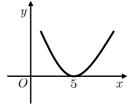
3.º TESTE DE MATEMÁTICA - 12.º 2

Duração: 90 minutos 1.º Período - 4/02/05

Classificação:

,

Nome:


N.º:

O professor:

Grupo I

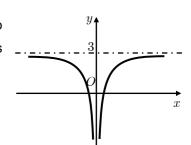
- · As seis questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- * Não apresente cálculos, nem justificações.
- **1.** Ao lado está parte do gráfico da função h, positiva em $\mathbb{R} \setminus \{5\}$.

Qual é o valor de $\lim_{x\to 5} \frac{\ln(0,1x)}{h(x)}$?

- **(A)** −∞
- **(B)** +∞
- **(C)** 0

(D) 5

2. Ao lado estão representados o gráfico da função f e a recta r, tangente a ele no ponto (a,b). Qual pode ser a equação de r ?


(A) y = ax - a

(B) y = ax + a

(C) y = bx - a

(D) y = bx + a

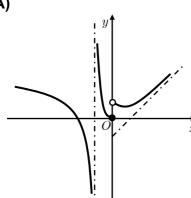
3. Na figura está desenhada parte da representação gráfica de uma função f, cujo domínio é $\mathbb{R}\setminus\{0\}$. As rectas de equações x=0 e y=3 são assimptotas ______ do gráfico de f.

É dada a sucessão definida por $\ u_n = \frac{n^2 - 80n + 5}{2n^3 + 6}$.

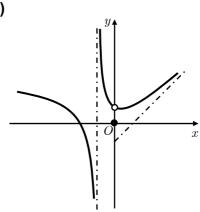
Qual é o valor de $\lim f(u_n)$?

(A) 3

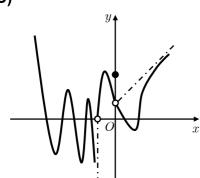
(B) 0

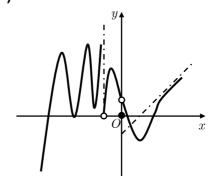

- **(C)** −∞
- (D) $+\infty$

4. De uma função $\,g$, de domínio $\,\mathbb{R}\backslash\{-1\}$ e ${\sf descontínua}$ em x=0, sabe-se que:


$$\lim_{x\to -1^-}g(x)=-\infty \ ; \quad \ \lim_{x\to 0}g(x)=1 \quad \text{e} \quad \lim_{x\to +\infty}\left[g(x)-x+1\right]=0$$

Qual dos gráficos seguintes pode ser o da função g ?


(A)


(B)

(C)

(D)

 $\textbf{5.} \qquad \text{Em cada cinco remates à baliza, o andebolista Anselmo marca quatro golos (em média). Seja X a variável "número de golos marcado pelo Anselmo em cada dois remates". }$

Qual é a distribuição de probabilidades de variável X ?

(A)	x_{i}	1	2
	$P(X=x_i)$	$\frac{4}{5}$	$\frac{1}{5}$

•	О	١
	Б	1
•	_	,

x_i	1	2
$P(X = x_i)$	$\frac{1}{5}$	$\frac{4}{5}$

(C)
$$\begin{array}{|c|c|c|c|c|}\hline x_i & 0 & 1 \\\hline P(X=x_i) & \left(\frac{4}{5}\right)^2 & 2 \times \frac{1}{5} \times \frac{4}{5} \\\hline \end{array}$$

x_i	0	1	2
$P(X = x_i)$	$\left(\frac{1}{5}\right)^2$	$2 \times \frac{1}{5} \times \frac{4}{5}$	$\left(\frac{4}{5}\right)^2$

6. Seja S o conjunto de resultados associado a uma experiência aleatória e sejam A e B dois acontecimentos possíveis e **independentes** de S.

Sabe-se que: $P(A \cup B) = 0.6$ e P(A) = 0.5.

Qual é o valor de $\mathrm{P}(B)$?

