Investimentos

António M. R. G. Barbosa

ISCTE Business School
Instituto Universitário de Lisboa

Dia 10: 01/Mar/12

Sumário

- 1 Yield-to-maturity (YTM)
- 2 Taxa de rendimento realizado (TRR)

3 Comparação entre YTM e TRR

Outline

- 1 Yield-to-maturity (YTM)

Definição de yield-to-maturity

Definição: yield-to-maturity

A yield-to-maturity (ytm) de uma obrigação é a taxa de actualização para a qual o valor actual dos cash-flows futuros é igual ao valor de transacção da obrigação:

$$VT_0 = \sum_{j=1}^{n} \frac{CF_{t_j}}{(1 + ytm_{t_n})^{t_j}}.$$

- A yield-to-maturity é uma taxa efectiva anual
- A yield-to-maturity é apenas uma **aproximação** à taxa de rentabilidade gerada pela obrigação

Yield-to-maturity enquanto medida de rentabilidade

- Para que a yield-to-maturity corresponda à taxa de rentabilidade gerada pela obrigação é preciso que:
 - a obrigação seja mantida em carteira até à sua maturidade
 - \bullet todos os cash-flows futuros possam ser reinvestidos até à maturidade à mesma taxa ytm_{t_n}
- O segundo pressuposto só se verifica se:
 - a estrutura temporal das taxas de juro for flat, ou seja $r(0,t_1) = \ldots = r(0,t_n) = ytm_{t_n}$
 - neste caso todas as taxas forward (as taxas de juro a que se espera reinvestir os cash-flows futuros), são iguais à ytm_{t_n}
 - para obrigações com apenas um cash-flow futuro (e.g. obrigações de cupão zero)
 - neste caso não há cash-flows intermédios para reinvestir
- Em suma: o problema de se utilizar a yield-to-maturity como medida de rentabilidade é o risco de reinvestimento

Yield-to-maturity e yield curve

- Recorde-se que a ETTJ pode ser descrita de forma equivalente em termos de:
 - taxas spot
 - que mais não são que yields-to-maturity de obrigações de cupão zero
 - é daqui que deriva o nome de yield curve para a representação gráfica da ETTJ
 - taxas forward
 - factores de desconto
- Mas nunca através de yields-to-maturity de obrigações com cupão:
 - precisamente devido ao risco de reinvestimento
 - e também porque duas obrigações com idêntico nível de risco e maturidade podem ter diferentes yield-to-maturity só por pagarem cupões diferentes!

Cálculo da yield-to-maturity (1/3)

- Para calcular a yield-to-maturity precisamos de saber:
 - o valor e data de ocorrência dos cash-flows futuros
 - o prazo, em anos, para a ocorrência dos cash-flows futuros numa base de calendário que será a base de calendário da vield-to-maturity
 - o valor de transacção da obrigação (bid, ask ou média das duas), ou seja, valor de cotação mais juros vencidos
- Sabendo tudo isto podemos aplicar a fórmula

$$VT_0 = \sum_{j=1}^{n} \frac{CF_{t_j}}{(1 + ytm_{t_n})^{t_j}}$$

Cálculo da yield-to-maturity (2/3)

• Para obrigações com apenas 1 cash-flow futuro:

$$VT_0 = \frac{CF_t}{(1 + ytm_t)^t} \Leftrightarrow ytm_t = \left(\frac{CF_t}{VT_0}\right)^{\frac{1}{t}} - 1$$

• Nós já calculámos isto; na altura $CF_t = 1$ e $ytm_t = r(0, t)$.

António Barbosa (IBS)

8 / 26

¹Mais uma vez, é daqui que vem a designação yield curve para a representação gráfica das taxas spot.

Cálculo da yield-to-maturity (3/3)

- Para obrigações com mais que um cash-flow futuro temos que obter a yield-to-maturity utilizando métodos numéricos:
 - no Excel achamos a taxa ytm_{t_n} usando o "Solver" ou a função "Goal Seek" ("Atingir Objectivo")
 - calculadoras mais avançadas também têm uma função "Solve" que permite obter a yield-to-maturity
- Ou por tentativas e interpolação:
 - tentar valores h para a ytm_{t_n} e calcular a soma dos cash-flows futuros descontados à taxa hipotética h, PV(h)
 - 2 quando encontrarmos h_1 e h_2 tais que $PV(h_1) < VT_0 < PV(h_2)$, interpolamos as taxas h_1 e h_2 para obter uma aproximação h_3 à yield-to-maturity
 - \bullet testa-se a estimativa h_3 calculando $PV(h_3)$ e, se suficientemente próxima de VT_0 , consideramos $ytm_{t_n} = h_3$, caso contrário tenta-se h_4 e repete-se o procedimento a partir do ponto 2.

