

Teste de avaliação n.º 2

Matemática A

11.º Ano de escolaridade

Nome:	N. º:	Turma:		
Duração do teste: 90 minutos	Tolerância: 10 minutos	Ano Letivo: 2025/26		

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor.

Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

Nas respostas aos itens de escolha múltipla, selecione a opção correta.

Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Num torneio de *drones*, cada piloto programa duas trajetórias consecutivas, definindo dois vetores no espaço, \vec{u} e \vec{v} .

O sistema de navegação regista automaticamente o produto escalar entre os vetores que definem o movimento do *drone*, de modo a avaliar o estilo de pilotagem de cada piloto.

Durante uma etapa do torneio, foram obtidos os seguintes resultados:

Piloto	$ec{m{u}}\cdotec{m{v}}$
Ana	12
Bruno	0
Carlos	-8

Com base nas propriedades do produto escalar, qual das afirmações seguintes pode ser verdadeira?

- (A) O drone da Ana descreveu duas trajetórias perpendiculares.
- (B) O drone do Bruno manteve o sentido nas duas trajetórias.
- (C) O drone do Carlos fez um ângulo obtuso entre as duas trajetórias.
- (D) Todos os *drones* formaram ângulos agudos entre as suas trajetórias.
- 2. Considere as proposições seguintes:

I. se α for a amplitude de um ângulo orientado tal que $\cos \alpha < 0$ e $\tan \alpha > 0$, então podemos concluir que:

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha}$$

II. se α e β forem as inclinações de duas retas perpendiculares, então, podemos concluir que:

$$\beta = \alpha + 90^{\circ}$$

Justifique que as duas proposições não são necessariamente verdadeiras.

Porto Editora

3. Na figura pode observar um relógio que marca, nesse instante, 10 h 11 m 00 s.

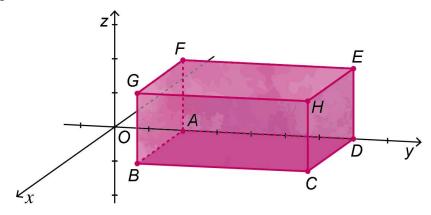
Sabe-se que:

- o ponto 0, é o ponto de interseção dos ponteiros do relógio;
- o ponto *A*, é a extremidade do ponteiro das horas mais longe de *O*;
- o ponto B, é a extremidade do ponteiro dos minutos mais longe de O;
- $\overline{OB} = 1.2 \overline{OA} = 12 \text{ cm}$

Determine $\overrightarrow{OA} \cdot \overrightarrow{BO}$.

Apresente a resposta arredondada às décimas.

4. Na figura encontra-se representado em referencial o. n. *0xyz* o paralelepípedo [*ABCDEFGH*].



Sabe-se que:

- as faces do sólido são paralelas a um dos planos coordenados;
- a aresta [AD] está contida no eixo Oy;
- a face [ABCD] está contida no plano xOy e é um quadrado;
- a cota do ponto $F \notin z_0$, com $z_0 > 0$.

Mostre que $\overrightarrow{AH} \cdot \overrightarrow{BE} = (z_0)^2$.

5. Considere, em referencial o. n. Oxy as retas r e s e o ponto P.

Sabe-se que:

- $r:(x,y) = (-2,4) + k(3,-2), k \in \mathbb{R}$
- s: x 2y = 2
- o ponto P pertence a r e ao eixo Ox.

Mostre que a distância de P a s é $\frac{2\sqrt{5}}{5}$.