- **(A)** 0,1
- **(B)** 0,15
- **(C)** 0,2
- **(D)** 0,25

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.

1. A Associação "Bem-estar" vai organizar um baile e, para isso, pretende arrendar uma sala. No entanto, a capacidade máxima dessa sala é de duzentas pessoas pelo que, se vierem mais, é necessário arrendar uma outra sala, contígua à primeira.

Admita que a função que representa o lucro esperado pela Associação após o baile, se vierem x centenas

de pessoas, é dada por
$$f(x) = \begin{cases} -175x^3 + 675x^2 - 500 & \text{se } 0 \le x \le 2 \\ 155x \ln(5x) & \text{se } 2 < x \le 5 \end{cases}$$
 (f vem em euros)

- **1.1.** Qual é o lucro da Associação "Bem-estar" se vierem ao baile trezentas e cinquenta pessoas? Apresente o resultado arredondado aos cêntimos do euro.
- **1.2.** Recorra à calculadora para resolver o seguinte problema:

Com quantas pessoas a Associação espera ter um lucro de € 750?

Apresente todos os elementos recolhidos na utilização da calculadora, nomeadamente o **gráfico**, ou **gráficos**, obtido(s), bem como coordenadas relevantes de alguns pontos.

Apresente o(s) valor(es) pedido(s) arredondado(s) às unidades.

- **1.3. Sem recorrer à calculadora** (a não ser para efectuar eventuais cálculos numéricos), resolva as três alíneas seguintes.
 - **1.3.1.** Determine f'(1). Interprete a solução no contexto do problema.
 - **1.3.2.** Verifique que, no ponto de abcissa x=2, a função f é contínua \mathbf{so} à esquerda desse ponto.
 - **1.3.3.** Prove que a equação f(x) = 2000 tem pelo menos uma solução em]3,5[.
- **1.4.** Durante o baile, o bar vai dispor de cinco tipos de bebidas alcoólicas e cinco tipos de refrigerantes. Suponha que, no balcão, vai estar uma bebida de cada tipo (todas as dez alinhadas lado a lado). Qual é a probabilidade de as bebidas alcoólicas ficarem dispostas alternadamente com os refrigerantes?
- **2.** Seja g a função, de domínio $\mathbb R$, definida por $g(x)=e^{3x+4}$.
 - **2.1.** Usando a definição de derivada num ponto, calcule g'(0).
 - **2.2.** Sem recorrer à calculadora, estude a função definida por $h(x) = \frac{g(x)}{x+3}$ quanto à existência de assimptotas do seu gráfico.

3. Seja f uma função contínua em \mathbb{R} , cujo gráfico admite, no ponto de abcissa x=0, uma recta tangente de equação y=5x+2 .

Seja g uma função tal que $g(x) = \begin{cases} \frac{f(x)-2}{x} & \text{se } x \neq 0 \\ 2 & \text{se } x = 0 \end{cases}$.

Prove que a função g é contínua em x = 0.

FIM

Formulário

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$\left(u^n\right)' = n \cdot u^{n-1} \cdot u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \operatorname{cos} u$$

$$(\operatorname{cos} u)' = -u' \cdot \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\operatorname{cos}^2 u}$$

$$\left(e^u\right)' = u' \cdot e^u$$

$$\left(a^u\right)' = u' \cdot a^u \cdot \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Cada resposta certa: + 1

Limites notáveis

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$

Cada resposta errada: - 0,2 Cada questão não respondida ou anulada: 0

COTAÇÕES

(6 valores)			•	,	
Nota: um total negativo neste grupo vale 0 (zero) valores.					
	1	9,3	2	3,2	31,5
Grupo II (14 valores)	1.1	1,4	2.1	1,6	·
	1.2	1,6	2.2	1,6	
	1.3.1	1,6			
	1.3.2	1,6			
	1.3.3	1,6			
	1.4	1,5			