
GeoPDEs: a research tool for IsoGeometric Analysis of PDEs

C. de Falcoa, A. Realib,c,d, R. Vázquezc

aMOX-Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza
Leonardo da Vinci, 32, 20133 Milano, Italy.

bDipartimento di Meccanica Strutturale, Università degli Studi di Pavia, Via Ferrata, 1, 27100 Pavia,
Italy.

cIstituto di Matematica Applicata e Tecnologie Informatiche del CNR, Via Ferrata, 1, 27100 Pavia, Italy.
dEUCENTRE, via Ferrata 1, 27100, Pavia, Italy.

Abstract

GeoPDEs (http://geopdes.sourceforge.net) is a suite of free software tools for applica-

tions on Isogeometric Analysis (IGA). Its main focus is on providing a common framework

for the implementation of the many IGA methods for the discretization of partial differential

equations currently studied, mainly based on B-Splines and Non-Uniform Rational B-Splines

(NURBS), while being flexible enough to allow users to implement new and more general

methods with a relatively small effort. This paper presents the philosophy at the basis of

the design of GeoPDEs and its relation to a quite comprehensive, abstract definition of IGA.

Key words: Isogeometric Analysis, Finite Element Method, NURBS, B-Splines, Matlab,

Octave

1. Introduction

IsoGeometric Analysis (IGA) is a (relatively) recent technique for the discretization of

Partial Differential Equations (PDEs), introduced by Hughes et al. in [1]. The main feature

of the method is the ability to maintain the same exact description of the computational

domain geometry throughout the analysis process, including refinement. In the original pre-

sentation of IGA as described in [1] (where one of the main focuses is on structural analysis),

the exact geometry representation is obtained by invoking the isoparametric concept, that

is, by using the same class of functions most commonly used for geometry parameterization

in Computer Aided Geometric Design (CAGD), namely Non-Uniform Rational B-Splines

(NURBS), for the PDE solution space. As NURBS spaces include as a special case the

piece-wise polynomial spaces commonly used in the Finite Element Method (FEM), IGA

can be understood as a generalization of standard FEMs where more regular functions are

Email addresses: carlo.defalco@polimi.it (C. de Falco), alessandro.reali@unipv.it (A. Reali),
vazquez@imati.cnr.it (R. Vázquez)

Preprint submitted to Elsevier September 2, 2011

http://geopdes.sourceforge.net

employed. This higher regularity has been shown to lead to various advantages of IGA over

FEM in addition to the better handling of CAGD geometries, e.g., better convergence on a

per-degree-of-freedom basis, better approximation of the eigenspectrum of the Laplacian and

biharmonic operators [2] or the ability to deal with higher order differential operators [3, 4].

Since its introduction, IGA has evolved along different directions. On one hand, func-

tion spaces other than NURBS or B-Splines have been considered, such as T-splines [5, 6],

which allow for local refinement, or so-called generalized B-Splines [7, 8], that allow to

better handle important classes of curves and surfaces. On the other hand, especially for

applications where the properties descending from a strictly isoparametric approach are not

of such paramount importance as for structural analysis, the isoparametric constraint has

been relaxed in order to produce B-Spline generalizations of edge and face finite elements [9]

which have been successfully applied to problems in electromagnetism [9, 10] and incom-

pressible fluid dynamics [11]. A comprehensive reference on IGA advantages and successful

applications is the recent book by Cottrell et al. [12].

IGA is indeed a powerful method, which has been shown to outperform FEM in every

numerical test we have tried so far. The large number of papers, presentations and dedi-

cated symposia at international conferences on the topic clearly indicate the great interest

that IGA has been drawing from the PDE discretization and CAGD research communities.

Nonetheless, researchers from both such areas often refrain from getting directly involved in

IGA because of their reluctance to invest the time and effort required to get acquainted with

the basics of each other’s field. Furthermore, for those working on complex engineering ap-

plications, the amount of work required to adapt their existing codes to the IGA framework

would need to be carefully estimated before undertaking such a task1.

Bearing in mind the above-mentioned considerations, we have decided to implement and

distribute the GeoPDEs software suite [15] with multiple objectives. First, it is meant to

serve as an entry point for researchers who wish to get acquainted with the practical issues

that implementing an IGA code involves. Furthermore, by decoupling as much as possible

the various aspects of IGA-related algorithms (e.g., basis function definition and evaluation,

differential operator discretization, choice of function spaces, numerical quadrature, etc.), it

intends to allow the users mainly interested in one of such aspects to test their ideas in a

complete solver environment while having to deal as little as possible with issues that fall

outside their area of expertise. Finally, it is meant to be used as a rapid prototyping and

1Techniques meant to ease the adaptation of existing FEM software to the IGA setting have been pre-

sented in [13, 14]

2

testing tool for new IGA algorithms.

The design of the GeoPDEs suite descends directly from the objectives stated above, in

particular the decision to implement it as an open and free software platform is driven by

the intention to use it as a way to communicate and share ideas related to IGA among

researchers from different areas; similarly, to allow its use as a fast prototyping tool, it has

been implemented mainly in an interpreted language, the particular language of choice being

Matlab which is a de facto standard for prototyping of numerical algorithms. Finally, to

maximize its accessibility and availability, GeoPDEs has been especially optimized to work

in the free GNU/Octave interpreter [16].

The present paper is not expected to be a full user guide to GeoPDEs. Rather, it is

intended to explain its architecture, its design and its main features, and to provide various

examples of how to use and extend it. Furthermore, as in the implementation of GeoPDEs,

given its design objectives, properties such as code clarity, generality and extensibility have

been often favored over efficiency and scalability, we will, at times, explain how some of the

current speed or memory bottlenecks may be avoided.

The paper is structured as follows. In Section 2 we present an overview on IGA, and

in Section 3 we focus on its application to the particular case of Poisson’s problem. The

backbone of the code is presented in Section 4, with a detailed description of its main data

structures and the help of a simple example. The way to modify the code for developing new

methods is explained in Section 5, and in particular we show modified versions to solve linear

elasticity, Stokes, and Maxwell’s equations. Finally, in Section 6 we show the extension of

the code to problems on NURBS multipatch geometries.

2. A brief overview on Isogeometric Analysis

As stated in the introduction, the initial concept of IGA has been extended and gen-

eralized in many ways. In this paper, we intend to demonstrate the ability of GeoPDEs to

accommodate within its framework various different IGA formulations. To this end, we find

it convenient to briefly present, in the next section, the main concepts of IGA in a general

framework. To introduce some useful notation, we will as well introduce, in Section 2.2

NURBS and B-Splines, which have been the first and simplest (and, so far, most successful)

functions adopted in IGA.

2.1. Isogeometric Analysis: a general framework

The goal of IGA, as it is also for FEM, is the numerical approximation of the solution of

PDEs. In both approaches the PDEs are numerically solved using a Galerkin procedure, i.e.,
3

the equations are written in their equivalent variational formulations, and a solution is sought

in a finite dimensional space with good approximation properties. The main difference

between the two methodologies is that in FEM the basis functions and the computational

geometry (i.e., the mesh) are defined using piecewise polynomials, whereas in IGA the

computational geometry is defined exactly from the information and the basis functions

(e.g., NURBS, T-splines, or generalized B-Splines) given by CAD.

Let us consider a three-dimensional case, where we assume that the physical domain

Ω ⊂ R3 is open, bounded and Lipschitz. We also assume that such a domain can be exactly

described through a parameterization of the form

F : Ω̂ −→ Ω, (1)

where Ω̂ is some parametric domain (e.g., the unit cube), and the value of the parameteri-

zation can be computed with the information given by the CAD software. The parameteri-

zation F is assumed to be smooth with piecewise smooth inverse.

Now, let V be a Hilbert space of functions defined in Ω, and let V ′ be its dual. We

denote by (·, ·) the scalar product in V , and by 〈·, ·〉 the duality pairing between V ′ and

V . We study now the following source and eigenvalue problems. Given the bilinear form

a : V × V → R and the linear functional l ∈ V ′, the variational formulation of the source

problem reads:

Find u ∈ V such that

a(u, v) = 〈l, v〉 ∀v ∈ V, (2)

whereas the variational formulation of the eigenvalue problem is:

Find λ ∈ R \ {0}, and u ∈ V , u 6= 0, such that

a(u, v) = λ(u, v) ∀v ∈ V. (3)

The Galerkin procedure, then, consists of approximating the infinite-dimensional space

V by a finite-dimensional space Vh, and to solve the corresponding discrete source problem:

Find uh ∈ Vh such that

a(uh, vh) = 〈l, vh〉 ∀vh ∈ Vh, (4)

or discrete eigenvalue problem:

Find λ ∈ R \ {0}, and uh ∈ V , uh 6= 0, such that

a(uh, vh) = λ(uh, vh) ∀vh ∈ Vh. (5)

4

In standard FEM, the space Vh is a space of piecewise polynomials. In an IGA context,

as introduced in [1], this space is formed by, e.g., NURBS functions. In our framework we

prefer to define this space in the following general way

Vh := {vh ∈ V : v̂h = ι(vh) ∈ V̂h} ≡ {vh ∈ V : vh = ι−1(v̂h), v̂h ∈ V̂h},

where ι is a proper pull-back, defined from the parameterization (1) (see [9] and references

therein), and V̂h is a discrete space defined in the parametric domain Ω̂.

Finally, it is worth to remind how problem (4) is solved. Let {v̂j}j∈J be a basis for V̂h,

with J a proper set of indices. With the assumptions made on F, the set {ι−1(v̂j)}j∈J ≡

{vj}j∈J is a basis for Vh. Hence, the discrete solution of problem (4) can be written as

uh =
∑
j∈J

αjvj =
∑
j∈J

αjι
−1(v̂j).

Substituting this expression into (4), and testing against every basis function vi ∈ Vh,

we obtain a linear system of equations where the coefficients αj are the unknowns, and the

entries of the matrix and the right-hand side are a(vi, vj) and 〈l, vi〉, respectively. These

terms have to be computed using suitable quadrature rules for numerical integration.

2.2. Definition of B-Splines and NURBS

We now propose a brief introduction on B-Splines and NURBS, with the only aim of

showing some notations and the most basic concepts. A more detailed treatment of this

topic can be found, for instance, in [17, 18] for B-Splines, and in [19] for NURBS functions

and geometric entities.

Given two positive integers p and n, we introduce the (non-decreasing) knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+p+1 = 1}. We also introduce the vector {ζ1, . . . , ζm} of knots

without repetitions, and the vector {r1, . . . , rm} of their corresponding multiplicities, such

that

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
r1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
r2 times

, . . . , ζm, . . . , ζm︸ ︷︷ ︸
rm times

},

with
∑m
i=1 ri = n + p + 1. Univariate B-Spline basis functions are defined from Ξ starting

from piecewise constants as:

Bi,0(x̂) =

 1, if ξi ≤ x̂ < ξi+1,

0, otherwise,
(6)

and then, for a degree p > 0, they are defined recursively as follows ([17, Ch. IX]):

Bi,p(x̂) =
x̂− ξi
ξi+p − ξi

Bi,p−1(x̂) +
ξi+p+1 − x̂
ξi+p+1 − ξi+1

Bi+1,p−1(x̂). (7)

5

We remark that, in the expression above, whenever one of the denominators is zero, the

corresponding function Bi,p−1, given by (6) or (7), is also zero, and no contribution is added.

These n B-Spline functions form a partition of unity and they are linearly independent. We

will denote the space they span by Spα(Ξ), or simply Spα, with α = {α1, . . . , αm}, with

αi := p − ri. This is the space of piecewise polynomials of degree p with αi continuous

derivatives at the breakpoints.

In the following, we always assume that the knot vector Ξ is “open”, that is, the first

and last knots appear exactly p+ 1 times. In this case the first and last basis functions are

interpolatory at the parametric coordinates 0 and 1, respectively. Moreover, we highlight

that the maximum allowed multiplicity for the internal knots is r = p+ 1, corresponding to

the case of discontinuous functions, that is, αi = −1.

Remark 2.1. The use of discontinuous B-Splines (or NURBS) may not be very interesting

from the point of view of CAD, but, in fact, they have been already successfully used in the

simulation of geometries with cracks [20].

The previous definition is easily generalized to the two- and three-dimensional cases by

means of tensor products. For instance, in the trivariate case, given the degrees pd, the

integers nd and the knot vectors Ξd (d = 1, 2, 3), the B-Spline basis functions are defined as

Bi(x̂) ≡ Bi1i2i3(x̂) = Bi1,p1(x̂)Bi2,p2(ŷ)Bi3,p3(ẑ),

where i ≡ (i1, i2, i3) is a multi-index that belongs to the set

J := {j = (j1, j2, j3) : 1 ≤ jd ≤ nd, d = 1, 2, 3}.

Notice that the knot vectors Ξd define a Cartesian partition Qh of the unit cube Ω̂ = (0, 1)3,

and the multiplicity of the knots defines the regularity across the knot spans. This space

of B-Splines will be denoted by Sp1,p2,p3α1,α2,α3
(Qh), or simply Sp1,p2,p3α1,α2,α3

. We refer the reader to

[17, 18] for exhaustive studies on B-Splines and their approximation properties.