6. Seja f a função de domínio \mathbb{R} definida por:

$$f(x) = \sin(\pi - x) + \sin(2\pi - x) + \cos(\frac{\pi}{2} - x) + \cos(\pi - x) + \cos(\pi + x)$$

- **6.1.** Mostre que $f(x) = \sin(x) 2\cos(x)$.
- **6.2.** Sabendo que tan $\beta = \frac{3}{4}$ e que $\beta \in]-\pi, 0[$, determine $f(\beta)$.
- **7.** Seja f uma função definida em \mathbb{R} por:

$$f(x) = 2 + 2\sin(2(x-2))$$

Considere as seguintes transformações gráficas:

- I. Dilatação vertical de coeficiente 2
- II. Contração horizontal de coeficiente 2⁻¹
- III. Translação horizontal associada ao vetor (2,0)
- IV. Translação vertical associada ao vetor (0,2)

Qual é a ordem possível das transformações gráficas sucessivas que permitem obter o gráfico de f partindo do gráfico da função definida por $y = \sin x$?

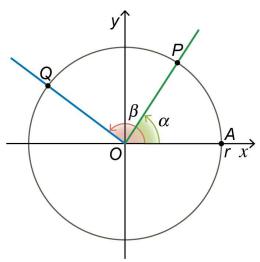
(A)
$$IV - I - II - III$$

(B)
$$III - II - I - IV$$

(C)
$$II - IV - III - I$$

(D)
$$I - II - III - IV$$

8. Considere a circunferência centrada na origem que passa pelo ponto A(r,0), r>0, representada na figura.



Sabe-se que P e Q são os pontos da circunferência tais que $\dot{O}P$ e $\dot{O}Q$ fazem um ângulo de amplitude α e β com o semieixo positivo Ox, respetivamente.

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com os dados apresentados na tabela.

Escreva, na folha de respostas, apenas cada um dos números, I, II e III, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

As coordenadas do ponto P são _____ .

Se r=2 e a abcissa de Q é $-\frac{\sqrt{3}}{2}$, então, $\cos\beta=$ ______ .

III é a razão entre o produto escalar dos vetores $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ e r^2 .

I	II	III
a) $(\cos \alpha, \sin \alpha)$	a) $-\frac{\sqrt{3}}{2}$	a) $\cos \alpha \cos \beta + \sin \alpha \sin \beta$
b) $(r \cos \alpha, r \sin \alpha)$	b) $-\sqrt{3}$	b) $\cos \alpha \sin \beta + \sin \alpha \cos \beta$
c) $(r \sin \alpha, r \cos \alpha)$	c) $-\frac{\sqrt{3}}{4}$	c) $\cos \alpha \cos \beta - \sin \alpha \sin \beta$

9. Seja f uma função definida em $\mathbb R$ por

$$f(x) = a + b\cos(c(x - d)),$$

em que a, b, c e d são números reais.

9.1. Seja a = 0.

Sabe-se que f muda de sinal nos pontos de abcissa da forma:

$$x = \pi + 4k$$
, $k \in \mathbb{Z}$

Qual dos seguintes valores é o período fundamental de f?

- **(A)** π
- **(B)** 2π
- **(C)** 4
- **(D)** 8

9.2. Seja a = c = 1, b = -1 e d = 0.

Determine as abcissas dos pontos do gráfico de f, em $[0, 2\pi[$, com ordenada igual a $\frac{1}{2}$.

10. Considere a função f, de domínio D, definida por:

$$f(x) = \tan\left(mx - \frac{\pi}{3}\right)$$

em que m é um número real positivo.

Sabendo que a diferença entre dois valores reais que não pertencem a D é $\frac{\pi}{2}$, qual é o valor de m?

(A) $\frac{1}{2}$

- **(B)** 1
- **(C)** 2
- **(D)** 3

11. Numa feira popular, uma roda-gigante completa uma volta em 4 minutos.

A altura h, em metros, de um ponto de uma determinada cadeira em relação ao chão, t minutos após o início do movimento, é modelada por:

$$h(t) = 15 + 15\sin\left(\frac{\pi}{2}t\right)$$

O operador da atração popular quer saber em que instantes, na primeira volta completa após o início do movimento, a altura do ponto da cadeira, um minuto antes, era metade da altura do ponto da cadeira nesses instantes.

Determine, recorrendo à calculadora gráfica, a resposta ao problema.

Apresente a resposta em minutos e segundos, arredondando os segundos às unidades.

