. Então, o conjunto A pode ser igual a:

- (A) [0,3]

- (B) $]-\infty,3]$ (C)]3,5] (D) $]3,+\infty[$

3. Em \mathbb{R} , considera as condições:

- $p(x): x^2 + x = -1$
- $q(x): 3-2x \le 1$

Das seguintes condições indica a que é universal em $\mathbb R$.

(A) $p(x) \vee q(x)$

(B) $\sim p(x) \wedge q(x)$

- (C) $\sim p(x) \vee q(x)$
- (D) $p(x) \lor \sim q(x)$

4. Considera os conjuntos:

$$A = \left\{ x \in \mathbb{R} : \ 0 < x \le \pi \right\} \quad \text{e} \quad B = \left\{ x \in \mathbb{R} : x > \sqrt{7} \right\}.$$

Na forma de intervalo de números reais o conjunto A\B é representado por:

- (A) $\left[0, \sqrt{7}\right]$ (B) $\left[\sqrt{7}, \pi\right]$ (C) $\left[0, \sqrt{7}\right]$ (D) $\left[\sqrt{7}, \pi\right]$

Novo Espaço – Matemática A 10.º ano

Proposta de Teste [Outubro 2016]

5. Considera o conjunto $A = \{1,2,4,6\}$.

Das proposições seguintes indica a que é falsa.

- (A) $\forall x, x \in A \Rightarrow \frac{1}{x} \le 1$ (B) $\exists x : x \in A \land x^2 = 2x$
- (C) $\forall x, x \in A \Rightarrow x^2 \notin A$ (D) $\forall x, x \in A \Rightarrow |x| = x$

6. O volume de um cubo é representado por 8a, com $a \in \mathbb{R}^+$.

Sabe-se que a medida da aresta do cubo é igual $6\sqrt[3]{5}$.

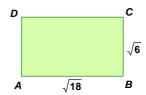
O valor de **a** é:

- (A) 135
- **(B)** 90
- **(C)** 900
- **(D)** 180

7. Na figura está representado um retângulo [ABCD].

Fixada uma unidade de comprimento, sabe-se que:

- $\overline{AB} = \sqrt{18}$
- $\overline{BC} = \sqrt{6}$



A área do retângulo pode ser representada por uma expressão do tipo $2k\sqrt{k}$, com $k \in \mathbb{R}^+$.

O valor de **k** é:

- (A) 2
- **(B)** 6
- **(C)** 3
- **(D)** 5

2.ª Parte

Dá respostas completas apresentando todos os cálculos e justificações necessárias.

1. Copia e completa a seguinte tabela.

Proposição	Valor lógico
$\sqrt[5]{-18} > \sqrt[4]{2}$	
$\forall x, \ x \text{ \'e n\'umero primo} \Rightarrow x \text{ \'e \'impar}$	
$\exists x: x > x$	
$\forall x, \ x \in \mathbb{Z} \Rightarrow \frac{x}{2} \notin \mathbb{Z}$	

- **2.** Recorre apenas a propriedades das operações lógicas e mostra que $p \lor (q \Rightarrow \sim p)$ é uma tautologia.
- 3. Considera as proposições:

a: "O médico trabalha no hospital."

b: "O médico desloca-se de automóvel."

c: "O médico não chega atrasado."

- **3.1.** Traduz para linguagem corrente a proposição: $(\sim a \land b) \Rightarrow \sim c$
- 3.2. Traduz em linguagem simbólica:

"O médico não chega atrasado se e só se trabalha no hospital."

3.3. Sabe-se que a proposição $(a \land \neg c) \Rightarrow (c \lor b)$ é **falsa**.

Determina os valores lógicos das proposições elementares **a**, **b** e **c**.

4. Completa a tabela seguinte, escrevendo a negação de cada uma das proposições, sem utilizar o símbolo \sim .

Proposição	Negação (sem utilizar o símbolo ~)
$\forall x, \ 2x < 5 \lor x^2 = 1$	
$\exists x \colon 3x - 1 \ge 0 \land x + 3 < 1$	
$\forall x, 1 \leq x < 3$	

Novo Espaço - Matemática A 10.º ano

Proposta de Teste [Outubro 2016]

5. Seja *U* o universo dos quadriláteros.

Considera em *U* as condições:

a(x): x é paralelogramo

b(x): x é retângulo

- **5.1.** Mostra que a proposição $\forall x$, $a(x) \Rightarrow b(x)$ é falsa, recorrendo a um contraexemplo.
- **5.2.** Traduz por uma implicação a afirmação: "Ser retângulo é condição suficiente para ser paralelogramo."
- **6.** Considera, em \mathbb{R} , as condições p(x) e q(x) e os conjuntos A e B, tais que:

•
$$p(x): 3-\frac{1-x}{2} < 4$$

•
$$q(x): (x-3)(x^2+4x)=0$$

$$\bullet \quad A = \{x : p(x)\}$$

$$\bullet \quad B = \{x : q(x)\}$$

- **6.1.** Mostra que $A =]-\infty,3[$ e $B = \{-4,0,3\}$.
- **6.2.** Representa, em extensão, o conjunto:

a)
$$C = \{x: p(x) \land q(x)\}$$

7. Determina o número real a, sabendo que:

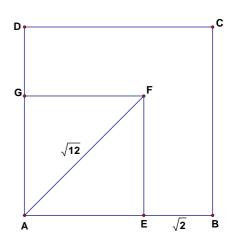
$$\left(\sqrt[3]{2}\right)^2 \times \sqrt[3]{6} = 2\sqrt[3]{a}$$

8. Na figura estão representados dois quadrados: [ABCD] e [AEFG]. Sabe-se que:

$$\bullet \qquad \overline{AF} = \sqrt{12}$$

•
$$\overline{EB} = \sqrt{2}$$

Mostra que a área do quadrado [ABCD] é igual a $8+4\sqrt{3}$.



FIM