

2.° TESTE DE MATEMÁTICA A – 12.° 16

1.º Período

27/11/2024

Duração: 90 minutos

Nome:

N.º:

Classificação:

O professor:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

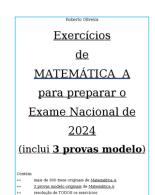
Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Considere o conjunto finito E, espaço amostral associado a uma experiência aleatória.

Considere também dois acontecimentos A e B ($A \subset E$ e $B \subset E$).

Sabe-se que:

- A e B são acontecimentos independentes;
- $P(A) = \frac{3}{10}$;
- $P(A \cap B) = \frac{1}{10}$.


Qual é o valor de $P(A \cup B)$?

(A)
$$\frac{7}{15}$$

(B) $\frac{8}{15}$

(C) $\frac{3}{20}$

(D) $\frac{11}{20}$

2. Seja E, conjunto finito, o espaço amostral associado a uma experiência aleatória e sejam A e B dois acontecimentos ($A \subset E$ e $B \subset E$).

Sabe-se que $P(A \cup B) = 2P(B)$.

Mostre que
$$\frac{P(\overline{A}) \times P(\overline{B} \,|\, \overline{A}) + 2P(B) - P(A)}{P(\overline{A})} = 1$$
.

2.2. Um grupo de professores vai viajar na pausa de Natal.

Em relação a esses professores, sabe-se que:

- 40% são de Matemática;
- 76% são casados (e os restantes são solteiros);
- 80% são casados ou são de Matemática.

Escolhe-se, ao acaso, um dos professores solteiros do grupo.

Determine a probabilidade de ele não ser professor de Matemática.

Apresente o resultado na forma de fração irredutível.

Nota: Se o desejar, utilize a igualdade referida em **2.1**. Neste caso, deverá começar por caracterizar claramente os acontecimentos *A* e *B*, no contexto da situação apresentada.

3. Um baralho de cartas completo é constituído por 52 cartas, sendo treze cartas de cada um de quatro naipes: espadas, paus, copas e ouros.

Além disso, no baralho há doze figuras, três de cada naipe.

Extraem-se, ao acaso, duas cartas do baralho.

Considere os acontecimentos seguintes.

 C_1 : «A primeira carta é de copas.»;

 C_2 : «A segunda carta é de copas.»;

 F_2 : «A segunda carta é uma figura.».

Determine, sem recorrer à fórmula da probabilidade condicionada, o valor de $P((F_2 \cap \overline{C}_2) | C_1)$.

Na sua resposta, interprete o significado de $P((F_2 \cap \overline{C}_2) | C_1)$, tendo em conta o contexto descrito.

4. Dos participantes de uma cimeira sobre as perspetivas futuras da economia, foi possível concluir que 70% são estrangeiros (e os restantes são portugueses).

Admita que há n participantes nesse encontro.

Para uma certa conferência, vão entrar numa sala duas pessoas, uma de cada vez.

Sabendo que a probabilidade de ambos serem portugueses é igual a $\frac{3}{35}$, determine n.

Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- · resolva a equação.

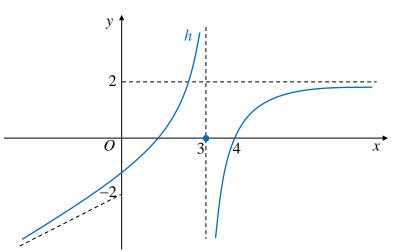
Exercícios
de
MATEMÁTICA A
para preparar o
Exame Nacional de
2024
(inclui 3 provas modelo)

- **5.** Considere a função g, de domínio \mathbb{R}^+ , definida por $g(x) = \frac{\sqrt{2024x}}{x+2024}$.
 - **5.1.** Quanto a assíntotas horizontais do gráfico de g, conclui-se que:
 - **(A)** Existe apenas uma, de equação y = 2024;
- **(B)** Existe apenas uma, de equação y = 0;
- **(C)** Existem duas, de equações y = 0 e y = 2024;
- (D) Não existem.
- **5.2.** Quanto às assíntotas verticais do gráfico de *g*, conclui-se que:
 - (A) Não existem;

- **(B)** Existe apenas uma, de equação x = 0;
- **(C)** Existem duas, de equações x = 0 e x = -2024;
- **(D)** Existe apenas uma, de equação x = -2024;.
- **6.** Para um certo número real positivo a, é contínua em \mathbb{R}^+ a função f definida por $f(x) = \begin{cases} x^2 & \text{se } 0 < x < a \\ \frac{27}{x} & \text{se } x \ge a \end{cases}$.

