5.° TESTE DE MATEMÁTICA - 12.° 2

Duração: 90 minutos 2.º Período – <u>30/04/02</u>

Nome: N.º: Classificação:

Grupo I

- As cinco questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- 1. Lança-se duas vezes um dado tetraédrico equilibrado, com as faces numeradas de 1 a 4. Seja X o número de vezes que sai a face 4 nos dois lançamentos. Qual é a distribuição de probabilidades da variável X?

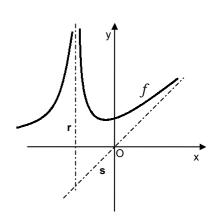
(B)

(A)
$$\begin{array}{|c|c|c|c|c|c|}\hline x_i & 0 & 1 & 2 \\\hline P(X = x_i) & \left(\frac{1}{4}\right)^2 & 2 \times \frac{1}{4} \times \frac{3}{4} & \left(\frac{3}{4}\right)^2 \\\hline \end{array}$$

Xi	0	1	2
$P(X = x_i)$	$\left(\frac{3}{4}\right)^2$	$2 \times \frac{1}{4} \times \frac{3}{4}$	$\left(\frac{1}{4}\right)^2$

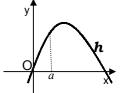
(C)
$$x_i = 0$$
 1 2 $P(X = x_i)$ $\frac{3}{4}$ $2 \times \frac{1}{4} \times \frac{3}{4}$ $\frac{1}{4}$

(D)
$$x_i = 0$$
 $\frac{1}{4}$ $\frac{2}{2 \times \frac{1}{4} \times \frac{3}{4}}$ $\frac{3}{4}$


2. Na figura ao lado, as rectas \mathbf{r} e \mathbf{s} são assimptotas do gráfico de f. Qual das afirmações seguintes é **necessariamente** verdadeira?

$$(A) \quad \lim_{x \to +\infty} \frac{f(x)}{x} = 1$$

(B)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0$$


(C)
$$\lim_{x\to -2} f(x) = -\infty$$

(D)
$$\lim_{x \to -2} f(x) = 0$$

3. A função h, de domínio \mathbf{R} , admite primeira e segunda derivadas no ponto a. Então, podemos concluir que:

- **(C)** f''(a) < 0 **(D)** f'(a) < 0
- **4.** Indique o valor de $\lim_{x\to 0} \frac{x}{\text{sen}(3x)}$
 - (A) $\frac{1}{3}$
- **(B)** 3

- **(C)** 0
- **(D)** +∞
- No conjunto C dos números complexos, é dado o número complexo z = a + 3i, a < 0. No plano complexo, a que quadrante pertence o afixo do complexo w = z i?
 - (A) Ao primeiro
- (B) Ao segundo
- (C) Ao terceiro (D) Ao quarto

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Um homem foi encontrado morto no seu apartamento. Suspeitando de crime, a Polícia Judiciária procurou de imediato saber a que horas este tinha sido cometido. A temperatura do quarto mantinhase constante, havendo razões para supor que assim era desde manhã cedo.

A P.J., usando a Lei de NEWTON do Arrefecimento de um Corpo, sabe que a temperatura do corpo (em graus Celsius), t horas após o crime, é dada pela seguinte função:

$$C(t) = 20 + 16.5 e^{-0.36t}$$

- **1.1.** Quando o crime foi cometido, qual era a temperatura do corpo?
- **1.2.** Às treze horas, a P.J. mediu a temperatura do corpo (25°C). A que horas, aproximadamente, foi cometido o crime? Apresente o resultado em horas e minutos.
- **1.3.** Com o decorrer do tempo, a temperatura do corpo tende a igualar a temperatura ambiente. Indique, justificando, a temperatura ambiente.
- **1.4.** Estude, <u>analiticamente</u>, a função C quanto à monotonia.
- 1.5. Na morgue da P.J. estão doze corpos lado a lado, dos quais quatro são de mulheres. Ordenando aleatoriamente os corpos, qual a probabilidade de as mulheres ficarem todas num extremo? Apresente o resultado na forma de fracção irredutível.

2.	Considere a função f , de domínio	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	definida por	f(x) =	$\frac{1+\cos x}{\cos x}$	٠.
----	-------------------------------------	---	--------------	--------	---------------------------	----

- 2.1. Sem recorrer à calculadora, resolva as duas alíneas seguintes.
 - a) Resolva a equação f(x) = 3
 - **b)** Mostre que a função f tem um mínimo e determine-o.
- **2.2.** Considere a função g, de domínio $\mathbf{R} \setminus \{0\}$, definida por $g(x) = \frac{1}{2x}$. Mostre que, no intervalo $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ os gráficos de f e de g se intersectam num ponto. Determine as coordenadas desse ponto (apresente os valores na forma de dízima, com aproximação às centésimas).
- **3.** Calcule o valor exacto de $sen(\frac{11}{12}\pi)$.

Sugestão: descubra primeiro dois ângulos a e b, cujas razões trigonométricas são conhecidas, e tais que $\frac{11}{12}\pi = a + b$

FIM

COTAÇÕES

Nota: um total negativo neste grupo vale 0 (zero) valores.

 Grupo II
 8

 1.1.
 1,4

 1.2.
 1,8

 1.3.
 1,6

 1.4.
 1,6

 1.5.
 1,6

 2.
 5,4

 2.1.
 3,7

 a)
 1,7

 b)
 2

 2.2.
 1,7

 3.
 1,6

O professor: RobertOliveira roliveira.page.vu go.to/roliveira