Na sua resposta deve:

- apresentar uma equação que lhe permita resolver o problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s)
 na calculadora que lhe permita(m) resolver a equação;
- apresentar as coordenadas do(s) ponto(s) relevante(s) arredondadas às milésimas.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.1.	6.2.	7.	8.	9.1.	9.2.	10.	11.	Total
10	15	15	20	20	20	20	10	10	10	20	10	20	200

SUGESTÃO DE RESOLUÇÃO

1.

- ângulo agudo → produto escalar positivo
- vetores perpendiculares → produto escalar nulo
- ângulo obtuso → produto escalar negativo

Opção (C)

2.

I. Como $\cos\alpha<0$ e $\tan\alpha>0$, então α pertence ao 3.º quadrante, pelo que $\sin\alpha<0$. Como $\sqrt{1-\cos^2\alpha}>0$, concluímos que

$$\sin \alpha \neq \sqrt{1 - \cos^2 \alpha}$$

II. Se $\alpha=120^\circ$, a reta perpendicular tem inclinação $30^\circ (=120^\circ-90^\circ)$ e não $210^\circ (=120^\circ+90^\circ)$, como é referido.

3.

O ponteiro das horas já passou $\frac{11}{60}$ minutos das 10 h, no sentido das 11 h:

$$30^{\circ} - \frac{11}{60} \times 30^{\circ} = 24,5^{\circ}$$

O ponteiro dos minutos já passou 11 min da hora certa:

$$11 \times 6^{\circ} = 66^{\circ}$$

Logo,
$$B\hat{O}A = 24.5^{\circ} + 30^{\circ} + 66^{\circ} = 120.5^{\circ}$$
.

$$\overline{OB} = 12 \text{ cm}$$

$$\overline{OA} = \frac{12}{1.2} = 10 \text{ cm}$$

$$\overrightarrow{OA} \cdot \overrightarrow{BO} = -\overrightarrow{OA} \cdot \overrightarrow{OB} = -\|\overrightarrow{OA}\| \times \|\overrightarrow{OB}\| \times \cos(B\widehat{O}A) =$$
$$= -10 \times 12 \times \cos(120.5^{\circ}) \approx 60.9$$

 $1 \text{ h} \rightarrow \frac{360^{\circ}}{12} = 30^{\circ}$

4. Designando por a o comprimento do quadrado [ABCD] e por y_A a ordenada de A, tem-se:

•
$$A(0, y_A, 0), H(a, y_A + a, z_0), \log_0, \overrightarrow{AH} = H - A = (a, y_A + a, z_0) - (0, y_A, 0) = (a, a, z_0)$$

•
$$B(a, y_A, 0), E(0, y_A + a, z_0), \log 0, \overrightarrow{BE} = E - B = (0, y_A + a, z_0) - (a, y_A, 0) = (-a, a, z_0)$$

Assim:

$$\overrightarrow{AH} \cdot \overrightarrow{BE} = (a, a, z_0) \cdot (-a, a, z_0) = -a^2 + a^2 + (z_0)^2 = (z_0)^2$$

5.

• Coordenadas do ponto P(x, 0)

$$\begin{cases} x = -2 + 3k \\ 0 = 4 - 2k \end{cases} \Leftrightarrow \begin{cases} x = -2 + 3k \\ 2k = 4 \end{cases} \Leftrightarrow \begin{cases} x = -2 + 3 \times 2 \\ k = 2 \end{cases} \Leftrightarrow \begin{cases} x = 4 \\ k = 2 \end{cases}$$

$$P(4,0)$$

• Equação da reta p, perpendicular a s, que passa em P

$$x - 2y = 2 \Leftrightarrow -2y = -x + 2 \Leftrightarrow 2y = x - 2 \Leftrightarrow y = \frac{1}{2}x - 1$$

Como $m_s = \frac{1}{2}$, tem-se que, $m_p = -2$, logo, p: y = -2x + b

Como $P \in \mathcal{P}$.

