

5.° TESTE DE MATEMÁTICA A – 11.° 11

3.º Período

29/05/2024

Duração: 90 minutos

Nome:

N.º:

Classificação:

O professor:

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresenta sempre o valor exato.

- 1. Determina a soma dos primeiros mil múltiplos de 8.
- 2. Na tabela a seguir estão os pontos e os golos marcados pelas primeiras doze equipas de futebol da principal liga de futebol de Portugal, nesta temporada de 2023/24.

N.º de pontos (x)	90	80	72	68	63	55	46	42	38	37	37	36
N.º de golos marcados (v)	96	77	63	71	52	36	54	37	38	46	38	42

2.1. O Estoril Praia ficou em 13.º lugar e a média de pontos dessas primeiras 13 equipas é aproximadamente igual a 53,615.

Determina, justificando, quantos pontos (com aproximação às unidades) teve o Estoril. Se usares aproximações, considera três casas decimais.

- **2.2.** Considera a distribuição onde x é a variável explicativa e y a variável resposta.
 - **2.2.1.** Qual é, arredondado às décimas, o coeficiente de correlação linear desta distribuição?

(A) -0.8

(B) -0.5

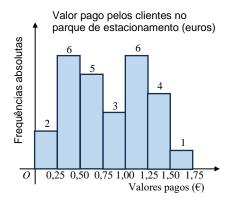
(C) 0.9

(D) 0,6

2.2.2. O Boavista FC ficou em 15.º lugar, com 39 golos marcados. Será que o modelo de regressão linear de *y* sobre *x* (obtido a partir dos dados da tabela) é adequado? Estima o número de pontos do Boavista FC.

Na tua resposta, apresenta:

- -a equação reduzida da reta de regressão linear de y sobre x, com os valores dos parametros arredondados às centésimas;
- -o número de pontos do Boavista FC, arredondado às unidades;
- −a razão de o modelo de regressão linear de y sobre x ser ou não adequado.

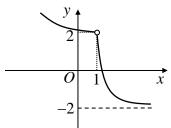


3. No final de um turno, um funcionário de um parque de estacionamento analisou os valores pagos, em euros, por 27 clientes e construiu o histograma de frequências absolutas ao lado.

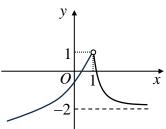
Usando a calculadora gráfica, determina a percentagem de clientes que pertencem ao intervalo $[0, \overline{x} + s]$.

Explica como procedeste, determinando $\overline{x} \,$ e s com duas casas decimais.

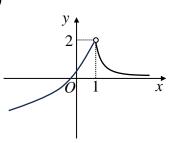
Apresenta o valor pedido arredondado às décimas.


4. Dado um número real k, considera a equação $\sqrt{x+k} = -2k$.

Pode concluir-se que essa equação:

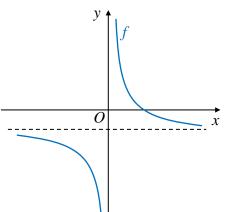

- (A) não tem soluções, para qualquer k;
- **(B)** tem duas soluções, para qualquer k;
- **(C)** tem uma solução se $k \in [0, +\infty[$.
- **(D)** tem uma solução se $k \in]-\infty,0]$.
- **5.** Seja h uma função, de domínio $\mathbb{R} \setminus \{-1\}$, tal que:
 - $\lim_{x \to +\infty} h(x) = -2;$
 - $\lim_{x \to 1^{-}} h(x) = 2;$
 - h'(-1) > 0.

Em cada um dos referenciais o.n. xOy seguintes, I, II e III, estão representadas parte do gráfico de uma função e a assíntota a esse gráfico.


(I)

(II)

(III)



Justifica que em nenhum dos referenciais anteriores pode estar representada parte do gráfico da função h.

Na tua resposta, apresenta, para cada um dos referenciais, uma razão que justifique a impossibilidade de nele estar

representada parte do gráfico da função h.

6. Na figura ao lado, está representada parte do gráfico da função f, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{2-x}{x}$, juntamente com as assíntotas desse gráfico.

- **6.1.** Seja (a_n) a sucessão de termo geral $a_n = \frac{2^n + 7^n}{2^{3n}}$. Qual é o valor de $\lim f(a_n)$?
 - $(A) -\infty$
- **(B)** +∞
- **(C)** 0
- **(D)** -1
- **6.2.** Sem usar a calculadora, resolve a condição $f(x) \ge 8$. Apresenta o conjunto solução usando a notação de intervalos de
- 7. Considera as funções $f \in g$, ambas de domínio \mathbb{R} , definidas, respetivamente, por

$$f(x) = 2x^3 - \frac{x^2}{2} - 14x - 5$$
 e $g(x) = x^3 + \frac{9}{2}x^2$.

- 7.1. Qual é o valor de $\lim_{x\to\infty}(f+g)(x)$? (A) 3 (B) 0 (C) $-\infty$

- **(D)** +∞
- **7.2.** Sem usar a calculadora, determina a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa −2.
- 8. Uma empresa está a desenvolver um programa de testes para melhorar a propulsão de foguetes. Os foguetes utilizados partem do solo e seguem uma trajetória vertical.

Em relação a um dos modelos de foguete utilizados, admite que, após o lançamento e até se esgotar o combustível, a sua distância ao solo, a, em metros, é dada, a cada instante t, em segundos, por

$$a(t) = 0.6t^3 - 3t^2 + 5.7t$$
, com $t \in [0.8]$

- **8.1.** Qual é, em metros por segundo, a velocidade média do foguete nos primeiros 3 segundos?
 - **(A)** 6,3
- **(B)** 5,7
- (C) 3,2
- **(D)** 2,1
- **8.2.** Calcula e interpreta a taxa de variação da função a no instante t = 5.

Adaptado do Exame Nacional de Matemática A, 1.ª fase de 2023

Considera a função g, de domínio $\mathbb{R}\setminus\{0\}$, definida por $g(x)=\begin{cases} \frac{6}{x} & \text{se } x<2\\ \frac{x^3-3x-2}{2x} & \text{se } x>2 \end{cases}$ 9.

Resolve os itens seguintes sem recorrer à calculadora.

- **9.1.** Verifica se existe $\lim_{x \to 2} g(x)$.
- **9.2.** Usando a definição de derivada, calcula g'(-3).

COTAÇÕES

Item															
Cotação (em pontos)															
1.	2.1.	2.2.1.	2.2.2.	3.	4.	5.	6.1.	6.2.	7.1.	7.2.	8.1.	8.2.	9.1.	9.2.	
16	16	8	16	16	8	16	8	16	8	16	8	16	16	16	200

Formulário

Progressões

Soma dos n primeiros termos de uma progressão $\left(u_{n}\right)$:

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$