NURBS basis functions and geometric entities are then immediately obtained from the

previous B-Spline spaces. In brief, a positive weight wi can be associated to each B-Spline

basis function Bi, and the corresponding NURBS basis function is defined as

Ni(x̂) =
wiBi(x̂)

w
, with w =

∑
j∈J

wjBj,

both i and j being multi-indices. The space of NURBS is denoted by Np1,p2,p3(Qh;w), or

just Np1,p2,p3 for simplicity. Notice that this space depends on the weight function w, and,

6

when all the weights wj are equal, it simply reduces to a B-Spline space, due to the partition

of unity property.

In order to describe the domain geometry, a control point Ci ∈ R3 is then associated to

each NURBS (or B-Spline) basis function and the domain is defined by the parameterization

F : Ω̂ −→ Ω

x̂ 7−→ x = F(x̂) :=
∑
j∈J

Nj(x̂)Cj.
(8)

Finally, B-Splines and NURBS allow to easily reproduce both FEM typical refinement

strategy, namely, h- and p-refinements, by means of knot insertion and degree elevation

procedures, respectively. Moreover, a third particularly effective option is offered by the

so-called k-refinement, and consists of an high-regularity refinement strategy (see [1, 21]).

Further details on NURBS and on their use in CAD can be found in [19], along with

several algorithms to handle basis functions and geometric entities. We also refer the reader

to [1, 12] for more details and examples on the subject.

3. A model problem: Poisson

We now specialize the general framework of Section 2.1 to the particular case of the

Poisson’s problem, defined in a physical domain described with NURBS and discretized

either with NURBS or B-Splines. This constitutes the model problem on which we show in

detail the basic features and possibilities of the code.

Let us assume that the computational domain is constructed as a single NURBS patch,

such that the parameterization F is given by (8). The assumptions on F of Section 2.1 are

here supposed to be valid. A Poisson’s problem with mixed boundary conditions is then

considered. Therefore, the boundary ∂Ω is split into two disjoint parts, ∂Ω = ΓN ∪ΓD (with

ΓN ∩ ΓD = ∅, and ΓD 6= ∅), and the equations of the source problem read
−div (k(x) gradu) = f in Ω,

k(x)
∂u

∂n
= g on ΓN ,

u = 0 on ΓD,

(9)

where n is the unit normal vector exterior to Ω, and, for simplicity, f ∈ L2(Ω) and g ∈

L2(ΓN). Again for the sake of simplicity, homogeneous Dirichlet boundary conditions are

assumed.

7

The eigenvalue problem consists instead of finding u 6= 0 and λ such that
−div (k(x) gradu) = λε(x)u in Ω,

k(x)
∂u

∂n
= 0 on ΓN ,

u = 0 on ΓD.

These problems in their variational formulation, as in (2) and (3), read as:

Find u ∈ H1
0,ΓD

(Ω) such that∫
Ω

k(x) gradu · grad v dx =
∫

Ω

f v dx +
∫

ΓN

g v dΓ ∀v ∈ H1
0,ΓD

(Ω),

and:

Find λ ∈ R \ {0}, and u ∈ H1
0,ΓD

(Ω), u 6= 0, such that∫
Ω

k(x) gradu · grad v dx = λ

∫
Ω

ε(x)u v dx ∀v ∈ H1
0,ΓD

(Ω),

with H1
0,ΓD

:= {v ∈ H1(Ω) : v = 0 on ΓD} the space of functions with vanishing trace

on ΓD. The variational formulations of the discrete problems are:

Find uh ∈ Vh such that∫
Ω

k(x) graduh · grad vh dx =
∫

Ω

f vh dx +
∫

ΓN

g vh dΓ ∀vh ∈ Vh, (10)

and:

Find λ ∈ R \ {0}, and uh ∈ Vh, uh 6= 0 such that∫
Ω

k(x) graduh · grad vh dx =
∫

Ω

ε(x)uh vh dx ∀vh ∈ Vh, (11)

where the discrete space Vh is defined as

Vh = {vh ∈ H1
0,ΓD

: vh = v̂h ◦ F−1, v̂h ∈ V̂h},

and V̂h is the discrete space in the parametric domain, that has to be chosen.

Let us denote by

Nh = dim(V̂h) = dim(Vh),

the dimension of our finite dimensional spaces, and let

{v̂i}Nh

i=1 ,

be a basis for V̂h. Then, due to the assumptions on the parameterization F, we can define

a basis for Vh as follows {
vi = v̂i ◦ F−1

}Nh

i=1
. (12)

8

Having introduced these bases, we can rewrite equations (10) and (11), where the trial

functions can now be expressed as

uh =
Nh∑
j=1

αjvj =
Nh∑
j=1

αj(v̂j ◦ F−1) (13)

and their gradients as

graduh =
Nh∑
j=1

αj grad vj =
Nh∑
j=1

αj(DF)−T (grad v̂j ◦ F−1), (14)

where DF is the Jacobian matrix of the parameterization F, and (DF)−T denotes its in-

verse transposed. It is sufficient that the equations are verified for any test function of the

basis (12), which yields the source problem

Nh∑
j=1

Aij αj =
∫

Ω

k(x)
Nh∑
j=1

αj grad vj · grad vi dx =∫
Ω

f vi dx +
∫

ΓN

g vi dΓ = fi + gi, for i = 1, . . . , Nh,

(15)

and the eigenvalue problem

Nh∑
j=1

Aij αj = λ

∫
Ω

ε(x)
Nh∑
j=1

αjvjvi dx = λ

Nh∑
j=1

Mij αj , for i = 1, . . . , Nh, (16)

where Aij and Mij are the coefficients of the stiffness and mass matrices, and fi and gi

are the coefficients of the right-hand side contributions from the source and the boundary

terms, respectively.

All these coefficients are given by the values of the integrals in (15) and (16), that are

numerically approximated by a suitable quadrature rule. In order to describe this rule, let

us introduce K̂h := {K̂k}Ne

k=1, that is a partition of the parametric domain Ω̂ into Ne non-

overlapping subregions, that henceforth we refer to as elements. The assumptions on the

parameterization F ensure that the physical domain Ω can be partitioned as

Ω =
Ne⋃
k=1

F(K̂k),

and the corresponding elements Kk := F(K̂k) are also non-overlapping. We denote this

partition by Kh := {Kk}Ne

k=1.

For the sake of generality, let us assume that a quadrature rule is defined on every element

K̂k. Each of these quadrature rules is determined by a set of nk nodes

{x̂l,k} ⊂ K̂k, l = 1, . . . , nk

9

and by their corresponding weights

{wl,k} ⊂ R, l = 1, . . . , nk.

After introducing a change of variables, the integral of a generic function φ ∈ L1(Kk) can

be approximated as follows∫
Kk

φdx =
∫

bKk

φ(F(x̂)) |det(DF(x̂))| dx̂ '
nk∑
l=1

wl,k φ(xl,k) |det(DF(x̂l,k))| ,

where xl,k := F(x̂l,k) are the images of the quadrature nodes in the physical domain.

Using the quadrature rule, the coefficients Aij of the stiffness matrix are numerically

computed as

Aij '
Ne∑
k=1

nk∑
l=1

k(xl,k) wl,k grad vj(xl,k) · grad vi(xl,k) |det(DF(x̂l,k))| , (17)

while the coefficients fi of the right-hand side vector are approximated as

fi '
Ne∑
k=1

nk∑
l=1

f(xl,k) wl,k vi(xl,k) |det(DF(x̂l,k))| . (18)

Finally, for the eigenvalue problem the coefficients Mij of the mass matrix are numerically

computed as

Mij '
Ne∑
k=1

nk∑
l=1

ε(xl,k) wl,k vj(xl,k) vi(xl,k) |det(DF(x̂l,k))| . (19)

In order to treat the boundary terms, let us first define the mapping Fb : (0, 1) −→ ΓN

for 2D geometries, and Fb : (0, 1)2 −→ ΓN for 3D geometries. Notice that for B-Splines

and NURBS, assuming that each side of the parametric domain is completely mapped into

ΓN or ΓD, this mapping could be taken (roughly speaking) as the restriction of F to the

boundary.

To numerically compute the boundary term in (15) a quadrature rule is defined on the

boundaries (mostly, inherited from the one defined on the whole domain). We denote the

quadrature nodes in the reference interval (or square) by their parametric coordinates tl,k

(or (sl,k, tl,k)), and for the rest we use the same notation as before, with a superscript b.

The boundary line integrals, for 2D geometries, are then approximated as follows∫
Kb

k

φdΓ =
∫

bKb
k

φ(Fb(t)) |F′b(t)| dt '
nb

k∑
l=1

wbl,k φ(xbl,k) |F′b(tl,k)| ,

which gives the Neumann term in (15)

gi '
Ne∑
k=1

nk∑
l=1

g(xbl,k) wbl,k vi(x
b
l,k) |F′b(tl,k)| . (20)

10

In the 3D case, the surface integrals of the boundary terms are computed as∫
Kb

k

φdΓ =
∫

bKb
k

φ(Fb(s, t))
∣∣∣∣∂Fb∂s

(s, t)× ∂Fb
∂t

(s, t)
∣∣∣∣ ds dt

'
nb

k∑
l=1

wbl,k φ(xbl,k)
∣∣∣∣∂Fb∂s

(sl,k, tl,k)× ∂Fb
∂t

(sl,k, tl,k)
∣∣∣∣ ,

which yields the coefficients for the Neumann term in (15)

gi '
Ne∑
k=1

nk∑
l=1

g(xbl,k) wbl,k vi(x
b
l,k)

∣∣∣∣∂Fb∂s
(sl,k, tl,k)× ∂Fb

∂t
(sl,k, tl,k)

∣∣∣∣ . (21)

Remark 3.1. We notice that, when discretizing with NURBS and using, e.g., standard

Gauss quadrature rules, the partition K̂h coincides with the partition Qh defined in Sec-

tion 2.2. However, such partitions may be different, for instance when the quadrature rules

of [22] are used.

4. The design of GeoPDEs

Remark 4.1. The examples in the following sections are written for GeoPDEs 1.1.0, or

earlier versions. The examples are rewritten for GeoPDEs 2.0.0 (or later) in Appendix C.

As we explained in the introduction, GeoPDEs is intended to serve as a rapid prototyping

tool for the implementation of new IGA methods and ideas, as well as to introduce other

researchers to IGA coding. We remark once again that the efficiency has been sacrificed in

order to implement a code that is general and easy to understand and to modify.

The implementation follows in some sense the ideas of [13]: i.e., the computations for the

geometry, the discrete basis functions and the matrices for the analysis are done separately.

Moreover, all data needed for these computations is stored in independent structures, in

such a way that each part of the code can be modified without affecting the others.

In this section we explain the basic data structures of GeoPDEs and the main functions

to operate on them, making use of a very simple example and of the notation introduced

in Section 3. In the next section we then discuss specializations and extensions required to

adapt GeoPDEs to other applications and we present some more complex examples.

4.1. A very simple example

Let the computational domain Ω ⊂ R2 be the intersection of the first quadrant of the

Cartesian plane with a circular annulus of internal radius r = 1 and external radius R = 2

(see Fig. 1). This geometry can be defined as a NURBS surface whose knot vectors, control

11

points and weights are listed in Appendix A. Let the diffusion coefficient in (9) be k(x) = 1,

and let the source term be

f =
(8− 9

√
x2 + y2) sin(2 arctan(y/x))

x2 + y2
. (22)

Furthermore, homogeneous Dirichlet boundary conditions are imposed on the whole bound-

ary, i.e., ΓD ≡ ∂Ω. In this simple case, the exact solution is given by

u = (x2 + y2 − 3
√
x2 + y2 + 2) sin(2 arctan(y/x)).

The full code for solving (9) with the data described above is displayed in Listing 1,

while in the subsections below we describe the purpose of each block of lines.

1 geometry = geo load (’ r i n g r e f i n e d . mat ’) ;

2 knots = geometry . nurbs . knots ;

3 [qn , qw] = msh set quad nodes (knots , msh gauss nodes (geometry . nurbs . order)) ;

4 msh = msh 2d tensor product (knots , qn , qw) ;

5 msh = msh push forward 2d (msh, geometry) ;

6 space = sp nurbs 2d phys (geometry . nurbs , msh) ;

7 [x , y] = dea l (squeeze (msh . geo map (1 , : , :)) , squeeze (msh . geo map (2 , : , :))) ;

8 mat = op gradu gradv (space , space , msh, ones (s ize (x))) ;

9 rhs = o p f v (space , msh, . . .

(8−9∗sqrt (x.ˆ2+y . ˆ 2)) .∗ sin (2∗atan (y . / x)) . / (x.ˆ2+y . ˆ 2)) ;

10 d r c h l t d o f s = unique ([space . boundary (:) . dofs]) ;

11 i n t d o f s = s e t d i f f (1 : space . ndof , d r c h l t d o f s) ;

12 u = zeros (space . ndof , 1) ;

13 u(i n t d o f s) = mat(i n t d o f s , i n t d o f s) \ rhs (i n t d o f s) ;

14 sp to v tk 2d (u , space , geometry , [20 2 0] , ’ l a p l a c e s o l u t i o n . vts ’ , ’ u ’)

15 e r r = s p l 2 e r r o r (space , msh, u , . . .

@(x , y) ((x.ˆ2+y . ˆ 2)−3∗sqrt (x.ˆ2+y . ˆ 2) +2) .∗ sin (2 .∗ atan (y . / x)))

Listing 1: Solving the model problem with GeoPDEs.

