
Espiral 11 - Matemática A, 11.º ano

Apoio à avaliação [outubro - 2025]

Nome: Data: ___ - _ _ N.º: _____

1. Na figura 1 está representado parte de um mapa de uma região do Parque Nacional Peneda-Gerês, onde se observam duas pontes.

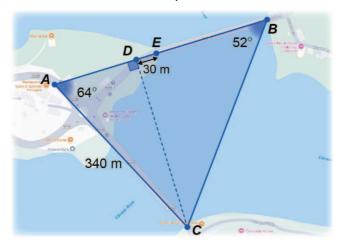


Figura 1

Tal como é sugerido na figura 1, sabe-se que:

- o lado [CA], que contém uma das pontes, mede 340 metros;
- os pontos D e E pertencem a [AB];
- parte do caminho que conduz à outra ponte, representado por [DE], mede 30 metros;
- $CD \perp AB$
- $\widehat{CAB} = 64^{\circ}$
- $\widehat{ABC} = 52^{\circ}$

Calcula o comprimento da segunda ponte, representada por [EB].

Apresenta o resultado em metros arredondado às unidades.

Seja $\alpha \in]0, \pi[$. Considera que $\cos \alpha = -\frac{5}{13}$. 2.

Qual é o valor de $sin(\pi + \alpha)$?

(A)
$$\frac{12}{13}$$

(B)
$$\frac{\sqrt{12}}{13}$$

(C)
$$-\frac{12}{13}$$

(B)
$$\frac{\sqrt{12}}{13}$$
 (C) $-\frac{12}{13}$ (D) $-\frac{\sqrt{12}}{13}$

Apoio à avaliação [outubro - 2025]

- 3. O lançamento do martelo, modalidade olímpica do atletismo, consiste no lançamento de um engenho a partir de uma base circular e cujo objetivo é atingir a maior distância possível numa pista contida num setor circular.
- **3.1.** Considera um atleta que inicia a sua atuação com o martelo localizado na posição P_i , dá quatro voltas sobre si mesmo no sentido anti-horário e termina a rotação, largando o martelo, quando atinge a posição $P_{\rm f}$. Um esquema deste lançamento está representado na figura 2.

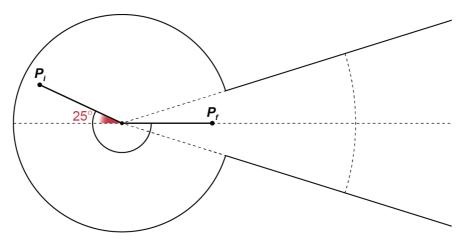


Figura 2

Qual é a amplitude do ângulo descrito pelo martelo em todo o movimento circular?

(A) $25^{\circ} + 4 \times 360^{\circ}$

(B) $205^{\circ} + 4 \times 360^{\circ}$

(C) $180^{\circ} + 4 \times 360^{\circ}$

- **(D)** $205^{\circ} 4 \times 360^{\circ}$
- 3.2. Considera, na figura 3, um esquema da posição do atleta no momento em que larga o martelo.

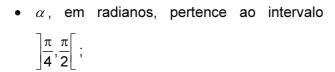
Qual das relações seguintes não está correta?

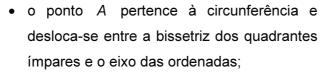
(A)
$$\sin \alpha = \frac{h_1}{b+1}$$
 (B) $\sin \alpha = \frac{h_2}{b+1}$

(B)
$$\sin \alpha = \frac{h_2}{h+1}$$

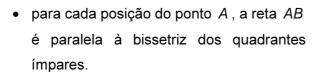
(C)
$$\cos \alpha = \frac{c}{b+1}$$
 (D) $\tan \alpha = \frac{h_1}{c}$

(D)
$$\tan \alpha = \frac{n_1}{c}$$


Apoio à avaliação [outubro - 2025]



4. Sabe-se que $\alpha \in \left] \frac{\pi}{2}, \frac{3\pi}{2} \right[\text{ e que } \cos\left(\frac{\pi}{2} + \alpha\right) = \frac{2}{3}.$


Calcula o valor exato de
$$\sin\left(\frac{5\pi}{2} - \alpha\right) - \tan\left(-\alpha\right) \times \frac{5}{\cos(\pi + \alpha)}$$
.

