

Teste de avaliação n.º 1

Matemática A

11.º Ano de escolaridade

Nome:	N. º:	Turma:
Duração do teste: 90 minutos	Tolerância: 10 minutos	Ano Letivo: 2025/26

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor.

Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens e o formulário encontram-se no final do enunciado da prova.

Nas respostas aos itens de escolha múltipla, selecione a opção correta.

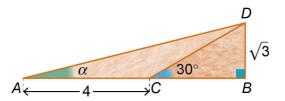
Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1

1. Na figura encontram-se representados dois triângulos: o triângulo retângulo [CBD] e o triângulo [ACD].

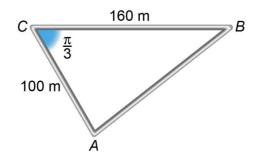


Sabe-se que:

- $\overline{AC} = 4$
- $\overline{BD} = \sqrt{3}$
- $B\hat{C}D = 30^{\circ}$
- $B\hat{A}D = \alpha$
- $C \in [AB]$

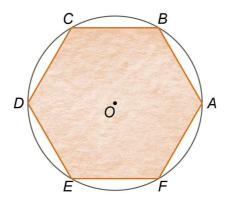
Qual é o valor de α , em graus, arredondado às unidades?

2. Na figura está representado um esquema de um sistema de cabos de ligação de fibra ótica que liga três cidades representadas pelos pontos A, B e C.



Tendo em conta os dados da figura, determine a distância exata entre os pontos A e B.

3. Considere o hexágono regular [ABCDEF], inscrito numa circunferência de centro O.



Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com os dados apresentados na tabela.

Escreva, na folha de respostas, apenas cada um dos números, I, II e III, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

Sendo $\dot{O}A$ o lado origem, podemos dizer que:

- o lado extremidade dos ângulos generalizados definidos por $(-240^{\circ}, -2)$ é , \underline{I} ;
- uma expressão geral de todas as amplitudes de ângulos com lado extremidade
 ÒA é <a href="II" | II" | II"
- designando por r o raio da circunferência, tem-se que o perímetro do hexágono regular [ABCDEF] é $_$ \blacksquare .

1	II	III
a) <i>O C</i>	a) $k \times 360^{\circ}, k \in \mathbb{R}$	a) 12 <i>r</i>
b) $\dot{O}E$	b) $k \times 180^{\circ}, k \in \mathbb{Z}$	b) 6 <i>r</i>
c) $\dot{O}D$	c) $k \times 2\pi, k \in \mathbb{Z}$	c) $\sqrt{6}r$

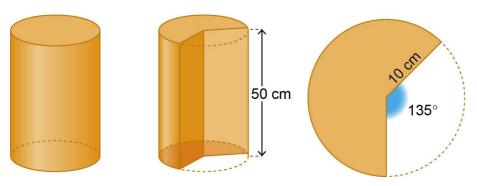
4. Considere que numa circunferência, a razão entre o comprimento de um arco e o diâmetro é 3.

Qual é a amplitude do ângulo ao centro correspondente ao arco de circunferência?

- (A) 3 rad
- **(B)** 3°
- (C) 6 rad
- **(D)** 6°

5. Considere-se uma peça de madeira com a forma de um cilindro reto de raio da base 10 cm e altura 50 cm.

Quer-se obter uma nova peça fazendo-se dois cortes planos verticais, cada um contendo o eixo do cilindro, tal como as figuras seguintes sugerem.



Na base do cilindro, as interseções desses planos são dois raios que formam um ângulo de amplitude 135°.

Calcule a área da base e o volume da peça de madeira final.

Apresente os resultados em centímetros quadrados e cúbicos, respetivamente, arredondados às décimas.

6. Considere as proposições seguintes:

I. Para todo $\alpha \in \mathbb{R}$, $tan(\alpha)$ é sempre não negativa quando $sin(\alpha)$ é positivo.

II.
$$\sin(\alpha + \beta) = \sin(\alpha) + \sin(\beta), \forall \alpha, \beta \in \mathbb{R}$$

Justifique que as proposições I e II são falsas.