4.2. Definition of the parameterization: the geometry structure

The first step to set-up the problem to be solved is to define the geometry of the physical

domain, for which we assume a parameterization as (1). In our simple example, this is done

by invoking the geo load function:

1 geometry = geo load (’ r i n g r e f i n e d . mat ’) ;

The function geo load takes as input the name of a file in Matlab binary format, which

contains a structure defined by the NURBS toolbox (see Appendix A). The output is the

structure geometry, which contains the information to compute the geometry parameteriza-

tion and its derivatives. The fields of this structure are:

12

Figure 1: Solution of the model problem.

• map: function handle to compute the parameterization F at some given points in Ω̂.

• map der: function handle to compute the Jacobian of the parameterization DF.

Note that the structure contains the function handles to compute F or DF, not the values of

the map. The structure may also contain some other fields, as a function handle to compute

the second derivatives of F, or other auxiliary fields. In our example the two fields are

handles to functions of the NURBS toolbox, and the nurbs structure of the toolbox is saved,

as well, as an auxiliary field. Different ways to invoke the function geo load will be shown

later.

4.3. Quadrature: the msh structure

The second step is to define the domain partition and to set the quadrature rule in each

element, in order to compute the matrices and the right-hand side vector of the problem by

numerical integration, as in (17)-(19).

The simplest possibility is to define a tensor product partition where the quadrature

elements coincide with the knot-spans in the geometry. To this end we get the two knot

vectors from the geometry structure, and compute through the function msh gauss nodes the

quadrature nodes and weights for a standard Gaussian quadrature rule, using a number of

quadrature nodes in each direction equal to the degree of the NURBS plus one:

2 knots = geometry . nurbs . knots ;

3 [qn , qw] = msh set quad nodes (knots , msh gauss nodes (geometry . nurbs . order)) ;

13

The information for the quadrature rule is then stored in the structure msh, which is first

computed in the parametric domain by tensor products, and then mapped to the physical

domain using the handles of the structure geometry:

4 msh = msh 2d tensor product (knots , qn , qw) ;

5 msh = msh push forward 2d (msh, geometry) ;

The output is the msh structure, which must contain the following fields:

• nel: Ne, the number of elements of the partition Kh.

• nqn: nk, the number of quadrature points per element.

• quad nodes: coordinates of the quadrature nodes x̂l,k in the parametric domain Ω̂.

• quad weights: weights wl,k associated to the nodes.

• geo map: xl,k = F(x̂l,k), coordinates of the quadrature nodes in the physical domain.

• geo map jac: Jacobian matrix of the parameterization F evaluated at the quadrature

points, i.e., DF(x̂l,k).

• jacdet: absolute value of the Jacobian matrix determinant, evaluated at the quadra-

ture points, i.e., |det (DF(x̂l,k))|.

The values of the last three fields are computed using the handles of the geometry structure.

We note that these three fields are already present in the msh structure computed in line 4

of the example, but there they refer to the identity parameterization.

4.4. The discrete space: the space structure

The most important structure of our implementation is the one referred to as space.

This contains the information regarding the basis functions of the discrete space Vh, and

their evaluation at the quadrature nodes in order to numerically compute the integrals of

the problem.

In our example we are invoking the isoparametric paradigm, which means that the space

of the geometry and the discrete space of the shape functions coincide. Hence, the informa-

tion for the discrete space is already contained in the nurbs structure of the NURBS toolbox,

that we stored as a field in geometry. The new structure is computed using this information

and the msh structure with the command:

6 space = sp nurbs 2d phys (geometry . nurbs , msh) ;

14

As in FEM, the basis functions in IGA are locally supported, thus the integrals on each

element of the partition are only computed for a reduced number of basis functions. Ac-

cordingly, only the values of some basis functions are stored on each element. Analogously

to what is done in FEM, a global numbering of the basis functions is introduced. Then, for

each element of the quadrature partition we give its connectivity, that is, the number associ-

ated to the basis functions whose support intersects the element. Therefore, the information

contained in the structure is the following:

• ndof: Nh, total number of degrees of freedom, which is equal to the dimension of the

space Vh.

• nsh: Ns, number of non-vanishing basis functions in each element.

• connectivity: numbers associated to the basis functions that do not vanish on each

element. It has size Ns ·Ne, where Ne is the number of elements.

• shape functions: evaluation of the basis functions at the quadrature points, that is,

the quantities vi(xl,k) in equation (19). In our model problem, its size is nk ·Ns ·Ne,

where nk is the number of quadrature points.

• spfun: function handle to evaluate the fields above at the points given in a msh

structure, this is used when evaluating at points different from the quadrature points

is required, e.g. for visualization.

Some optional fields may also appear, depending on the problem to be solved. For instance,

in our model problem we also need the field

• shape function gradients: gradient of the basis functions evaluated at the quadra-

ture points, that is, grad vi(xl,k). In our model problem it has size d · nk · Ns · Ne,

where d is the dimension of the problem.

In the example, the values of the shape functions and their gradients are first computed in

the parametric domain, making use of some functions of the NURBS toolbox. The values

of the gradients in the physical domain are then computed by applying the push-forward,

using the information contained in msh.

We will see later other examples where fields for the divergence or the curl are also

computed. Moreover, we notice that the structure contains another field called boundary,

that will be explained in Section 4.6.

15

4.5. Matrix and vector construction

Once the three basic data structures have been initialized, the next step is to assemble

the stiffness matrix and the right-hand side of the linear system. GeoPDEs provides several

functions that allow to compute the matrices and right-hand sides for different PDE prob-

lems, starting from the msh and space structures introduced above. These functions all have

a very similar structure, which may be adapted with very little changes to handle different

differential problems.

Recalling that in our problem k(x) = 1, and the source function f is given by (22), the

stiffness matrix and the right-hand side are computed with the commands

7 [x , y] = dea l (squeeze (msh . geo map (1 , : , :)) , squeeze (msh . geo map (2 , : , :))) ;

8 mat = op gradu gradv (space , space , msh, ones (s ize (x))) ;

9 rhs = o p f v (space , msh, . . .

(8−9∗sqrt (x.ˆ2+y . ˆ 2)) .∗ sin (2∗atan (y . / x)) . / (x.ˆ2+y . ˆ 2)) ;

where the last input arguments in lines 8 and 9 are the coefficients k(x) and f(x), respec-

tively, evaluated at the quadrature points. In line 8 the space structure is passed twice,

because the function is prepared to use different spaces for trial and test functions.

Remark 4.2. In line 7, two rather advanced commands of the Matlab programming lan-

guage appear: the function deal is used to compactly do multiple assignments in one single

line, and the function squeeze to remove the singleton dimensions of multi-dimensional arrays.

Although we have tried to keep the programming style of GeoPDEs as simple as possible, the

extensive use of multi-dimensional arrays and tensor-product meshes and spaces has made

it necessary to resort to other advanced constructs (e.g., repmat or reshape). However, the

detailed description of such commands is beyond the scope of the present paper and we refer

the interested reader to the Matlab or Octave manuals.

The separation of the matrix assembly stage from that of basis function definition and

evaluation is one of the main features of our code, which directly descends from its design

objectives. In choosing to evaluate and store all the values of the basis functions at time

of initialization of the space structure we have clearly favored speed in the trade-off with

memory consumption. Although this choice limits the maximum size of problems that

GeoPDEs can handle, the actual limit being dependent on available hardware, this bottleneck

may be overcome, e.g., by changing the fields of space structure to be function handles rather

than arrays. Anyway, since the handling of problems of such size is beyond the scope of this

presentation we do not further pursue this issue here.

To show how our approach simplifies the implementation, we report below (Listing 2) a

simple Octave function to compute the mass matrix in (16), using equation (19). It takes
16

as arguments the space and msh structures, and the coefficient ε already evaluated at the

quadrature points. The function basically consists of a cycle over the elements, two cycles

over the basis functions, and a final cycle over the quadrature points of each element.

Remark 4.3. The function of Listing 2 slightly differs from the one actually present in the

package. The latter, in fact, allows the use of different spaces for trial and test functions,

and is valid for both scalar and vectorial problems. Other minor changes were done to make

the function faster in Matlab.

1 function mat = op u v (space , msh, e p s i l o n)

2 mat = spalloc (space . ndof , space . ndof , 1) ;

3 for i e l = 1 :msh . nel

4 mat loc = zeros (space . nsh (i e l) , space . nsh (i e l)) ;

5 for i d o f = 1 : space . nsh (i e l)

6 i shp = squeeze (space . shape functions (: , ido f , i e l)) ;

7 for j d o f = 1 : space . nsh (i e l)

8 j shp = squeeze (space . shape functions (: , jdo f , i e l)) ;

9 for inode = 1 :msh .nqn

10 mat loc (ido f , j d o f) = mat loc (ido f , j d o f) + . . .

11 msh . jacdet (inode , i e l) ∗ msh . quad weights (inode , i e l) ∗ . . .

12 i shp (inode) .∗ j shp (inode) ∗ e p s i l o n (inode , i e l) ;

13 end

14 end

15 end

16 mat(space . connectivity (: , i e l) , space . connectivity (: , i e l)) = . . .

17 mat(space . connectivity (: , i e l) , space . connectivity (: , i e l)) + mat loc ;

18 end

19 end

Listing 2: Matlab function to compute the mass matrix.

4.6. The treatment of boundary conditions: the boundary substructures

The imposition of homogeneous boundary conditions in IGA is straightforward. In fact,

homogeneous Neumann conditions are automatically imposed without any change in the

arrays (as in FEM). For homogeneous Dirichlet conditions, as in our example, we first need

to identify the boundary degrees of freedom corresponding to functions that do not vanish

on the boundary, and separate them from the internal degrees of freedom. This is done in

the code with the commands

10 d r c h l t d o f s = unique ([space . boundary (:) . dofs]) ;

11 i n t d o f s = s e t d i f f (1 : space . ndof , d r c h l t d o f s) ;

Then, the coefficients αj in (14) for the internal degrees of freedom are computed as the

solution of the linear system, whereas for the boundary ones they are set to zero:
17

12 u = zeros (space . ndof , 1) ;

13 u(i n t d o f s) = mat(i n t d o f s , i n t d o f s) \ rhs (i n t d o f s) ;

For the implementation of boundary conditions, both the msh and the space structures

are enriched with a field called boundary. In order to define these fields we first divide the

boundary of the parametric domain Ω̂ into a certain number of sides. Then, the boundary

field is defined as an array that contains, for each side, a msh or a space structure, similar

to the ones previously defined: msh.boundary contains a partition of each boundary side in

order to perform numerical integration (mostly inherited from the one defined on the whole

domain), while space.boundary contains information about the boundary basis functions,

and their values at the quadrature points given by msh.boundary.

There are, however, small differences with respect to the original structures we intro-

duced before. In the msh.boundary structure, the field jacdet does not longer contain the

determinant of the Jacobian. Instead, it contains the norm of the differential of the boundary

parameterization Fb, which is the term |F′b(tl,k)| in (20) or
∣∣∣∣∂Fb∂s

(sl,k, tl,k)× ∂Fb
∂t

(sl,k, tl,k)
∣∣∣∣

in (21). The structure also contains the field normal, with the value of the unit normal

exterior vector at the boundary quadrature points.

In space.boundary the ndof and connectivity fields refer to a local numbering of the

basis functions actually supported on each boundary side. Therefore, it is also necessary

to include the field dofs, which relates this local numbering to the global numbering in the

whole domain. This field is in fact the one we have used in the example to determine which

degrees of freedom had to be set to zero.

Obviously, an example with homogeneous boundary conditions is not the best suited to

explain the boundary substructures, but its use will be made clearer in Section 5.1.4, where

we solve a model problem with non-homogeneous boundary conditions.

4.7. Postprocessing: visualization and computation of the error

Once the linear system has been solved, the last step is to visualize the computed solu-

tion. As IGA is seen as a tool to improve the communication between CAD software and

PDE discrete solvers, the same holds for the communication between the solvers and the

visualization software. We are far from being experts on the matter, so our immediate goal

is not to implement new techniques to do it. Instead, we have decided to use an already

existing software (namely, ParaView [23]) and prepare a function to visualize our solution

data with it.

The following command evaluates the solution of the problem at the points given by a

18

20 × 20 grid, uniform in the parametric domain, and saves the results in a vtk structured

data file format, that can be visualized with ParaView.

14 sp to v tk 2d (u , space , geometry , [20 2 0] , ’ l a p l a c e s o l u t i o n . vts ’ , ’ u ’)

The resulting plot is reported in Fig. 1. Other examples provided with the package also

show how to plot the solution in Octave or Matlab using sp eval 2d.

This handle allows to evaluate the shape functions of the discrete space, and also their

gradients, at a set of given points (not necessarily being the quadrature points). The same

function is used whenever the solution must be computed at a set of points. For instance, in

academical cases in which we know the exact solution, the L2–norm of the error is computed

as

15 e r r = s p l 2 e r r o r (space , msh, u , . . .

@(x , y) ((x.ˆ2+y . ˆ 2)−3∗sqrt (x.ˆ2+y . ˆ 2) +2) .∗ sin (2 .∗ atan (y . / x)))

where the last argument is a function handle to compute the exact solution. The function

sp l2 error also makes use of the handle spfun mentioned above.