5. Considera a circunferência trigonométrica e o triângulo [OAB] representados na figura 4.
Sabe-se que:

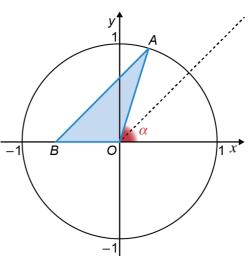
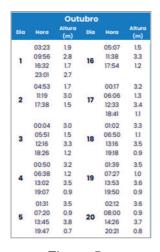


Figura 4

5.1. Mostra que a área do triângulo [OAB] pode ser dada, em função de α , pela expressão:

$$\frac{\sin^2\alpha - \cos\alpha \times \sin\alpha}{2}$$

- **5.2.** Calcula o valor exato da medida da área do triângulo OAB quando $\alpha = \frac{\pi}{3}$.
- **6.** Mostra que, para qualquer valor da variável x para o qual as expressões têm significado, é válida a seguinte igualdade:


$$\tan x = \frac{2\sin x \times \cos x}{1 + (\cos x - \sin x)(\cos x + \sin x)}$$

7. A Administração do Porto de Lisboa organiza diariamente, no âmbito da Segurança e Navegação, a tabela das marés com dados recolhidos pelo marégrafo de Algés, instalado no Centro de Coordenação e Controlo do Tráfego Marítimo e Segurança – VTS Lisboa.

Os dados relativos aos primeiros cinco dias de outubro de 2025 estão organizados numa tabela (figura 5) e os dados dos dias 4 e 5 de outubro de 2025 no seguinte gráfico (figura 6).

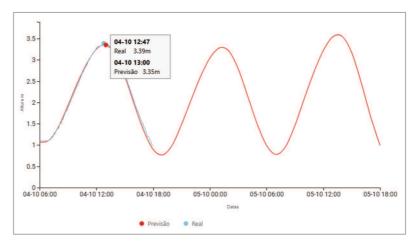



Figura 5

Figura 6

Fonte: https://www.portodelisboa.pt

Na figura 7 encontra-se representada parte do gráfico da função f que se aproxima ao conjunto de dados recolhidos para o dia 4 de outubro.

Apoio à avaliação [outubro - 2025]

Admite que a função f é uma das funções da família $f(t) = a \sin(bt + c) + d$, sendo a, b, c e d números reais, com a > 0 e $b \ne 0$.

7.1. Mostra que a função t pode ser definida, em função de t, com $t \in [0, 24]$ por:

$$f(t) = 1,2\sin\left(\frac{\pi t}{6} - \frac{2\pi}{3}\right) + 2,1$$

- **7.2.** Considera a função *f* referida em **7.1.**
 - a) Em qual dos momentos indicados, a altura prevista da maré não foi igual a 2,7 metros?
 - (A) Às 5 horas

(B) Às 9 horas

(C) Às 15 horas

(D) Às 21 horas

b) Recorrendo às capacidades gráficas da calculadora, resolve o seguinte problema:

Determina o tempo, em horas e minutos, arredondados às unidades, em que, durante o dia 4 de outubro, a altura da maré foi superior a 3 metros.

Na tua resolução deves apresentar:

- uma condição que traduza o problema;
- num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver a equação, incluindo a janela de visualização;
- a resposta com o arredondamento indicado.

FIM

Cotações

Questões	1.	2.	3.1.	3.2.	4.	5.1.	5.2.	6.	7.1.	7.2. a)	7.2. b)	Total
Cotação (pontos)	22	12	12	12	22	22	18	22	12	22	24	200