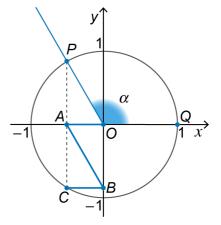
Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

- **7.** A que intervalo pode pertencer α sabendo que $\cos(2\alpha) < 0 \land \tan(\alpha) < 0$?
- (A) $\left| \frac{\pi}{2}, \frac{3\pi}{4} \right|$ (B) $\left| \frac{\pi}{4}, \frac{\pi}{2} \right|$ (C) $\left| \frac{9\pi}{4}, \frac{5\pi}{2} \right|$ (D) $\left| \frac{3\pi}{4}, \pi \right|$

8. Na figura ao lado, está representada a circunferência trigonométrica.

Sabe-se que:

- o ponto *Q* tem coordenadas (1, 0);
- o ponto P pertence à circunferência trigonométrica tal que a amplitude do ângulo QOP é α, α ∈] π/2, π [;



- A é a projeção ortogonal de P no eixo Ox;
- C é o ponto da circunferência trigonométrica do terceiro quadrante com a mesma abcissa de P;
- B é a projeção ortogonal de C no eixo Oy.

A que é igual $\overline{OA} + \overline{AB} + \overline{BC}$?

(B)
$$1 + 2 \cos \alpha$$

(C)
$$1 - 2 \cos \alpha$$

(D)
$$-2\cos\alpha$$

9. Sabe-se que $\sin(\alpha) = -\frac{1}{4}$ e que $\alpha \in \left[-\pi, -\frac{\pi}{2}\right]$.

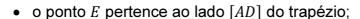
Seja
$$x = \sin(\alpha) - \sqrt{15}\sin(\frac{3\pi}{2} - \alpha)$$
.

Prove que $x \in \mathbb{Z}$.

10. Na figura encontra-se representado o trapézio retângulo [ABCD] e parte da circunferência de centro A e raio 10.

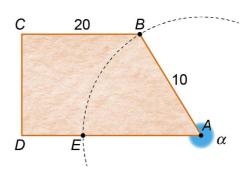
Sabe-se que:

 os pontos B e E pertencem à circunferência de centro A e raio 10;



•
$$E\hat{A}B = \alpha, \alpha \in \left]\frac{3\pi}{2}, 2\pi\right[$$

•
$$\overline{CB} = 20$$



10.1. Mostre que a área do trapézio [ABCD] é dado por:

$$-5\sin(\alpha)\left(10\cos(\alpha)+40\right), \alpha \in \left[\frac{3\pi}{2}, 2\pi\right]$$

10.2. Determine, recorrendo à calculadora, α , em radianos, tal que a área do trapézio [ABCD] seja igual a 40% da área do círculo de centro A e raio 10.

Apresente o resultado arredondado às centésimas.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- represente, em referencial cartesiano, o(s) gráfico(s) da(s) função(ões)
 visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s) que lhe permitem resolver a equação;
- apresente a(s) coordenada(s) relevante(s) desse(s) ponto(s), arredondada(s) às centésimas.

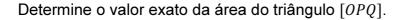
11. Mostra que, para todos os valores reais α para os quais as expressões têm significado:

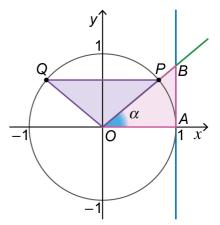
$$1 - \frac{1}{1 + \tan^2(-\alpha)} = \sin^2(100\pi + \alpha)$$

12. Na figura encontram-se representados a circunferência trigonométrica, os triângulos [OAB] e [OPQ] e a reta de equação x = 1.

Sabe-se que:

- P e Q pertencem à circunferência trigonométrica;
- *Q* tem a mesma ordenada de *P*;
- $A\hat{O}B = \alpha, \alpha \in \left]0, \frac{\pi}{2}\right[$
- *O*, *P* e *B* são colineares;
- B pertence à reta de equação x = 1;
- a área do triângulo [OAB] é 0,4.