5. Applying GeoPDEs to more complex problems

The sequence of steps of the previous section represents the basic structure of a script

to solve a PDE problem with GeoPDEs. In the first part of this section we show possible

modifications of this structure, to tackle more complex and interesting examples. In the

second part of the section we show the main modifications that have to be done in order to

solve problems in linear elasticity, fluid mechanics and electromagnetism.

5.1. Modifications of the model problem

We start by introducing minor modifications to Listing 1, in order to solve the same

problem with different approaches. This will allow us to show how the code can be easily

modified.

5.1.1. Introducing h-, p- and k-refinement

In the simple example of the previous section we solved the problem by loading a geome-

try from the NURBS toolbox, and then performed the discretization of the problem exactly

in the same space in which the geometry was defined. But for real problems it is necessary

to introduce a refined discrete space in order to get accurate numerical solutions. One of the

advantages of IGA with respect to FEM is that the refinement can be done without affecting

the geometry, and for NURBS and B-Splines it is implemented in an easy manner. In this

19

section we explain how the h-, p- and k-refinements are treated in GeoPDEs. In all the three

cases we make use of functions contained in the NURBS toolbox (see Appendix A). We refer

the reader to the “help” of these functions for more details, and to [19] for the definition of

the concepts of degree elevation and knot insertion that are used in what follows.

The case of p-refinement is the easiest to explain. In this case the refinement consists on

applying degree elevation, which is done by invoking the nrbdegelev function of the toolbox.

For instance, in order to solve with NURBS of degree 5, the following commands should be

added between lines 1 and 2 of Listing 1:

1 nurbs = geometry . nurbs ;

2 dege l ev = max ([5 5] − (nurbs . order−1) , 0) ;

3 nurbs = nrbdege lev (nurbs , dege l ev) ;

4 geometry = geo load (nurbs) ;

The purpose of the second line is to avoid executing degree elevation when the desired degree

is lower than the actual one of the geometry, a useful check when automatic refinement

procedures are implemented.

h-refinement is instead obtained by knot insertion, which is easily computed using the

function nrbkntins of the toolbox. The important thing is to determine which knots one would

like to insert. A simple and classical strategy is to add new knots uniformly, for which the

function kntrefine of the toolbox can be helpful. For instance, substituting the lines 2 and 3

of the p-refinement example by:

1 [rknots , zeta , nknots] = k n t r e f i n e (nurbs . knots , [2 2] , nurbs . order−1, [0 0]) ;

2 nurbs = nrbknt ins (nurbs , nknots) ;

would insert two new knots in each subinterval of the original knot vectors. The last argu-

ment is used to specify the desired continuity, so in this case the new knots are added with

the right multiplicity to get a discrete space of C0 continuity.

Finally, k-refinement consists of performing first a degree elevation, and then a knot

insertion with the lowest multiplicity for the new knots, in order to have higher regularity of

the basis functions. The implementation is an easy combination of what is done for p- and

h-refinement. In the following example the problem is be solved with NURBS of degree 3,

and each interval of the original knot vector is refined by inserting one new knot without

repetitions, which yields C2 continuity at these knots:

1 nurbs = geometry . nurbs ;

2 dege l ev = max ([3 3] − (nurbs . order−1) , 0) ;

3 nurbs = nrbdege lev (nurbs , dege l ev) ;

4 [rknots , zeta , nknots] = k n t r e f i n e (nurbs . knots , [1 1] , nurbs . order−1, . . .

5 nurbs . order−2) ;

6 nurbs = nrbknt ins (nurbs , nknots) ;

20

7 geometry = geo load (nurbs) ;

Notice that in these examples the function geo load is invoked with a NURBS structure,

rather than with a binary file. In the next section we will give more details about this

function.

5.1.2. Implementation of the non-isoparametric approach

One of the main features of GeoPDEs is the fact that the geometry and the discrete

space are treated independently. This allows to solve problems using non-isoparametric

approaches, where the solution space does not coincide with the geometry space.

The computation with B-Spline spaces is easily implemented, and very similar to NURBS.

In order to solve with a NURBS geometry but with a spline discretization, the example given

in Listing 1 is modified by substituting line 6 with

space = sp bsp l i n e 2d phys (knots , [4 4] , msh) ;

where 4 is the degree of the B-Spline space associated to the knot vectors. In fact, the

knot vectors for the geometry and for the discrete space are not necessarily the same, which

means that geometry refinement can be avoided. We however remark that the continuity

of the B-Spline space must be related to the continuity of the geometry in order to obtain

optimal convergence rates (see [10, 24]).

Since the geometry and the discrete space are unrelated, different ways of representing

the geometry can be considered, as far as the geometry is given by a parameterization in the

form of (1), and a geometry structure as that described in Section 4 can be defined. The

function geo load is prepared to create the structure for geometries defined in the following

ways:

• As a structure of the NURBS toolbox, either from a file or from a variable.

• As an affine transformation, defined by a 4x4 matrix.

• As a function handle explicitly defined by the user.

In this latter case the user must provide the Matlab functions to compute the parameteriza-

tion and its derivatives. Let us show this with an example. We consider the same problem as

in Section 4, but with the domain defined by F(u, v) = ((u+ 1) cos(πv/2), (u+ 1) sin(πv/2)),

with 0 < u, v < 1. Accordingly, the parameterization is defined through the following Mat-

lab function:

function F = ring po lar map (pts)

u = pts (1 , :) ; v = pts (2 , :) ;

21

F (1 , :) = (u+1) .∗ cos (pi∗v /2) ;

F (2 , :) = (u+1) .∗ sin (pi∗v /2) ;

end

and its Jacobian matrix by:

function j a c = r ing po la r map der (pts)

u = pts (1 , :) ; v = pts (2 , :) ;

j a c = zeros (2 , 2 , numel (u)) ;

j a c (1 , 1 , :) = cos (pi∗v /2) ;

j a c (2 , 1 , :) = sin (pi∗v /2) ;

j a c (1 , 2 , :) = −pi ∗(u+1) .∗ sin (pi∗v /2) /2 ;

j a c (2 , 2 , :) = pi ∗(u+1) .∗ cos (pi∗v /2) /2 ;

end

Then, the geometry structure may be computed using the following command:

geometry = geo load ({@ring polar map , @r ing polar map der }) ;

As the knot vector for the solution B-Spline space cannot in this case be taken from the

geometry, the user must generate one, before calling the msh and space constructors. As an

example, the following call uses the kntuniform function from the nurbs toolbox to generate

a uniform knot vector with nine knotspans (ten breaks) for basis functions of degree two

and regularity one:

[knots , breaks] = kntuniform ([1 0 1 0] , [2 2] , [1 1]) ;

Apart from the modifications above the rest of the script remains identical to that of

Listing 1.

5.1.3. Introducing other modifications: a different quadrature rule

As already noted in Remark 3.1, although in many cases they coincide, the partition

of the domain Ω̂ used for quadrature, K̂h, and the Cartesian partition Qh induced by the

knot vectors of the solution function space Vh are, in general, different. One simple yet

notable example where selecting the elements of K̂h so that they do not coincide with those

of Qh is the case where the quadrature rules on macro–elements introduced in [22] are used

to reduce the total number of quadrature nodes by exploiting the higher smoothness of

the B-Spline basis functions. In this particular case, each element of K̂h is the union of a

few neighboring cells in Qh. Implementing this approach is particularly simple in GeoPDEs

where the definition of the domain partition is independent of the definition of the function

space. To clarify this with an example, we solve the same problem as in Section 5.1.2 using

a quadrature rule that integrates exactly functions of (S4
0)2 on 3 neighboring knot spans

(this rule is given in Table 9 of [22] and is reported in Table 1 below for convenience). The

nodes and weights of the quadrature rule need to be stored in the rows of a matrix as:
22

nodes weights

5.168367524056075× 10−2 1.254676875668223× 10−1

2.149829914261059× 10−1 1.708286087294738× 10−1

3.547033685486441× 10−1 1.218323586744639× 10−1

5.000000000000000× 10−1 1.637426900584793× 10−1

6.452966314513557× 10−1 1.218323586744638× 10−1

7.850170085738940× 10−1 1.708286087294738× 10−1

9.483163247594394× 10−1 1.254676875668223× 10−1

Table 1: Quadrature rule to integrate exactly functions of S4
0 on 3 neighboring knot spans

1 r u l e = [nodes ; weights] ;

Using the same knot vector as in Section 5.1.2 above, we can define the breaks for the

partition K̂h simply eliminating the redundant ones:

2 breaks{1} ([2 : 3 : end−2 ,3 :3 :end−1]) = [] ;

3 breaks{2} ([2 : 3 : end−2 ,3 :3 :end−1]) = [] ;

We can then proceed to assemble the msh structure with the following line

4 [qn , qw] = msh set quad nodes (breaks , { ru le , r u l e } , [0 1]) ;

where the last input argument specifies that the quadrature rule is defined on the interval

[0, 1]. Again, apart from the modifications above, the rest of the script remains identical to

that of Listing 1.

5.1.4. Implementation of non-homogeneous boundary conditions

The previous examples had the only purpose of explaining the code and the construction

of the different structures on which it is based, but we only considered a problem with

homogeneous boundary conditions. We now address how to implement non-homogeneous

boundary conditions of both Neumann and Dirichlet type using the boundary substructures

of Section 4.6.

Let us consider the same domain Ω of Section 4, with the boundary parts ΓN = {(x, y) :

0 ≤ x ≤ 1, y = 0} and ΓD = ∂Ω \ ΓN . Let us assume that the coefficient k(x) is constant

23

and equal to one. Then, the problem
−∆u = 0 in Ω,
∂u

∂n
= g = −ex cos(y) on ΓN ,

u = h = ex sin(y) on ΓD,

(23)

has exact solution u = ex sin(y). Since the source term is equal to zero, the first modification

to introduce in Listing 1 is to substitute line 9 by:

rhs = zeros (space . ndof , 1) ;

The exact solution has to be changed as well, so the line 15 now reads:

e r r = s p l 2 e r r o r (space , msh, u , @(x , y) exp(x) .∗ sin (y))

In order to apply the boundary conditions it is necessary to determine which kind of

condition has to be applied on each side of the domain. This is done through the arrays

nmnn\ sides and drchlt\ sides , that must be supplied by the user. Then we recall that the

structure msh.boundary contains all the information for a quadrature rule defined on the

boundary, and that space.boundary contains the information about the boundary functions

and their values at the quadrature points. Using these structures, the computation of the

Neumann condition is included after line 9 of Listing 1 as follows:

1 for i s i d e = nmnn sides

2 x = squeeze (msh . boundary(i s i d e) . geo map (1 , : , :)) ;

3 y = squeeze (msh . boundary(i s i d e) . geo map (2 , : , :)) ;

4 gva l = −exp(x) .∗ cos (y) ;

5 r h s s i d e = o p f v (space . boundary(i s i d e) , msh . boundary(i s i d e) , gva l) ;

6 rhs (space . boundary(i s i d e) . dofs) = rhs (space . boundary(i s i d e) . dofs) + r h s s i d e ;

7 end

That is, for each boundary with a Neumann condition, we first evaluate the function g at

the quadrature points of the boundary partition. Then, the boundary term appearing in

(10) is computed using the function op f v, which is the same as for the source term, but is

invoked here with the fields defined on the boundary. Finally, the assembling of the global

right-hand side is done by using the field dofs, already explained in Section 4.6.

The implementation of the Dirichlet boundary condition in IGA is not trivial, and it is

still a matter of research (see [7, 25]). For our examples we have imposed the condition by

means of an L2–projection of the boundary data. The method is neither local nor efficient,

but it provides a good example to show how the structures of the code can be used. The

following piece of code should substitute lines from 10 to 12 in Listing 1:

1 d r c h l t d o f s = unique ([space . boundary(d r c h l t s i d e s) . dofs]) ;

2 i n t d o f s = s e t d i f f (1 : space . ndof , d r c h l t d o f s) ;

24

3 M drchlt = spalloc (space . ndof , space . ndof , space . ndof) ;

4 r h s d r c h l t = zeros (space . ndof , 1) ;

5 for i s i d e = d r c h l t s i d e s

6 sp bnd = space . boundary(i s i d e) ;

7 msh bnd = msh . boundary(i s i d e) ;

8 x = squeeze (msh bnd . geo map (1 , : , :)) ;

9 y = squeeze (msh bnd . geo map (2 , : , :)) ;

10 hval = exp(x) .∗ sin (y) ;

11 M side = op u v (sp bnd , sp bnd , msh bnd , ones (s ize (x)) ;

12 M drchlt (sp bnd . dofs , sp bnd . dofs) = M drchlt (sp bnd . dofs , sp bnd . dofs) +

M side ;

13 r h s s i d e = o p f v (sp bnd , msh bnd , hval) ;

14 r h s d r c h l t (sp bnd . dofs) = r h s d r c h l t (sp bnd . dofs) + r h s s i d e ;

15 end

16 u = zeros (space . ndof , 1) ;

17 u(d r c h l t d o f s) = M drchlt (d r c h l t d o f s , d r c h l t d o f s) \ r h s d r c h l t (d r c h l t d o f s) ;

18 rhs (i n t d o f s) = rhs (i n t d o f s) − mat(i n t d o f s , d r c h l t d o f s) ∗ u(d r c h l t d o f s) ;

The first four lines identify the degrees of freedom on the Dirichlet boundary, and provide

the needed initializations. Lines 6 and 7 are inserted only for the sake of clarity. Then, for

each Dirichlet boundary we compute the value of the function h at the quadrature points,

by using the information of the boundary fields. From line 11 to 14 the matrix and the right-

hand side are assembled to compute the L2–projection, which is done in line 17. Finally,

the right-hand side of the problem is corrected on line 18.

