

11º Ano 1º Período 2016/2017

Duração: 90 minutos

Turma : 2	31 de outubro de 2016	Classificação:, valores			
Nome	Nº	O Professor			

1^a Parte

As questões desta primeira parte são de escolha múltipla. Cada questão vale 8 pontos.

Apenas uma das opções está correta. Escreva a sua escolha na folha de respostas.

Atenção: Se apresentar mais do que uma resposta a questão será anulada.

1- Seja β um ângulo generalizado representado na circunferência trigonométrica e a um número real tal que $a \in]-1,0[$.

Sabe-se que $\cos \beta = a$ e $tg\beta < 0$.

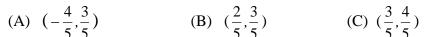
O lado extremidade de β pertence ao :

- (A) 1° quadrante
- (B) 2° quadrante (C) 3° quadrante (D) 4° quadrante
- 2- Na circunferência trigonométrica junta, estão representados um ângulo de amplitude β e um ponto sobre B, pertencente à circunferência, de ordenada $-\frac{3}{5}$ e situado no 4º quadrante.

Sabe-se que:

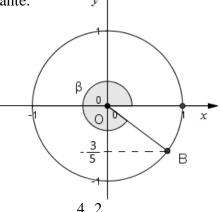
- O é a origem do referencial;
- O ponto C é o simétrico do ponto B em relação à origem.
- A semirreta OC é a extremidade de um ângulo θ representado na circunferência trigonométrica;

Quais as coordenadas do ponto C?



(B)
$$(\frac{2}{5}, \frac{3}{5})$$

(C)
$$(\frac{3}{5}, \frac{4}{5})$$



- **3-** Na figura está representado um paralelogramo [ABCD] . Sabe-se que :

•
$$\overline{CD} = 6$$

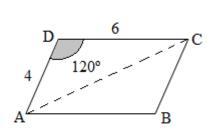
•
$$\overline{AD} = 4$$

•
$$\hat{ADC} = 120^{\circ}$$

O valor de $sen(C\widehat{A}D)$ é, aproximadamente,:

(B) 0,59

(D) 0.69



4- Para um determinado ângulo de amplitude α sabe-se que $sen \alpha = \frac{1}{5}$.

Para que amplitude x se tem $\cos x = -\frac{1}{5}$?

(A)
$$x = \pi + \alpha$$

(B)
$$x = -\alpha$$

(C)
$$x = \frac{\pi}{2} + c$$

(B)
$$x = -\alpha$$
 (C) $x = \frac{\pi}{2} + \alpha$ (D) $x = \frac{\pi}{2} - \alpha$

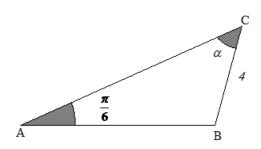
5- Na figura está representado um triângulo [ABC].

Sabe-se que:

•
$$B\hat{A}C = \frac{\pi}{6}$$

•
$$\overline{BC} = 4$$

•
$$A\hat{C}B = \alpha \ rad$$



Qual das seguintes expressões representa \overline{AC} , em função de α ?

(A)
$$\frac{\cos(\frac{5\pi}{6} - \alpha)}{8}$$
 (B) π - $sen(\frac{5\pi}{6} + \alpha)$ (C) $8\cos(\frac{\pi}{6} + \alpha)$ (D) $8sen(\frac{5\pi}{6} - \alpha)$

(B)
$$\pi$$
 - sen($\frac{5\pi}{6} + \alpha$)

(C)
$$8\cos(\frac{\pi}{6} + \alpha)$$

(D) 8 sen(
$$\frac{5\pi}{6} - \alpha$$
)

2ª Parte

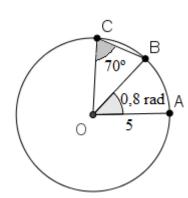
Nas questões desta segunda parte, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver efetuado e todas as justificações julgadas necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exato.