Qual é o valor de a?

(A) 3


- **(B)** $\frac{13}{4}$
- (C) $\frac{27}{2}$
- **(D)** $\sqrt{27}$

7. Considere, na figura, o gráfico da função h, de domínio \mathbb{R} , juntamente com as suas três assíntotas, uma vertical, uma horizontal e uma oblíqua.

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com as condições dadas.

Escreva, na folha de respostas, apenas cada um dos números, I, II, III e IV, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

Quando $x \to -\infty$, o gráfico de h tem uma assíntota cuja equação pode ser I.

Quando $x \to +\infty$, o gráfico de h tem uma assíntota de equação $\underline{\hspace{1cm} II}$, pelo que $\lim_{x \to +\infty} \frac{h(x)}{x}$ é $\underline{\hspace{1cm} III}$. Quanto ao valor de $\lim_{x \to 3} \frac{1}{h(x)}$, $\underline{\hspace{1cm} IV}$.

I	II	III	IV
a) $y = \frac{x}{2} + 2$	a) $y = -2$	a) –2	a) é igual a 0;
b) $y = -\frac{x}{2} - 2$	b) $y = 2$	b) 0	b) é igual a +∞;
c) $y = \frac{x}{2} - 2$	c) $x = 3$	c) 2	c) não existe.

8. Seja f a função, de domínio \mathbb{R} , definida por $f(x) = x^4 - 3x^3 + 6$.

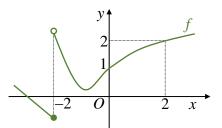
Recorrendo à calculadora gráfica, determine a área do triângulo [ABC], onde se sabe que:

- $A \in B$ são os pontos de interseção entre o gráfico de f e o eixo Ox;
- C é o ponto do gráfico de f de ordenada mínima.

Na sua resposta, deve:

- reproduzir, num referencial, o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificados;
- ullet indicar as coordenadas dos pontos A,B e C com, em caso de aproximações, duas casas decimais;
- determinar o valor pedido, arredondado às décimas.
- **9.** Seja k um número real não nulo e considere a função f, de domínio $\mathbb{R}\setminus\{-2\}$, definida por:

$$f(x) = \begin{cases} \frac{2+5x-3x^2}{2x^2-8} & \text{se } x < 2\\ k & \text{se } x = 2.\\ \frac{\sqrt{x+2}-2}{2-x} & \text{se } x > 2 \end{cases}$$


Sem usar a calculadora (exceto para cálculos numéricos), resolva as alíneas seguintes.

- **9.1.** Mostre que não existe nenhum valor real k para o qual a função f seja contínua em x = 2.
- **9.2.** Quando $x \to -\infty$, o gráfico de f admite uma assíntota não vertical. Determine uma equação dessa assíntota.

10. Considere a função g, de domínio $]1,+\infty[$, definida por $g(x)=\frac{1-4x}{\sqrt{9x^2-9}}$.

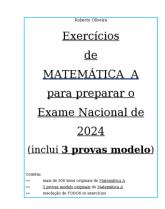
Sem usar a calculadora, estude o gráfico de g quanto à existência de assíntota(s) paralela(s) ao eixo Ox e, caso exista(m), escreva a(s) sua(s) equação(ões).

- **11.** Observe o gráfico da função f, de domínio \mathbb{R} , da figura ao lado e considere as seguintes proposições.
 - (i) O teorema de Bolzano-Cauchy permite garantir que a equação f(x) = 1,2 é possível no intervalo]0,2[.
 - (ii) $f(-2) \times f(2) < 0$ mas a função f não tem nenhum zero em]-2,2[, o que contraria o teorema de Bolzano-Cauchy.

Pode concluir-se que:

- (A) ambas as proposições são verdadeiras;
- (B) ambas as proposições são falsas;
- (C) apenas é verdadeira a proposição (i);
- (D) apenas é verdadeira a proposição (ii).
- **12.** Considere duas funções f e g, ambas de domínio \mathbb{R}^+ .

Sabe-se que:


• a reta de equação y = -4x é uma assíntota ao gráfico de f;

•
$$g(x) = \frac{x^2 + 1}{(f(x))^2 + \cos(3x) - 2x^2}$$
.

O gráfico de g tem uma assíntota horizontal.

Determine a sua equação.

FIM

COTAÇÕES

	İtem															
	Cotação (em pontos)															
•	1.	2.1.	2.2.	3.	4.	5.1.	5.2.	6.	7.	8.	9.1.	9.2.	10.	11.	12.	
	8	16	16	16	16	8	8	8	16	16	16	16	16	8	16	200