5.2. Linear elasticity

The present section is devoted to discussing how GeoPDEs can be utilized to solve struc-

tural mechanics problems, which represent one of the first and, up to now, most prominent

applications of IGA,

As in the sections above, we choose a reference problem and go through the steps to solve

it with GeoPDEs. In particular, let us consider the case of a linear, elastic, isotropic body

filling the region Ω ⊂ Rd, d = 2, 3, with a part ΓD of its boundary being kept fixed while a

distributed load g is applied on the remaining part of the boundary ΓN . The displacement

u of the elastic body is given by the solution of the problem:

Find u ∈ V =
(
H1

0,ΓD
(Ω)
)d

such that∫
Ω

(2µ ε(u) : ε(v) + λ div(u) div(v)) =
∫

Ω

f · v +
∫

ΓN

g · v ∀v ∈ V, (24)

where λ and µ are the Lamé parameters of the material and ε(u) is the strain tensor, which

is the symmetric part of the displacement gradients. For d = 2, this represents a problem

in the plane strain regime.

The main peculiarity of (24) in comparison to the model problem considered up to

now is that the space V , and its finite dimensional approximant Vh, are now spaces of
25

vector-valued functions. Constructing a vector-valued function space in GeoPDEs is quite

straightforward. For example, in the case d = 3 one first computes, in the same manner

we have seen in Section 4, the msh structure and the space structures spx, spy and spz,

to which the components of the displacement belong. The vector-valued space structure is

then computed as

sp = s p s c a l a r t o v e c t o r 3 d (spx , spy , spz , msh, ’ d ive rgence ’ , t rue) ;

The main difference of the new structure sp with the one we have seen in Section 4.4, is

that the fields sp.shape functions and sp.shape function gradients have size d · nk · Ns · Ne,

and d · d · nk · Ns · Ne, respectively. Each basis function in the new space structure will

have only one non-zero component, and the indices of the basis functions for which the i-th

component is non-zero are listed in the array sp.comp dofs{i}, i = 1, . . . , d, while the number

d of components of the vector-valued space is stored in the field sp.ncomp.

We also remark that, in the command above, the option ’divergence’ is set to true in the

call to sp scalar to vector 3d , which means that the divergences of each basis function are to

be precomputed and stored in sp.shape function divs in order to save time when assembling

the stiffness matrix. Such assembly is done via the function call

mat = op su ev (sp , sp , msh, lambda , mu) ;

where lambda, mu are the Lamé parameters evaluated at the quadrature points. Note that

the call to the operator assembly function is the same regardless of whether d = 2 or d = 3.

Apart from the modifications described above, everything in the problem solution script

follows the same approach as shown for previous examples. In particular, postprocessing

functions are implemented in such a way that they operate both on scalar and vector-valued

spaces of functions. To show the behavior of GeoPDEs for the solution of elasticity problems,

we present below both a 2D and a 3D numerical example.

5.2.1. Plane strain example

We consider a cross-section of a thick cylinder subjected to a constant pressure on its

interior and to a prescribed, radially directed, displacement on the exterior. Exploiting the

symmetry of the problem we can simulate only one quarter of the structure by imposing

that the displacement is radially directed at the artificial boundaries, we can therefore use

for the simulation the same computational domain geometry as for the example, with an

internal radius Ri = 1 and an external one Ro = 2. The exact solution of this problem can

be expressed in polar coordinates as:

ur =
PR2

i

E(R2
o −R2

i)

(
(1− ν)r +

(1 + ν)R2
o

r

)
.

26

Figure 2: Solution of linear elasticity examples

The displacement magnitude for a value of the pressure of P = 1 and for a material with

Young modulus E = 1 and Poisson ratio ν = 0 (corresponding to λ = 0 and µ = 1/2),

computed in a space of NURBS of degree 3 and regularity 2, are shown in Fig. 2(a).

5.2.2. 3D Linear elasticity example

As an example of 3D structural analysis we consider the “horseshoe”-shaped solid pre-

sented in Section 4.3 of [1]. We set the material properties to E = 1 and ν = .3, we prescribe

a null displacement on the flat faces and homogeneous Neumann boundary conditions on

the remaining faces, while the body force f is directed in the negative z direction and has

a constant modulus of 1. The contour plot of the displacement magnitude for a geometry

represented by degree 3 NURBS functions is depicted in Fig. 2(b).

5.3. Stokes equations

While in structural analysis the isoparametric paradigm is of great importance, in other

applications, where it is not as fundamental, this requirement may be relaxed in order to

make the most of other features of IGA. In incompressible fluid dynamics, for instance,

the isoparametric paradigm can be traded off to obtain a discretization method in which

the incompressibility constraint is satisfied exactly [11]. In this section we show how to use

GeoPDEs to solve the 2D Stokes problem with the approximation methods introduced in [11].

The mixed variational formulation of the Stokes equation describing the flow of a viscous
27

incompressible fluid of constant viscosity µ reads:

Find u ∈ (H1
0 (Ω))2 and p ∈ L2(Ω)/R s.t.∫

Ω

µ∇u : ∇v −
∫

Ω

p div v =
∫

Ω

f · v ∀v ∈ (H1
0 (Ω))2 (25)∫

Ω

q div u = 0 ∀q ∈ L2(Ω)/R.

Three compatible pairs of discretization spaces are considered in [11] in which the discrete

counterpart of (25) can be set. Recalling the notation of Section 2.2, and assuming for

simplicity that the regularity α is the same at all knots, we first define a B-Spline space for

the pressure in the parametric domain as Q̂h ≡ Q̂h(p, α) = Sp,pα,α, which will be the same

for the three pairs. The discrete spaces for the velocity are then defined, in the parametric

domain, as

V̂ TH
h = Sp+1,p+1

α,α × Sp+1,p+1
α,α ; V̂ RT

h = Sp+1,p
α+1,α × S

p,p+1
α,α+1; V̂ NDL

h = Sp+1,p+1
α+1,α × Sp+1,p+1

α,α+1 .

Here TH, RT and NDL stand for Taylor-Hood, Raviart-Thomas and Nédélec (of the second

kind) respectively, as these B-Spline spaces are consistent generalizations of the well-known

finite element spaces known by these names. As explained in [11], the way to map the

spaces to the physical domain is different in each case. In particular the TH spaces can

be mapped to the physical domain Ω by the same “component-wise” mapping used in the

previous section, i.e.

V TH
h = {v : v ◦ F ∈ V̂ TH

h }, Qh = {q : q ◦ F ∈ Q̂h}. (26)

The same mapping for the pressure space is used in the two other pairs. On the other hand,

to get stable discretizations, the velocity spaces for RT and NDL are transformed via a

Piola-type mapping, i.e.

V RT
h =

{
DF

det(DF)
v : v ◦ F ∈ V̂ RT

h

}
, V NDL

h =
{

DF
det(DF)

v : v ◦ F ∈ V̂ NDL
h

}
. (27)

Furthermore, when no-slip boundary conditions are applied to the whole boundary of Ω, the

discretization based on RT spaces suffers a loss of accuracy in the pressure approximation.

One of the possible remedies proposed in [11] is to substitute the pressure space Qh by

a smaller space Q̃h ⊂ Qh, which is a space of T-Spline functions (see [26]) obtained by

eliminating one degree-of-freedom per corner, as shown in Fig. 5.3.

GeoPDEs provides functions to build the function space structures corresponding to the

TH, NDL and RT space pairs. The way these functions are invoked is shown in the following

three lines of code:
28

0

h

2h

3h

0 h 2h 3h 4h

(a)

0

h

2h

3h

0 h 2h 3h 4h

(b)

0

h

2h

3h

0 h 2h 3h 4h

(c)

Figure 3: Removal of redundant degrees of freedom of bQRT
h

[spv , spp] = s p b s p l i n e t h 2 d p h y s (knotsp , degree , msh) ;

[spv , spp] = s p b s p l i n e n d l 2 d p h y s (knotsp , degree , msh) ;

[spv , spp , P] = s p b s p l i n e r t 2 d p h y s (knotsp , degree , msh) ;

In each of the calls above, knotsp and degree refer to the discrete space for the pressure. At

the interior of these functions, the pressure space structure spp is computed as in Section 4.4.

Then, the knot vectors and degrees for each component of the velocity are automatically

computed from those of the pressure, and the spv structure is computed as in Section 5.2.

Finally, for NDL and RT spaces the Piola-mapping is also applied.

Of particular interest is the additional output P given by the RT space constructor, which

is a matrix that operates the change of basis from the B-Spline space Qh to the T-Spline

space Q̃h. The purpose for computing P is that it allows to work with functions in Q̃h

without the need of implementing a constructor for general T-Spline spaces.

As an example we consider a problem set on one eighth of an annulus, described through a

NURBS parameterization, with no-slip boundary conditions on the whole domain boundary.

The exact solution and right-hand side can be found in the file test stokes annulus of the

package. In Fig. 4(a) we show the velocity computed with RT elements for p = 3 and α = 1,

while in Fig. 4(b) and Fig. 4(c) we compare the divergence of the velocity field obtained by

the TH discretization scheme with that of a RT scheme with the same degree and regularity

for the pressure component of the solution.

5.4. Maxwell equations

The main interest for using IGA in electromagnetism, apart from the exact description

of geometry, is the higher regularity of the solution with respect to finite elements. For edge

finite elements, spreadly used in computational electromagnetims, the normal component

of the computed solution is discontinuous. This property is useful to simulate problems

29

(a) (b) (c)

Figure 4: Velocity magnitude for RT (a), and divergence for TH (b) and RT (c).

with several materials, since the normal component of the physical solution is also discon-

tinuous, but within each material higher regularity may be desirable. The B-Spline-based

discretization introduced in [9, 10], besides maintaining exact geometry, provides more reg-

ular solutions than edge elements. We now show how these methods are implemented in

GeoPDEs, explaining the main modifications that have to be done in order to solve Maxwell’s

eigenvalue problem. The explanation of the discretization scheme is extensively described

in the aforementioned papers, along with several numerical examples.

We focus here on the 3D Maxwell eigenproblem. Let Ω ⊂ R3 be defined as in (1) and

let its boundary be split into two disjoint parts, ∂Ω = ΓD ∪ ΓN . The problem with mixed

boundary conditions reads:
curl (µ−1 curlE) = λεE in Ω,

E× n = 0 on ΓD,

µ−1 curlE× n = 0 on ΓN .

The equivalent weak problem is to find an electric field E ∈ H0,ΓD
(curl; Ω) such that∫

Ω

µ−1 curlE · curl v = λ

∫
Ω

εE · v ∀v ∈ H0,ΓD
(curl; Ω) ,

with H0,ΓD
(curl; Ω) the space of square integrable vectorial functions in Ω such that their

curl is also square integrable, and their tangential components are null on the boundary ΓD.

Using the notation of Section 2.2, and assuming again that the multiplicity is the same

for all internal knots, the discrete space in the parametric domain Ω̂ is taken equal to

V̂h := Sp1−1,p2,p3
α1−1,α2,α3

×Sp1,p2−1,p3
α1,α2−1,α3

×Sp1,p2,p3−1
α1,α2,α3−1. This belongs to a sequence of discrete spaces

that, along with their continuous counterparts, form a commuting De Rham diagram (see

30

[9]). The discrete space in the physical domain is then defined by using a curl conserving

transformation [27, Section 3.9], in the form

Vh =
{
u : (DF)T (u ◦ F) ∈ V̂h

}
.

For the implementation, the geometry and msh structures are computed exactly as in

all the previous problems. The only differences appear in the structure space. This is

constructed with the commands:

[knots1 , knots2 , knots3 , degree1 , degree2 , degree3] = knt derham (knots , degree) ;

space = s p b s p l i n e c u r l t r a n s f o r m 3 d (knots1 , knots2 , knots3 , degree1 , . . .

degree2 , degree3 , msh) ;

where the first line automatically constructs the knot vectors and degrees for every com-

ponent of the product space Vh, and the second one constructs the new space structure.

Internally, this function first builds the structure in the parametric domain in the same

fashion we explained in Section 5.2, and then applies the curl-conserving transform, simi-

larly to what done in Section 5.3 for the Piola transform.

The resulting structure is roughly the same we have seen for the other vectorial problems,

the main difference being that it includes the field shape function curls, which has size equal to

3 · nk ·Ns ·Ne. The second important difference is that, since the boundary conditions just

involve the tangential components of the solution, only the shape functions for the tangential

components are stored in the boundary field.

After the construction of the structure, the matrices are assembled in the same manner

we have seen for previous problems, using the commands

s t i f f m a t = o p c u r l u c u r l v 3 d (space , space , msh, 1 . /mu) ;

mass mat = op u v (space , space , msh, e p s i l o n) ;

where mu and epsilon are the values of the physical parameters evaluated at the quadrature

points. The eigenvalue problem is then solved by using the eig command from Matlab or

Octave.

The postprocessing part is also analogous to what we have explained before. In Fig. 5

we show the magnitude of the second and fifth eigenfunctions in a three quarters of the

cylinder, with ∂Ω = ΓD. In this case the geometry is exactly constructed with only three

elements.