$$0 = -2 \times 4 + b \Leftrightarrow b = 8$$

$$p: v = -2x + 8$$

 Coordenadas do ponto I de interseção das retas p e s que é o ponto de s mais próximo de P

$$\begin{cases} y = \frac{1}{2}x - 1 \\ y = -2x + 8 \end{cases} \Leftrightarrow \begin{cases} -2x + 8 = \frac{1}{2}x - 1 \\ y = -2x + 8 \end{cases} \Leftrightarrow \begin{cases} -4x + 16 = x - 2 \\ y = -2x + 8 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -5x = -18 \\ y = -2x + 8 \end{cases} \Leftrightarrow \begin{cases} x = \frac{18}{5} \\ y = -2 \times \frac{18}{5} + 8 \end{cases} \Leftrightarrow \begin{cases} x = \frac{18}{5} \\ y = \frac{4}{5} \end{cases}$$

• Determinação da distância entre os pontos P e I

$$\overline{PI} = \sqrt{\left(\frac{18}{5} - 4\right)^2 + \left(\frac{4}{5} - 0\right)^2} = \sqrt{\left(-\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \sqrt{\frac{4}{5}} = \frac{\sqrt{4}}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

$$I\left(\frac{18}{5}, \frac{4}{5}\right)$$

A distância de P a s é igual a $\overline{PI} = \frac{2\sqrt{5}}{5}$.

6.1.
$$f(x) = \sin(\pi - x) + \sin(2\pi - x) + \cos(\frac{\pi}{2} - x) + \cos(\pi - x) + \cos(\pi + x) =$$

 $= \sin(x) + \sin(-x) + \sin(x) - \cos(x) - \cos(x) =$
 $= \sin(x) - \sin(x) + \sin(x) - \cos(x) - \cos(x) =$
 $= \sin(x) - 2\cos(x)$

6.2. Como $\beta \in]-\pi,0[$ e $\tan(\beta)>0,$ então β pertence ao 3.º quadrante.

Quer-se calcular $f(\beta) = \sin(\beta) - 2\cos(\beta)$.

Da fórmula:

$$1 + \tan^2(\beta) = \frac{1}{\cos^2(\beta)},$$

vem que:

$$1 + \left(\frac{3}{4}\right)^2 = \frac{1}{\cos^2(\beta)} \Leftrightarrow 1 + \frac{9}{16} = \frac{1}{\cos^2(\beta)} \Leftrightarrow \frac{25}{16} = \frac{1}{\cos^2(\beta)} \Leftrightarrow \cos^2(\beta) = \frac{16}{25}$$

Como
$$\beta \in 3.^{\circ} Q.$$
, $\cos(\beta) < 0$, \log_{0} , $\cos(\beta) = -\sqrt{\frac{16}{25}} = -\frac{4}{5}$

Assim, como $tan(\beta) = \frac{\sin(\beta)}{\cos(\beta)}$, tem-se que:

$$\sin(\beta) = \tan(\beta) \times \cos(\beta) = \frac{3}{4} \times \left(-\frac{4}{5}\right) = -\frac{3}{5}$$

Logo,
$$f(\beta) = \sin(\beta) - 2\cos(\beta) = -\frac{3}{5} - 2 \times \left(-\frac{4}{5}\right) = 1.$$

7. Por exemplo:

$$y = \sin(x)$$

↓ III. Translação horizontal associada ao vetor (2,0)

$$y = \sin(x - 2)$$

↓ II. Contração horizontal de coeficiente $2^{-1} = \frac{1}{2}$

$$y = \sin(2(x-2))$$

↓ I. Dilatação vertical de coeficiente 2

$$y = 2\sin(2(x-2)))$$

↓ IV. Translação vertical associada ao vetor (0,2)

$$f(x) = 2 + 2\sin(2(x-2)))$$

III - II - I - IV

Opção (B)

8.