1. Na figura junta está representada uma circunferência de centro em O e raio 5 cm.

Sabe-se que:

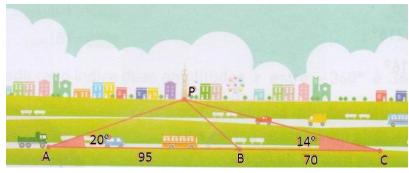
- A,B e C pertencem à circunferência;
- $\hat{AOB} = 0.8 \text{ rad}$
- $\hat{OCB} = 70^{\circ}$



Determine:

- **1.1** a medida do comprimento do arco AB.
- 1.2 em graus arredondado às décimas, a amplitude do ângulo AOB.
- 1.3 em radianos, as amplitudes dos ângulos internos do triângulo [OBC]. Apresente todos os cálculos efetuados.

- 2. Relativamente à figura sabe-se que:
 - os pontos A,B e C são colineares, sendo $\overline{AB} = 95$ e $\overline{BC} = 70$
 - $B\hat{A}P = 20^{\circ}$
 - $P\hat{C}B = 14^{\circ}$



- **2.1** Determine \overline{AP} apresentando o resultado arredondado às centésimas.
- **2.2** Determine \overline{PB} e $P\widehat{B}A$, utilizando para \overline{AP} o valor encontrado na alínea anterior. Apresente os resultados aproximados às unidades.
- **3.** No referencial ortonormado *Oxy* da figura estão representados:
 - uma circunferência de raio 2 unidades;
 - a reta r de equação x=2;
 - a semirreta *OA* sendo A um ponto móvel pertencente a *r*;
 - o ponto D, ponto de interseção de *OA* com a circunferência;
 - o ponto B, pertencente ao eixo das ordenadas;
 - o ponto C, ponto de interseção da reta *r* como o eixo *Ox*;
 - a reta BD é paralela ao eixo das abcissas e a reta AC é paralela ao eixo das ordenadas;
 - o ângulo COA, de amplitude α , sendo $\overset{\bullet}{OC}$ o lado origem e $\overset{\bullet}{OA}$ o lado extremidade. $\alpha \in]0, \frac{\pi}{2}[$
 - **3.1** Mostre que a área do quadrilátero [ABOC] é dada, em função de α, pela expressão:

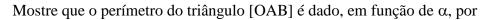
$$A(\alpha)=2\sin\alpha\left(I+\frac{1}{\cos\alpha}\right)$$

- 3.2 Determine a área do quadrilátero quando $\alpha = \frac{\pi}{4}$. Resolva o exercício sem recurso à máquina de calcular.
- **3.3** Seja $\theta \in]0, \frac{\pi}{2}[$ tal que $tg(\pi \theta) = -\sqrt{8}$. Determine o valor exato de $A(\theta)$.
- **4.** Verifique as igualdades seguintes para os valores de *x* para os quais as expressões têm significado:

4.1
$$cos(\frac{3\pi}{2} - x) - tg(x + 5\pi) \times sen(x - \frac{\pi}{2}) + sen(\frac{\pi}{2} + x) = cosx$$

$$4.2\left(1+\frac{1}{tg^2x}\right)\times sen^2x-\cos^2x=sen^2x$$

- **5.** Na figura junta estão representados, num referencial ortonormado *Oxy*, uma circunferência e o triângulo [OAB].
 - A circunferência tem diâmetro [AO];
 - o ponto A tem coordenadas (2,0);
 - o vértice O do triângulo [OAB] coincide com a origem do referencial;
 - O ponto B desloca-se ao longo da semicircunferência superior;
 - α é a amplitude do ângulo AOB, $\alpha \in]0, \frac{\pi}{2}[$.



 $P(\alpha) = 2(1 + \cos \alpha + \sin \alpha)$. **Justifique** todos os passos realizados.

A professora: Ana Paula Jardim

В

Cotações

Questões	1ª Parte	1.1	1.2	1.3	2.1	2.2	3.1	3.2	3.3	4.1	4.2	5	Total
Pontos	40	5	5	15	12	17	15	15	21	20	15	20	200

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Polígono regular: Semiperimetro × Apótema

Sector circular:

 $\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$