Finally, we would like to remark that the code includes examples for different formulations

of the eigenvalue problem (see [28]), and for the source problem with non-homogeneous

boundary conditions.

31

(a) (b)

Figure 5: Magnitude of the second and fifth eigenfunctions in three quarters of the cylinder.

Remark 5.1. The 2D and the 3D cases are a little bit different, since in the former we have

two different differential operators: curl and curl . The operator curl acts on scalar vari-

ables and returns vector-fields, whereas the operator curl acts on vector-fields and returns

scalar variables. Something similar occurs with the tangential boundary conditions. For this

reason, some functions have different versions for the 2D and the 3D cases.

6. The treatment of NURBS multipatch conforming geometries

We have included in the code a small package to deal with multipatch geometries. For

this we have always assumed that the patches are compatible, in the sense that the meshes

and control points must coincide on the interface, even after refinement. More sophisticated

approaches, allowing for different refinements on each patch, can be found in [12, Ch. 3].

Let us assume that the domain Ω is formed by the union of np disjoint subdomains,

or patches, in the form Ω = ∪np

l=1Ωl, with Ωl ∩ Ωl′ = ∅,∀l 6= l′. Each patch is defined,

analogously to (8), as Fl : Ω̂ −→ Ωl, with Ω̂ being always the unit square or cube. We

require that the patches match conformingly, in the sense that, if Ωi and Ωj are two patches

with a common interface Γij = Ωi ∩ Ωj 6= ∅, and Qih,Q
j
h are their respective meshes, then

they must coincide on the interface, i.e., Qih|Γij
= Qjh|Γij

, with the same multiplicity for the

corresponding knots.

Since the meshes are the same, the basis functions are also the same for both patches.

Hence, it is sufficient to define a connectivity array, which identifies the matching basis

functions on each patch with one single function in the global domain (see [12]). In order

32

to define this connectivity, we have made use of the data format for multipatch geometries

proposed in [29].

Let us start with the 2D case. For each interface we must know: the number of the two

patches, the numbers of the coinciding boundary surfaces on each patch, and a flag telling

if the parametric direction on the first patch coincides with the parametric direction on the

second. The first numbers let us know, for each patch, which degrees of freedom do not

vanish on the interface (stored in boundary.dofs). The flag tells us whether the degrees of

freedom match automatically, or if those of the second patch must be reordered (using the

fliplr command).

In the 3D case, instead, the information we need for each interface is the following:

the number of the two patches, and of their matching boundaries, a flag telling if the first

parametric coordinate on the first surface coincides with the first parametric coordinate of

the second surface, and two flags telling if each parametric direction coincides. Using the

first numbers, we recover the degrees of freedom for each patch from boundary.dofs, and

rewrite them in the form of two matrices. The first flag tells if the second matrix should be

transposed, whereas the two other flags let us know if the degrees of freedom in this matrix

should be reordered, one with the fliplr command and the other with the flipud command.

Remark 6.1. Dealing with multipatch geometries for vector field approximations is a little

bit more complicated. In particular, when applying the curl-conserving or Piola transforms,

it is necessary to define an orientation for the tangential and the normal components, re-

spectively. However, this is not much different from what is done for edge and face finite

elements.

7. Conclusion

In this paper, we have presented the design philosophy and main features of GeoPDEs, a

suite of free software tools for applications on Isogeometric Analysis. A first goal of GeoPDEs

is to constitute an entry point for researchers interested in the practical issues related to

the implementation of an IGA code, while another important aim is to provide a rapid

prototyping and testing tool for the development of novel IGA algorithms.

With these main objectives in mind, we have tried to explain all basic features and

capabilities of GeoPDEs on a simple model problem (i.e., Poisson), showing also how to

use the code as a starting point to develop new IGA methods to be applied to different

engineering fields. For instance, applications to elasticity, Stokes and Maxwell problems

have been discussed and the solution of some numerical examples has been shown. Moreover,
33

among the different topics related to the use and possible extension of GeoPDEs covered in this

paper, we have considered in particular some delicate issues such as h−, p−, or k−refinement

strategies, boundary condition imposition, implementation of non-isoparametric methods,

use of different quadrature strategies, treatment of multipatch geometries.

As a conclusion, we believe that the present work, along with the release of the GeoPDEs

suite, may complement the literature on IGA (see, e.g., [12] and references therein), consti-

tuting on one hand an important tool for people meeting IGA for the first time and on the

other hand the basis for the rapid development of new IGA ideas and applications.

Acknowledgments

The authors were partially supported by the European Research Council through the FP7

Ideas Starting Grant 205004: GeoPDEs – Innovative compatible discretization techniques for

Partial Differential Equations. This support is gratefully acknowledged. The authors also

wish to thank M. Bercovier, A. Buffa, T.J.R. Hughes and G. Sangalli, for many fruitful

discussions during the preparation of this work.

A. The NURBS toolbox

For the description of NURBS geometric entities, and also for the computation of the

shape functions, we use the NURBS toolbox, originally implemented in Matlab by Mark

Spink [30]. The original toolbox was mainly developed for the construction of NURBS

curves and surfaces, based on the algorithms of [19]. In order to deal with three-dimensional

problems in IGA, we have extended some of the basic algorithms to trivariate NURBS. The

new version can be found in the svn repository of the Octave sourceforge project, and it

is still compatible with Matlab. We give now a short explanation of the main features of

the toolbox, and refer the reader to [30] for more detailed documentation.

The geometric entities in the NURBS toolbox are described by a structure, that con-

tains all the necessary information. The main fields of this structure are listed below, and

explained using the same notation as in Section 2.2:

• order: a vector with the order in each direction. In the splines literature, the B-Splines

of degree p are said to have order k = p+ 1. Thus, it stores the values pd + 1.

• knots: knot vectors Ξd, stored as a cell array.

• number: nd, number of basis functions in each direction.

34

• coefs: weighted control points, stored in an array of size (4, n1) for a curve, (4, n1, n2)

for a surface, and (4, n1, n2, n3) for a volume. That is, the first three rows contain

the coordinates of the control points Cj multiplied by the weight wj, and the fourth

row contains the weight wj (see [19, Section 4.2]). The weights are always stored in

the fourth coordinate, even for two-dimensional geometries, and for B-Splines they are

equal to one.

The toolbox contains several functions performing the basic operations with NURBS. The

function nrbmak is very useful to create simple NURBS geometries. It is invoked passing the

control points and the knots as arguments, and it returns a NURBS structure as we have

just seen. For instance, the lines of code

1 c o e f s (1 : 3 , 1 , 1) = [1 ; 0 ; 0] ; c o e f s (4 , 1 , 1) = 1 ;

2 c o e f s (1 : 3 , 1 , 2) = [sqrt (2) /2 ; sqrt (2) /2 ; 0] ; c o e f s (4 , 1 , 2) = sqrt (2) /2 ;

3 c o e f s (1 : 3 , 1 , 3) = [0 ; 1 ; 0] ; c o e f s (4 , 1 , 3) = 1 ;

4 c o e f s (1 : 3 , 2 , 1) = [2 ; 0 ; 0] ; c o e f s (4 , 2 , 1) = 1 ;

5 c o e f s (1 : 3 , 2 , 2) = [sqrt (2) ; sqrt (2) ; 0] ; c o e f s (4 , 2 , 2) = sqrt (2) /2 ;

6 c o e f s (1 : 3 , 2 , 3) = [0 ; 2 ; 0] ; c o e f s (4 , 2 , 3) = 1 ;

7 knots = { [0 0 1 1] , [0 0 0 1 1 1] } ;

8 nurbs = nrbmak (coe f s , knots) ;

would create the geometry of Fig. 1. The assignment of the weight values has been separated

for the sake of clarity.

In Section 5.1.1 we have used the functions nrbkntins and nrbdegelev, which perform knot

insertion and degree elevation, respectively. The first one is invoked by passing a NURBS

structure and a cell-array containing the knots that will be inserted in each direction. The

arguments for the second one are a NURBS structure, and an array telling how much the

degree will be raised in each direction. The output of both functions is a NURBS structure.

The following lines of code

9 nurbs = nrbdege lev (nurbs , [1 0]) ;

10 new knots = linspace (0 , 1 , 10) ;

11 nurbs = nrbknt ins (nurbs , {new knots (2 : end−1) new knots (2 : end−1)}) ;

would raise the degree of the surface by 1 in the first parametric direction, and then new

knots would be inserted uniformly in both directions. The result is exactly the NURBS

geometry used in the example of Section 4, and contained in the file ‘ring refined.mat’.

B. Summary of data structures

In this section we summarize for convenience the fields that compose the main data

structures of GeoPDEs. These can be found in Tables 2, 3 and 4 for the geometry, msh and

space structures, respectively.
35

Field name Type Dimensions Description

map function handle 1×1 a function to evaluate the parameterization

map der function handle 1×1 a function to evaluate the first derivatives of the

parameterization

Optional fields

map der2 function handle 1×1 a function to evaluate the second order derivatives

of the parameterization

nurbs struct 1×1 If the geometry is a NURBS, a structure in the

NURBS toolbox format

Table 2: The geometry data structure

C. A new version of the code, GeoPDEs 2.0.0

In September 2011, GeoPDEs 2.0.0 was released. The main goal of this version was

to improve the efficiency of the code, both in terms of computational time and memory

consumption, for which it was necessary to change important parts of the implementation.

We present here a brief description of the changes introduced in this version, with the help

of the examples given in Sections 4 and 5 to show how they can be adapted to GeoPDEs

2.0.0. All these examples are also included in the packages to download.

C.1. The simple example revisited

Let us begin with the simple example given in Section 4.1, that is solved in the new

version with the code given in Listing 3. All the important differences are in lines from 4 to

11, so we will focus on them.

The main change with respect to previous versions is that the msh and space structures

have been transformed into classes. However, the commands to access the information on

these classes is the same that was used for the structures, so a normal user should not find

any problem about this. What is new is that, in order to save memory, the biggest fields

of the old structures are not precomputed at every quadrature point, but instead they are

computed whenever they are needed, as we will see below.

Remark C.1. In fact there are two different classes for the mesh: msh 2d and msh 3d, and

four different classes for the scalar spaces, namely sp nurbs 2d, sp nurbs 3d, sp bspline 2d and

sp bspline 3d. We will often refer to them in a general way as the msh and space classes.
36

Field name Type Dimensions Description

nel scalar 1×1 number of elements of the partition

nqn scalar 1×1 number of quadrature nodes per element

quad nodes NDArray nd×nqn×nel coordinates of the quadrature nodes in para-

metric space, nd being the number of space

dimensions (2 or 3)

quad weights Matrix nqn×nel weights associated to the quadrature nodes

geo map NDArray nd×nqn×nel physical coordinates of the quadrature nodes

geo map jac NDArray nd×nd×nqn×nel Jacobian matrix of the map evaluated at the

quadrature nodes

jacdet Matrix nqn×nel determinant of the Jacobian evaluated at the

quadrature nodes

boundary struct-array 1×(2 · nd) an (nd - 1)-dimensional msh structure for each

side of the boundary

Optional fields

qn cell-array 1×nd if the mesh is tensor-product, quadrature

nodes along each direction

breaks cell-array 1×nd if the mesh is tensor-product, breaks along

each direction

geo map der2 NDArray nd×nd×nd×nqn×nel second order derivatives of the map evaluated

at the quadrature nodes

normal NDArray nd×nqn×nel if the mesh is a boundary mesh, exterior nor-

mal evaluated at quadrature nodes

Table 3: The msh data structure (version 1.1.0 or earlier)

37

Field name Type Dimensions Description

ndof scalar 1×1 total number of degrees of freedom

ncomp scalar 1×1 number of components of the vector

field

nsh max scalar 1×1 maximum number of shape functions

per element

nsh Matrix 1×nel actual number of non-vanishing

shape functions on each element

connectivity Matrix nsh max×nel indices of non-vanishing shape func-

tions on each element

shape functions NDArray ncomp×nqn×

nsh max×nel

basis functions evaluated at each

quadrature node in each element

shape function gradients NDArray ncomp×nd×nqn×

nsh max×nel

basis function gradients evaluated at

each quadrature node in each ele-

ment

spfun function handle 1×1 function to evaluate an element of

the discrete function space, given

the Fourier coefficients and a set of

points in the parametric space

boundary struct array 1×(2 · nd) struct array representing the space of

traces of basis functions on each edge

Optional fields

ndof dir Matrix 1×nd if the space is tensor product, degrees

of freedom along each direction

comp dofs cell-array 1×ncomp indices of shape functions for each

component of the vector field

dofs Matrix 1×ndof if the space is a boundary space,

global indices of shape functions

Table 4: The space data structure (version 1.1.0 or earlier)

38

1 geometry = geo load (’ r i n g r e f i n e d . mat ’) ;

2 knots = geometry . nurbs . knots ;

3 [qn , qw] = msh set quad nodes (knots , msh gauss nodes (geometry . nurbs . order)) ;

4 msh = msh 2d (knots , qn , qw, geometry) ;

5 space = sp nurbs 2d (geometry . nurbs , msh) ;

6 mat = op gradu gradv tp (space , space , msh, @(x , y) ones (s ize (x))) ;

7 rhs = o p f v t p (space , msh, . . .