FIM

FORMULÁRIO

Sendo α a amplitude, em radianos, do ângulo ao centro e r o raio, temos:

Comprimento de um arco de circunferência

 αr

Área de um setor circular

$$\frac{\alpha r^2}{2}$$

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.1.	10.2.	11.	12.	Total
10	20	10	10	20	10	10	10	20	20	20	20	20	200

SUGESTÃO DE RESOLUÇÃO

1.
$$\tan 30^{\circ} = \frac{\sqrt{3}}{\overline{BC}} \Leftrightarrow \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{\overline{BC}} \Leftrightarrow \overline{BC} = 3$$

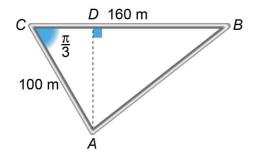
$$\overline{AB} = 4 + 3 = 7$$

Tendo em consideração o triângulo retângulo [ABD], temos:

$$\tan \alpha = \frac{\sqrt{3}}{7}$$
, pelo que $\alpha = \tan^{-1} \left(\frac{\sqrt{3}}{7} \right) \approx 14^{\circ}$

Opção (B)

2.



$$\sin\frac{\pi}{3} = \frac{\overline{AD}}{100} \Leftrightarrow \frac{\sqrt{3}}{2} = \frac{\overline{AD}}{100} \Leftrightarrow \overline{AD} = 50\sqrt{3}$$

$$\cos \frac{\pi}{3} = \frac{\overline{CD}}{100} \Leftrightarrow \frac{1}{2} = \frac{\overline{CD}}{100} \Leftrightarrow \overline{CD} = 50$$

$$\overline{DB} = 160 - 50 = 110$$

Pelo Teorema de Pitágoras,

$$\overline{AB}^2 = \overline{AD}^2 + \overline{DB}^2$$
, pelo que:

$$\overline{AB}^2 = (50\sqrt{3})^2 + 110^2 = 19600$$
, logo, como $\overline{AB} > 0$,

$$\overline{AB} = \sqrt{19600} = 140 \text{ m}$$

A distância de A a B é 140 m.

3.

$$360^{\circ}: 6 = 60^{\circ}$$

$$1. -240^{\circ} = -60^{\circ} \times 4 \longrightarrow \dot{O}C$$

II.
$$k \times 360^{\circ} = k \times 2\pi, k \in \mathbb{Z}$$

III. Num hexágono regular, o comprimento do raio da circunferência que o inscreve é igual ao comprimento do seu lado, logo o perímetro é 6r.

$$I - a$$

$$II - c$$

$$III - b$$
)

4. Designando por r o raio da circunferência e α a amplitude do ângulo ao centro que define o arco de circunferência, tem-se:

$$\frac{\alpha r}{2r} = 3 \Leftrightarrow \frac{\alpha}{2} = 3 \Leftrightarrow \alpha = 6$$

(Alternativa à utilização da fórmula do comprimento do arco de circunferência: usar uma regra de três simples.)

Opção (C).

5.
$$360^{\circ} - 135^{\circ} = 225^{\circ} = \frac{225\pi}{180} = \frac{5\pi}{4}$$
 rad

Área da base: $\frac{5\pi}{4} \times \frac{10^2}{2} = \frac{125\pi}{2} \text{ cm}^2$

Volume da peça de madeira: $\frac{125\pi}{2} \times 50 = 3125\pi \approx 9817,5 \text{ cm}^3$

(Alternativa à utilização da fórmula do comprimento do arco de circunferência e da área do setor circular: usar regras de três simples.)

6.