I. $P(r \cos \alpha, r \sin \alpha)$

II. Com
$$r = 2$$
 e $x_Q = 2\cos\beta = -\frac{\sqrt{3}}{2}$, tem-se que $\cos\beta = -\frac{\frac{\sqrt{3}}{2}}{2} = -\frac{\sqrt{3}}{4}$

III.
$$\frac{\overrightarrow{OP} \cdot \overrightarrow{OQ}}{r^2} = \frac{(r \cos \alpha, r \sin \alpha) \cdot (r \cos \beta, r \sin \beta)}{r^2} =$$

$$= \frac{r^2 \cos \alpha \cos \beta + r^2 \sin \alpha \sin \beta}{r^2} =$$

$$= \frac{r^2 (\cos \alpha \cos \beta + \sin \alpha \sin \beta)}{r^2} =$$

$$= \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$= \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$I - b$$
); $II - c$); $III - a$)

9.1.
$$f(x) = b \cos(c(x-d))$$

Zeros de f: $x = \pi + 4k, k \in \mathbb{Z}$.

A diferença entre dois zeros consecutivos, para $k \in k + 1$, é 4, porque

$$\pi + 4(k+1) - (\pi + 4k) = \pi + 4k + 4 - \pi - 4k = 4.$$

Assim, para a função f definida em \mathbb{R} por:

$$f(x) = b\cos(c(x-d)),$$

designando por P_0 o seu período fundamental, sabe-se que a distância entre dois zeros consecutivos é $\frac{P_0}{2}$.

Logo,
$$\frac{P_0}{2} = 4 \Leftrightarrow P_0 = 2 \times 4 \Leftrightarrow P_0 = 8$$
.

Opção (D)

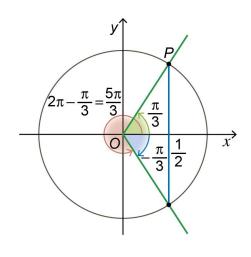
9.2.
$$f(x) = 1 - \cos(x)$$

Quer-se resolver a equação $f(x) = \frac{1}{2}$, em $[0, 2\pi[$

$$1 - \cos(x) = \frac{1}{2} \Leftrightarrow -\cos(x) = -\frac{1}{2} \Leftrightarrow \cos(x) = \frac{1}{2}$$

Recorrendo à circunferência trigonométrica, verifica-se que, $\cos(x) = \frac{1}{2}$, em $[0, 2\pi[$ tem as soluções:

$$x = \frac{\pi}{3} \lor x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$



10. A função definida por $y = \tan(x)$ não está definida nos valores de x da forma

$$x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

Assim, m é tal que: $mx - \frac{\pi}{3} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

ou seja,

$$mx = \frac{\pi}{2} + \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$

$$mx = \frac{5\pi}{6} + k\pi, k \in \mathbb{Z}$$

$$x = \frac{5\pi}{6m} + \frac{k\pi}{m}, k \in \mathbb{Z}$$

Daqui conclui-se que a distância entre dois valores consecutivos de x que não pertencem ao domínio é $\frac{\pi}{m}$.

Como o enunciado indica que essa distância é $\frac{\pi}{2}$, que é a diferença entre dois valores consecutivos que não pertencem ao domínio, obtém-se

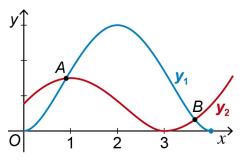
$$\frac{\pi}{m} = \frac{\pi}{2},$$

pelo que m=2.

Opção (C)

11. Quer-se resolver a equação:

$$h(t-1) = 0.5h(t)$$
, em [0, 4].



$$t_1 = 01 \min 00 \text{ s}$$

$$t_2 \approx 3,590 = 03 \text{ min } 35 \text{ s}$$

 $0,590 \text{ min} = 0,590 \times 60 \text{ s} \approx 35 \text{ s}$

Nos instantes $t_1=01 \min 00 \, \mathrm{s}$ e $t_2\approx 03 \min 35 \, \mathrm{s}$, o ponto da cadeira estava nas condições do enunciado, ou seja, um minuto antes, estava a metade da sua altura.