@(x , y) (8−9∗sqrt (x.ˆ2+y . ˆ 2)) .∗ sin (2∗atan (y . / x)) . / (x.ˆ2+y . ˆ 2)) ;

8 d r c h l t d o f s = [] ;

9 for i s i d e = 1 :4

10 d r c h l t d o f s = union (d r c h l t d o f s , space . boundary(i s i d e) . dofs) ;

11 end

12 i n t d o f s = s e t d i f f (1 : space . ndof , d r c h l t d o f s) ;

13 u = zeros (space . ndof , 1) ;

14 u(i n t d o f s) = mat(i n t d o f s , i n t d o f s) \ rhs (i n t d o f s) ;

15 s p t o v t k (u , space , geometry , [20 2 0] , ’ l a p l a c e s o l u t i o n . vts ’ , ’ u ’)

16 e r r = s p l 2 e r r o r (space , msh, u , . . .

@(x , y) ((x.ˆ2+y . ˆ 2)−3∗sqrt (x.ˆ2+y . ˆ 2) +2) .∗ sin (2 .∗ atan (y . / x)))

Listing 3: Solving the model problem with GeoPDEs.

The constructor of the msh class works in one single call, instead of computing the mesh

in the parametric domain and then passing to the physical domain. The constructor is called

in the following way:

msh = msh 2d (knots , qn , qw, geometry) ;

The output is an object of the class msh 2d, that contains the fields (in fact, they should be

called properties) listed in Table 5. Notice that most of these are fields that already existed

for the msh structure in previous versions. They can be accessed in the same way as the

fields of any structure (for instance, msh.nel gives the number of elements).

Then, the constructor of the space is called in the line:

space = sp nurbs 2d (geometry . nurbs , msh) ;

We have removed any reference to the physical domain in the name of the function. The out-

put is an object of the class sp nurbs 2d, that contains the fields (properties) listed in Table 7.

Again, most of these were already contained in the old space structure, but the biggest ar-

rays, such as shape function gradients, have been removed, and will be only computed when

necessary.

We will give some more details about the msh and space classes later, as soon as we

need them. For now let us concentrate on the example. The next two lines are for the

computation of the matrix and the right-hand side:

mat = op gradu gradv tp (space , space , msh, @(x , y) ones (s ize (x))) ;

39

Figure 6: Elements considered at each step of the loop in the tensor product operators

rhs = o p f v t p (space , msh, . . .

@(x , y) (8−9∗sqrt (x.ˆ2+y . ˆ 2)) .∗ sin (2∗atan (y . / x)) . / (x.ˆ2+y . ˆ 2)) ;

The first important change here is that the last argument is not the coefficient evaluated

at the quadrature points, but a function handle to compute it. The coefficients will be

evaluated inside each function. The second difference is in the names of the functions of the

operators, that now end with tp, that stands for tensor product. This is because the new

version of the operators makes a better use of the tensor product structure of the spaces.

As an example, we show below the code of the operator op gradu gradv tp, to compute the

stiffness matrix.

1 function A = op gradu gradv tp (space1 , space2 , msh, c o e f f)

2 A = spalloc (space2 . ndof , space1 . ndof , 3∗space1 . ndof) ;

3 ndim = numel (msh .qn) ;

4 for i e l = 1 :msh . nel dir (1)

5 msh col = msh evaluate col (msh, i e l) ;

6 s p 1 c o l = sp evaluate col (space1 , msh col , ’ va lue ’ , f a l s e , ’ g rad i en t ’ , t rue) ;

7 s p 2 c o l = sp evaluate col (space2 , msh col , ’ va lue ’ , f a l s e , ’ g rad i en t ’ , t rue) ;

8 for idim = 1 : ndim

9 x{ idim} = reshape (msh col . geo map(idim , : , :) , msh col .nqn , msh col . nel) ;

10 end

11 A = A + op gradu gradv (sp1 co l , sp2 co l , msh col , c o e f f (x { :})) ;

12 end

13 end

The first two lines are for memory allocation and to compute the dimension of the problem,

since the function must work both for 2D and 3D problems. But the important thing is the

loop and what happens inside it. The idea is very simple: at every step of the loop we fix

the element in the first parametric direction, and then compute everything in one “column”

of elements, obtained by changing the other directions (see Figure 6).

The msh class contains a function (to be precise, it should be called a method) that

40

computes all the information related to the quadrature rule in one column. The function is

invoked by giving as arguments an msh object and the number of the element in the first

parametric direction, as follows:

msh col = msh evaluate col (msh, i e l) ;

The output is a msh structure, as the one described in Section 4.3, but only the values for

the selected column are computed.

Analogously, the space class contains a function (method) that computes the fields of

the space structure for one column of the mesh. An example of its usage is the following

s p 1 c o l = sp evaluate col (space1 , msh col , ’ va lue ’ , f a l s e , ’ g rad i en t ’ , t rue) ;

The first two input arguments are a space object, and a msh structure for just one column,

as the one computed before. The other arguments are to decide which fields of the structure

should be computed. For instance, in our example the output argument is a space struc-

ture with the values for one column of the mesh, but since we are computing the stiffness

matrix, we ask the method to compute the field shape function gradients, but not the field

shape functions, that is not necessary.

After that, the command

x{ idim} = reshape (msh col . geo map(idim , : , :) , msh col .nqn , msh col . nel) ;

computes the quadrature points, to evaluate the coefficients. Finally, the contribution to

the stiffness matrix by the column of elements is given in the line

A = A + op gradu gradv (sp1 co l , sp2 co l , msh col , c o e f f (x { :})) ;

Notice that this function is the same as the one described in Section 4.5, and it is invoked

in the same way2: the first arguments are two space structures and a msh structure, with

the difference that now they only contain the fields for one column of the mesh. And as in

the previous version, the last argument is the coefficient evaluated at the quadrature points,

but for just one column of the mesh.

Let us now continue with the example of Listing 3. The lines from 8 to 11 are to identify

the degrees of freedom on the boundary.

d r c h l t d o f s = [] ;

for i s i d e = 1 :4

d r c h l t d o f s = union (d r c h l t d o f s , space . boundary(i s i d e) . dofs) ;

end

2The functions without the tp termination compute the same thing that in version 1.1.0, but in a more

efficient way than before.

41

This is not nice, since we are doing in four lines the same thing that was done in one single

line in the previous version. The problem is that a structure that is a field of a class, is

not accessed in the same way as a structure that is a field of another structure3. This will

force to access the boundary fields always within a loop, but as the number of boundaries is

small, we think that this will not affect the efficiency of the code. We will give more details

about boundary conditions in the next section.

Finally, in the lines 15 and 16 the difference is that now the functions for postprocessing

receive as input arguments the space and msh objects, instead of the old structures. These

functions also take advantage of the tensor product structure of the spaces, in the same way

we have seen for the operators. Another difference is that the dimension of the space has

been removed from the name of the sp to vtk function, since now the same function works

for 2D and 3D domains.

C.2. Implementation of non-homogeneous boundary conditions

In the next sections we explain how the examples of Section 5 can be adapted to GeoPDEs

2.0.0. We will skip some of the examples, since the modifications are analogous to the ones we

have just seen, and start with the implementation of non-homogeneous boundary conditions,

i.e., the example in Section 5.1.4.

In previous versions of the code, the msh and space structures contained a field called

boundary, with all the information about the quadrature rule and the shape functions on the

boundary. In the new version, in order to save memory, the corresponding boundary field

only contains part of this information (see Tables 5 and 7 for details). The new classes also

include the methods to compute the rest of the information on each side of the boundary.

These methods are called msh eval boundary side and sp eval boundary side, respectively.

The following lines of code, that are used to impose the Neumann boundary condition of

the problem, show how these functions can be used:

for i s i d e = nmnn sides

msh side = msh eval boundary side (msh, i s i d e) ;

s p s i d e = sp eval boundary side (space , msh side) ;

x = squeeze (msh side . geo map (1 , : , :)) ;

y = squeeze (msh side . geo map (2 , : , :)) ;

gva l = − exp(x) .∗ cos (y) ;

r h s l o c = o p f v (sp s ide , msh side , gva l) ;

rhs (s p s i d e . dofs) = rhs (s p s i d e . dofs) + r h s l o c ;

end

3This can be fixed by changing the method subsref in each new class.

42

The function msh eval boundary side takes as input arguments the msh object and the

number of the boundary side for which we want to do the computations. The output is a

structure with all the necessary fields to apply the quadrature rule on that boundary, as in

the boundary field of the old version.

The function sp eval boundary side, takes as input arguments the space object and, in-

stead of the side number, the boundary structure just computed for the msh. It gives as the

output a structure equivalent to the boundary field of the old space structure.

Since the computed boundary structures contain the same fields than in previous versions,

in the other lines of code we only have to replace msh.boundary(iside) and sp.boundary(iside)

by msh side and sp side, respectively. Notice that in this case the operator is the one of the

previous version (not the tensor product one).

Also for the computation of Dirichlet boundary conditions it is necessary to construct

the structures for each boundary. Thus, lines 6 and 7 in the example of Section 5.1.4, must

be replaced by the following two lines:

msh bnd = msh eval boundary side (msh, i s i d e) ;

sp bnd = sp eval boundary side (space , msh bnd) ;

The outputs are two boundary structures, as in the previous version of GeoPDEs, . For this

reason, the other lines of code do not have to be changed.

C.3. Implementation of vectorial basis functions

The changes that we have seen in the previous sections have been also implemented for

vector-valued spaces. This means that also in the vectorial case, the old space structure has

been transformed into a class, and the fields are not stored in memory anymore, but instead

they are computed when needed. We will see how the space classes are used in the examples

of linear elasticity, Stokes equations and Maxwell equations.

C.3.1. Linear elasticity

Let us consider the same example of linear elasticity already described in Section 5.2.

The first difference with respect to older versions of the code is that the msh structure, and

the scalar spaces spx, spy and spz are not structures anymores. Instead, they are objects

computed in the same manner that we have seen for the scalar example. Once the scalar

space objects have been defined, the vectorial space object is constructed with the command

sp = sp vec to r 3d (spx , spy , spz , msh) ;

The output is a space object of the class sp vector 3d, that only contains some of the fields of

the old structure. The list of the fields of the vectorial classes can be seen in Table 8.
43

After constructing the space, the stiffness matrix is assembled with the command

mat = op su ev tp (sp , sp , msh, lambda , mu) ;

As we have seen before, the differences are in the name of the operator (tp), and in the last

two arguments lambda and mu, that are now the function handles to compute the values of

the coefficients at any given set of points.

We also notice that in the construction of the space it was not necessary to set any option

to compute the divergence, since this will not be stored as a field of the space. Instead, the

divergence is computed inside the operator function, in a similar way to what we have seen

for the gradient in the example of Section C.1.

C.3.2. Stokes equations

Apart from the generalizations of Taylor-Hood (TH), Raviart-Thomas (RT) and Nédélec

(NDL) elements, the code now includes a new discretization scheme, called subgrid element

(SG), that allows for higher regularity than Taylor-Hood. However, since the implementation

of this method in GeoPDEs is very similar to Taylor-Hood elements, we will not explain it in

this paper, and refer to [31] for details.

We have created one single function that is used to compute any of the four discretiza-

tions. The function is invoked as follows

[spv , spp , P] = s p b s p l i n e f l u i d 2 d (element name , . . .

geometry . nurbs . knots , nsub , degree , r e g u l a r i t y , msh) ;

where the input arguments are the type of element (‘TH’, ‘SG’, ‘RT’ or ‘NDL’), the knot

vector of the starting geometry, the number of subdivisions for refinement, the degree and

regularity of the pressure space, and a msh object, already computed like in the previous

examples of this appendix.

The first task of the function is the same for any element type, and it consists on refining

the knot vector and computing the scalar space object for the discrete pressure space, that is

returned as the output argument spp. Since it is a scalar space, its construction is analogous

to what we have seen in previous sections of this appendix.

The second task is the construction of the vectorial space object for the velocity, that

is, the output argument spv. For this it is necessary to compute the knot vector and the

scalar space object for each component of the velocity. Since each component is a scalar,

they are computed as in previous sections. Then, the vectorial space object is constructed

considering the right transformation: a component-wise mapping for TH and SG elements,

and a Piola mapping for RT and NDL elements. In the first case, the space object belongs to

44

the class sp vector 2d, and it is constructed as in the linear elasticity example. In the second

case, the space object belongs to the class sp vector 2d piola transform, and it is constructed

with the command

spv = s p v e c t o r 2 d p i o l a t r a n s f o r m (sp1 , sp2 , msh) ;

where sp1 and sp2 are the scalar spaces for each component. The fields of the vector space

classes are those listed in Table 8, independently of the mapping we choose. The difference

between the two vectorial classes is that, when computing the shape functions and their

derivatives, for instance with sp evaluate col, they will apply the mapping corresponding to

their class.

Finally, the last output argument is the matrix P already mentioned in Section 5.3, that

is only used for RT elements.