- **I.** Se α for um ângulo do segundo quadrante, $\sin \alpha > 0$ e, no entanto, $\tan \alpha < 0$.
- II. Se $\alpha = \beta = 90^{\circ}$, por exemplo, tem-se que:

$$\sin(90^{\circ} + 90^{\circ}) = \sin(180^{\circ}) = 0 \text{ e } \sin(90^{\circ}) + \sin(90^{\circ}) = 1 + 1 = 2 \neq 0.$$

7.

(A) Se
$$\alpha \in \left] \frac{\pi}{2}, \frac{3\pi}{4} \right[$$
, então, $2\alpha \in \left] 2 \times \frac{\pi}{2}, 2 \times \frac{3\pi}{4} \right[= \left] \pi, \frac{3\pi}{2} \right[$
 $\alpha \in 2.^{\circ} Q$ e $2\alpha \in 3.^{\circ} Q$, logo, $\cos(2\alpha) < 0 \wedge \tan(\alpha) < 0$

(B) Se
$$\alpha \in \left]\frac{\pi}{4}, \frac{\pi}{2}\right[$$
, então, como $\alpha \in 1.^{\circ} Q$, $\tan(\alpha) > 0$.

(C) Se
$$\alpha \in \left]\frac{9\pi}{4}, \frac{5\pi}{2}\right[$$
, como $\frac{9\pi}{4} = 2\pi + \frac{\pi}{4}$ e $\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$, então, como $\alpha \in 1.^{\circ}$ Q, $\tan(\alpha) > 0$.

(D) Se
$$\alpha \in \left]\frac{3\pi}{4}$$
, $\pi\left[$, então, $2\alpha \in \left]\frac{3\pi}{2}$, $2\pi\left[$, logo, como $2\alpha \in 4$. $\frac{0}{2}$ Q, $\cos(2\alpha) > 0$.

Opção (A)

8.

 $P(\cos \alpha, \sin \alpha), A(\cos \alpha, 0), C(\cos \alpha, -\sin \alpha) \in B(0, -\sin \alpha), \text{ com } \cos \alpha < 0 \in \sin \alpha > 0$

$$\overline{OA} = -\cos\alpha$$

$$\overline{AB} = \overline{OC} = 1$$

$$\overline{BC} = -\cos\alpha$$

Assim,

$$\overline{OA} + \overline{AB} + \overline{BC} = -\cos\alpha + 1 - \cos\alpha = 1 - 2\cos\alpha$$

Opção (C)

9

$$\sin(\alpha) = -\frac{1}{4}$$

$$\alpha \in \left] -\pi, -\frac{\pi}{2} \right[$$
, ou seja, $\alpha \in 3.^{\circ}$ Q.

$$x = \sin(\alpha) - \sqrt{15}\sin\left(\frac{3\pi}{2} - \alpha\right) = \sin(\alpha) + \sqrt{15}\cos(\alpha)$$

$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos(\alpha)$$

$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos(\alpha)$$

Pela fórmula fundamental da trigonometria,

$$\sin^2(\alpha) + \cos^2(\alpha) = 1, \log_0,$$

$$\left(-\frac{1}{4}\right)^2 + \cos^2(\alpha) = 1 \Leftrightarrow \frac{1}{16} + \cos^2(\alpha) = 1 \Leftrightarrow \cos^2(\alpha) = 1 - \frac{1}{16} \Leftrightarrow \cos^2(\alpha) = \frac{15}{16}$$

Como
$$\alpha \in 3.^{\circ}Q$$
, $\cos(\alpha) < 0$, \log_{\circ} , $\cos(\alpha) = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}$

Assim,

$$x = \sin(\alpha) + \sqrt{15}\cos(\alpha) = -\frac{1}{4} + \sqrt{15} \times \left(-\frac{\sqrt{15}}{4}\right) = -\frac{1}{4} - \frac{15}{4} = -4 \in \mathbb{Z}.$$

10.

10.1.