C.3.3. Maxwell equations

To adapt the example of Section 5.4, the computation of the knot vectors and the degrees

for the discrete spaces is not changed. The difference is that now the vectorial space is not

constructed in one single call, but it is necessary to first compute the scalar spaces, exactly

as we have seen in the first sections of this appendix.

sp1 = s p b s p l i n e 3 d (knots u1 , degree1 , msh) ;

sp2 = s p b s p l i n e 3 d (knots u2 , degree2 , msh) ;

sp3 = s p b s p l i n e 3 d (knots u3 , degree3 , msh) ;

Then, the vectorial space is constructed as an object of the class sp vector 3d curl transform,

with the following command

space = s p v e c t o r 3 d c u r l t r a n s f o r m (sp1 , sp2 , sp3 , msh) ;

Comparing this class with the other vectorial space classes, the main difference is that on each

boundary, the field comp dofs only gives the degrees of freedom for the tangential functions.

Analogously, the function sp eval boundary side will only compute the information for the

tangential boundary functions.

For the assembly of the matrix, the commands we have to use are the following

invmu = @(x , y , z) 1 . /mu(x , y , z) ;

s t i f f m a t = o p c u r l u c u r l v t p (space , space , msh, invmu) ;

Again, the first input arguments are two space objects and one msh object, and the last

input argument is the function handle to compute the coefficients. The dimension of the

problem has been removed from the name of the operator, since the function automatically

checks whether the problem is 2D or 3D.

45

C.4. Adapting your own code to GeoPDEs 2.0.0

In the previous examples we have explained all the important changes that have to be

done to adapt the examples to his new version. They can be summarized in the following

list

1. The msh and space structures have been transformed into classes, and their construc-

tion is different.

2. The largest fields (as shape function gradients) are not stored in memory anymore, but

computed when needed with the function sp evaluate col.

3. Also the information for the boundary is not stored in memory, but computed with

the function sp eval boundary side.

4. For matrix and vector assembly, the operators include the termination tp, for tensor

product.

5. The last argument in the operators is not the coefficient evaluated at the quadrature

points, but instead it is a function handle to evaluate it.

6. Some functions, and in particular for postprocessing, have lost any reference to the

dimension in their name.

Finally, it is possible that in your code you were using some of the fields that were

precomputed in previous versions, and you may prefer not to change that part. In this case,

you can use the functions msh precompute and sp precompute, that allow you to precompute

any of the fields of the old structures (except boundary). For instance, the line of code

space = sp precompute (space , msh, ’ c o n n e c t i v i t y ’ , t rue) ;

would give you as the output an object of the space class, for which the connectivity field is

also precomputed.

D. Summary of classes in GeoPDEs 2.0.0

Here we summarize for convenience the fields (properties) and functions (methods) that

compose the msh and space classes in GeoPDEs 2.0.0. The fields and functions for the msh

class are listed in Tables 5 and 6, respectively. The fields for space scalar and vectorial

spaces are summarized in Tables 7 and 8, respectively. Finally, the functions for the space

class (both scalar and vectorial) are given in Table 9.

46

References

[1] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 194 (39-41) (2005) 4135–4195.

[2] T. J. R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of discrete approximations in

structural dynamics and wave propagation: comparison of p-method finite elements with k-method

NURBS, Comput. Methods Appl. Mech. Engrg. 197 (49-50) (2008) 4104–4124.

[3] F. Auricchio, L. Beirão da Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, A fully ”locking-free”

isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput.

Methods Appl. Mech. Engrg. 197 (1-4) (2007) 160–172.

[4] H. Gómez, T. J. R. Hughes, X. Nogueira, V. M. Calo, Isogeometric analysis of the isothermal Navier-

Stokes-Korteweg equations, Comput. Methods Appl. Mech. Engrg. 199 (25-28) (2010) 1828 – 1840.

[5] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, T. W.

Sederberg, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg. 199 (5-8) (2010)

229 – 263.

[6] M. R. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines,

Comput. Methods Appl. Mech. Engrg. 199 (5-8) (2010) 264 – 275.

[7] P. Costantini, C. Manni, F. Pelosi, M. L. Sampoli, Quasi-interpolation in isogeometric analysis based

on generalized B-splines, Comput. Aided Geom. Design. 27 (8) (2010) 656 – 668.

[8] C. Manni, F. Pelosi, M. L. Sampoli, Generalized B-splines as a tool in isogeometric analysis, Comput.

Methods Appl. Mech. Engrg. 200 (5-8) (2011) 867–881.

[9] A. Buffa, J. Rivas, G. Sangalli, R. Vázquez, Isogeometric discrete differential forms in three dimensions,

SIAM J. Numer. Anal. 49 (2) (2011) 818–844.

[10] A. Buffa, G. Sangalli, R. Vázquez, Isogeometric analysis in electromagnetics: B-splines approximation,

Comput. Methods Appl. Mech. Engrg. 199 (17-20) (2010) 1143 – 1152.

[11] A. Buffa, C. de Falco, G. Sangalli, Isogeometric Analysis: stable elements for the 2D Stokes equation,

Internat. J. Numer. Methods Fluids. 65 (11-12) (2011) 1407–1422.

[12] J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric Analysis: toward integration of CAD and

FEA, John Wiley & Sons, 2009.

[13] D. J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, T. Belytschko,

A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to

XFEM, Internat. J. Numer. Methods Engrg. 83 (6) (2010) 765–785.

[14] M. J. Borden, M. A. Scott, J. A. Evans, T. J. R. Hughes, Isogeometric finite element data structures

based on Bézier extraction of NURBS, Internat. J. Numer. Methods Engrg.doi:10.1002/nme.2968.

[15] C. de Falco, A. Reali, R. Vázquez, Geopdes web page, http://geopdes.sourceforge.net (October

2010).

[16] J. W. Eaton, GNU Octave Manual, Network Theory Limited, 2002.

[17] C. de Boor, A practical guide to splines, revised Edition, Vol. 27 of Applied Mathematical Sciences,

Springer-Verlag, New York, 2001.

[18] L. L. Schumaker, Spline functions: basic theory, 3rd Edition, Cambridge Mathematical Library, Cam-

bridge University Press, Cambridge, 2007.

[19] L. Piegl, W. Tiller, The Nurbs Book, Springer-Verlag, New York, 1997.

[20] C. V. Verhoosel, M. Scott, R. de Borst, T. J. R. Hughes, An isogeometric approach to cohesive zone

47

http://dx.doi.org/10.1002/nme.2968
http://geopdes.sourceforge.net

modeling, Internat. J. Numer. Methods Engrg.http://dx.doi.org/10.1002/nme.3061 doi:10.1002/nme.

3061.

[21] J. Cottrell, T. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis,

Comput. Methods Appl. Mech. Engrg. 196 (2007) 4160–4183.

[22] T. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput.

Methods Appl. Mech. Engrg. 199 (5-8) (2010) 301 – 313.

[23] ParaView, http://www.paraview.org/.

[24] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, G. Sangalli, Isogeometric analysis:

approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci.

16 (7) (2006) 1031–1090.

[25] D. Wang, J. Xuan, An improved NURBS-based isogeometric analysis with enhanced treatment of

essential boundary conditions, Comput. Methods Appl. Mech. Engrg. 199 (37-40) (2010) 2425 – 2436.

[26] T. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCSs, ACM Transactions on

Graphics 22 (3) (2003) 477–484.

[27] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford, 2003.

[28] D. Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application

to hp mixed finite elements, Comput. Methods Appl. Mech. Engrg. 196 (37-40) (2007) 3672–3681.

[29] T. Dokken, E. Quak, V. Skytt, Requirements from Isogeometric Analysis for changes in product design

ontologies, in: Proceedings of the FOCUS K3D Conference on Semantic 3D Media and Content (INRIA

Sophia Antipolis - Méditerranée, 2010), IMATI-CNR, Genova, Italy, 2010, pp. 11–15.

[30] M. Spink, NURBS toolbox, http://www.aria.uklinux.net/nurbs.php3, http://octave.sourceforge.

net/nurbs/index.html.

[31] A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: stability analysis by the

macroelement technique, Tech. rep. (2011).

48

http://www.aria.uklinux.net/nurbs.php3
http://octave.sourceforge.net/nurbs/index.html
http://octave.sourceforge.net/nurbs/index.html

Field name Type Dimensions Description

nel scalar 1×1 number of elements of the partition

nel dir scalar 1×1 number of elements in each parametric direction

nel col scalar 1×1 number of elements in one column of the mesh,

fixing the element in the first parametric direction

nqn scalar 1×1 number of quadrature nodes per element

nqn dir scalar 1×1 number of quadrature nodes per element in each

parametric direction

breaks cell-array 1×nd breaks along each parametric direction

qn cell-array 1×nd quadrature nodes along each parametric direction

qw cell-array 1×nd quadrature weights along each parametric direc-

tion

der2 logical 1×1 an option to say whether the second derivative has

to be computed. By default it is set to false

map function handle 1×1 a copy of the map handle of the geometry structure

map der function handle 1×1 a copy of the map der handle of the geometry struc-

ture

Optional fields

map der2 function handle 1×1 a copy of the map der2 handle of the geometry

structure

boundary struct-array 1×(2 · nd) an (nd-1)-dimensional msh structure for each side

of the boundary, with the fields: side number, nel,

qn, breaks (2D and 3D), and nel dir, nqn dir, qn,

qw (only 3D)

Table 5: Properties of the msh class (version 2.0.0 or later)

49

Function name Description

msh precompute computes any of the fields of the msh structure, given in Table 3, or

the whole msh structure (except the boundary field).

msh eval boundary side computes the parameterization at the quadrature points of one side

of the domain.

msh evaluate col computes the parameterization (and its derivatives) at the quadrature

points in one column of the mesh, i.e., fixing the element in the first

parametric direction.

Table 6: Methods of the msh class (version 2.0.0 or later)

50

Field name Type Dimensions Description

knots cell-array 1×nd knot vectors for the univariate spaces in

each parametric direction

degree Matrix 1×nd space degree for the univariate spaces in

each parametric direction

spu, spv, (spw) struct 1×1 univariate space structure in each direc-

tion

ndof scalar 1×1 total number of degrees of freedom

ndof dir Matrix 1×nd number degrees of freedom of the univari-

ate spaces

nsh max scalar 1×1 maximum number of shape functions per

element

nsh dir Matrix 1×nel maximum nuber of shape functions for

the univariate spaces

ncomp scalar 1×1 number of components of the vector field

(1 in the scalar case)

constructor function handle 1×1 function handle to construct the same dis-

crete space with a different msh object,

useful for postprocessing

Optional fields

weights NDArray ndof dir(1)×ndof dir(2)

(×ndof dir(3))

for NURBS space, the weights associated

to the control points

boundary struct array 1×(2 · nd) an (nd-1)-dimensional space structure for

each side of the boundary, with the fields:

ndof, dofs, nsh max, ncomp (2D and 3D

cases) and ndof dir, nsh dir (only 3D

case).

Table 7: Properties of the space class, scalar case (version 2.0.0 or later)

51

Field name Type Dimensions Description

sp1, sp2, (sp3) space object 1×1 scalar space object for each component in

the parametric domain

ndof scalar 1×1 total number of degrees of freedom

ndof dir Matrix nd×nd number degrees of freedom of the univari-

ate spaces correspoding to each compo-

nent

comp dofs cell-array 1×nd indices of the degrees of freedom corre-

spoding to each component in the para-

metric domain

nsh max scalar 1×1 maximum number of shape functions per

element

ncomp scalar 1×1 number of components of the vector field

(1 in the scalar case)

constructor function handle 1×1 function handle to construct the same dis-

crete space with a different msh object,

useful for postprocessing

Optional fields

boundary struct array 1×(2 · nd) an (nd-1)-dimensional space structure for

each side of the boundary, with the fields:

ndof, dofs, nsh max, ncomp, comp dofs

(2D and 3D cases) and ndof dir, nsh dir

(only 3D case).

Table 8: Properties of the space class, vector case (version 2.0.0 or later)

52

Function name Description

sp precompute computes any of the fields of the space structure, given in Table 4, or the whole

space structure (except the boundary field).

sp eval boundary side evaluate the basis functions on one side of the boundary.

sp evaluate col compute the basis functions (and derivatives) in one column of the mesh (that

is, fixing the element in the first parametric direction).

sp evaluate col param compute the basis functions (and derivatives) in one column of the mesh,

before applying the map to the physical domain (scalar spaces only).

Table 9: Methods of the space class (version 2.0.0 or later)

53

	Introduction
	A brief overview on Isogeometric Analysis
	Isogeometric Analysis: a general framework
	Definition of B-Splines and NURBS

	A model problem: Poisson
	The design of GeoPDEs
	A very simple example
	Definition of the parameterization: the geometry structure
	Quadrature: the msh structure
	The discrete space: the space structure
	Matrix and vector construction
	The treatment of boundary conditions: the boundary substructures
	Postprocessing: visualization and computation of the error

	Applying GeoPDEs to more complex problems
	Modifications of the model problem
	Introducing h-, p- and k-refinement
	Implementation of the non-isoparametric approach
	Introducing other modifications: a different quadrature rule
	Implementation of non-homogeneous boundary conditions

	Linear elasticity
	Plane strain example
	3D Linear elasticity example

	Stokes equations
	Maxwell equations

	The treatment of NURBS multipatch conforming geometries
	Conclusion
	The NURBS toolbox
	Summary of data structures
	A new version of the code, GeoPDEs 2.0.0
	The simple example revisited
	Implementation of non-homogeneous boundary conditions
	Implementation of vectorial basis functions
	Linear elasticity
	Stokes equations
	Maxwell equations

	Adapting your own code to GeoPDEs 2.0.0

	Summary of classes in GeoPDEs 2.0.0