Área do trapézio:
$$\frac{\overline{AD} + \overline{BC}}{2} \times \overline{CD} = \frac{\overline{AD} + 20}{2} \times \overline{CD}$$

$$B\hat{A}D = 2\pi - \alpha$$

$$\sin(2\pi - \alpha) = \frac{\overline{BF}}{10} \Leftrightarrow \overline{BF} = 10\sin(-\alpha)$$

$$\Leftrightarrow \overline{BF} = -10 \sin(\alpha)$$

$$C$$
 20 B 10 D E F α

$$cos(2\pi - \alpha) = \frac{\overline{AF}}{10} \Leftrightarrow \overline{AF} = 10 cos(-\alpha)$$

$$\Leftrightarrow \overline{AF} = 10 \cos(\alpha)$$

$$\overline{AD} = \overline{AF} + \overline{FD} = 10\cos(\alpha) + 20$$

$$\overline{CD} = \overline{BF} = -10\sin(\alpha)$$

Área do trapézio:

$$\frac{\overline{AD} + 20}{2} \times \overline{CD} = \frac{10\cos(\alpha) + 20 + 20}{2} \times (-10\sin(\alpha)) = \frac{10\cos(\alpha) + 40}{2} \times (-10\cos(\alpha)) = \frac{10\cos(\alpha) + 40}{2} \times (-10\cos(\alpha)$$

$$= (10\cos(\alpha) + 40) \times (-5\sin(\alpha)) = -5\sin(\alpha) (10\cos(\alpha) + 40)$$

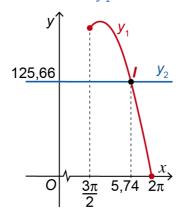
Como queríamos demonstrar.

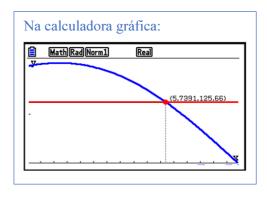
10.2.

40% da área do círculo: $40\% \times \pi \times 10^2 = 40$

Quer-se determinar a solução de:

$$-5\sin(\alpha)\left(10\cos(\alpha)+40\right) = 40\pi, \ \alpha \in \left]\frac{3\pi}{2}, 2\pi\right[$$





11

$$1 - \frac{1}{1 + \tan^2(-\alpha)} = 1 - \frac{1}{1 + [\tan(-\alpha)]^2} = 1 - \frac{1}{1 + \tan^2(\alpha)} = 1 - \frac{1}{\frac{1}{\cos^2(\alpha)}} = 1 - \cos^2(\alpha) = \sin^2(\alpha) = \sin^2(100\pi + \alpha)$$

$$100\pi = 50 \times 2\pi$$

Como queríamos demonstrar.

12.

Área do triângulo [OAB]: $\frac{1 \times \tan \alpha}{2}$

De $\frac{1 \times \tan \alpha}{2} = 0.4$, vem que $\tan \alpha = 0.8$.

Área do triângulo [OPQ]: $\frac{2\cos\alpha \times \sin\alpha}{2} = \cos\alpha \times \sin\alpha$

De $1 + \tan^2(\alpha) = \frac{1}{\cos^2(\alpha)}$, vem que:

$$1 + 0.8^2 = \frac{1}{\cos^2(\alpha)} \Leftrightarrow 1.64 = \frac{1}{\cos^2(\alpha)} \Leftrightarrow \cos^2(\alpha) = \frac{25}{41}$$

Como
$$\alpha \in 1.^{\circ}$$
 Q, $\cos \alpha > 0$, logo, $\cos(\alpha) = \sqrt{\frac{25}{41}} = \frac{5}{\sqrt{41}} = \frac{5\sqrt{41}}{41}$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \Leftrightarrow \sin(\alpha) = \tan(\alpha)\cos(\alpha) \Leftrightarrow \sin(\alpha) = 0.8 \times \frac{5\sqrt{41}}{41} = \frac{4\sqrt{41}}{41}$$

Área do triângulo [OPQ]:

$$\cos \alpha \times \sin \alpha = \frac{5\sqrt{41}}{41} \times \frac{4\sqrt{41}}{41} = \frac{20}{41}$$