Investimentos

9 / 26

Exemplos

- Vamos ver os seguintes exemplos:
 - 1 como calcular uma yield-to-maturity
 - 2 comparação da yield-to-maturity com a taxa de rentabilidade esperada com base nas taxas forward
 - **6** comparação da yield-to-maturity para duas obrigações com mesmo risco e maturidade mas com cash-flows diferentes

Exemplo 1: cálculo YTM (1/5)

• Para exemplificar, retomemos a OT analisada no Dia 8

	Primeiro CF	Segundo CF		Valor Transacção
CF	5,15	105,15	Bid	107,8068
Maturidade	$\frac{120}{365} \approx 0,329$	$1 + \frac{120}{365} \approx 1,329$	Ask	107,9568
Taxa spot	$0,\!4328\%$	1,4543%	Média	107,8818

• A yield-to-maturity ask é dada por

$$107,9568 = \frac{5,15}{\left(1 + ytm_{1 + \frac{120}{365}}^{ask}\right)^{\frac{120}{365}}} + \frac{105,15}{\left(1 + ytm_{1 + \frac{120}{365}}^{ask}\right)^{1 + \frac{120}{365}}}$$

Exemplo 1: cálculo YTM (2/5)

• Um bom ponto de partida para o primeiro palpite para a yield-to-maturity é a taxa spot para o maior cash-flow, neste caso $h_1 = 1,4543\%$

$$PV(1,4543\%) = \frac{5,15}{(1+1,4543\%)^{\frac{120}{365}}} + \frac{105,15}{(1+1,4543\%)^{1+\frac{120}{365}}}$$
$$= 108,2775 > VT_0^{ask}$$

- Como o primeiro palpite resultou em $PV(h_1) > VT_0^{ask}$, o próximo palpite será $h_2 > h_1$
 - quanto maior a taxa de desconto, menor a soma do valor actual dos cash-flows

Exemplo 1: cálculo YTM (3/5)

• Para segundo palpite vamos considerar $h_2 = 1,6\%$

$$PV(1,6\%) = \frac{5,15}{(1+1,6\%)^{\frac{120}{365}}} + \frac{105,15}{(1+1,6\%)^{1+\frac{120}{365}}}$$
$$= 108,0786 > VT_0^{ask}$$

• O segundo palpite continua a ser muito baixo. Vamos então considerar $h_3=1,8\%$

$$PV(1,8\%) = \frac{5,15}{(1+1,8\%)^{\frac{120}{365}}} + \frac{105,15}{(1+1,8\%)^{1+\frac{120}{365}}}$$
$$= 107,8066 < VT_0^{ask}$$

Exemplo 1: cálculo YTM (4/5)

• O próximo passo será fazer a interpolação linear entre $h_2=1,6\%$ e $h_3=1,8\%$

$$h_4 = h_2 + \frac{h_3 - h_2}{PV(h_3) - PV(h_2)} \times \left[VT_0^{ask} - PV(h_2) \right]$$

$$= 1,6\% + \frac{1,8\% - 1,6\%}{107,8066 - 108,0786} \times (107,9568 - 108,0786)$$

$$= 1,6896\%$$

Vamos então testar este palpite

$$PV(1,6896\%) = \frac{5,15}{(1+1,6896\%)^{\frac{120}{365}}} + \frac{105,15}{(1+1,6896\%)^{1+\frac{120}{365}}}$$
$$= 107,9566 \approx 107,9568 = VT_0^{ask}$$

• Este palpite está suficientemente próximo e podemos parar por aqui

 Utilizando os valores de transacção ask e média entre bid e ask obtemos as seguintes yields-to-maturity

	Yield-to-maturity
Bid	1,7999%
Ask	$1,\!6894\%$
$_{\rm M\'edia}^2$	$1{,}7446\%$

²Utilizando a média entre o valor de transacção bid e ask, não uma média das yields-to-maturity bid e ask.

Exemplo 2: YTM e taxa de rentabilidade esperada (1/3)

- Consideremos 2 cenários:
 - \bullet o cash-flow pago daqui a $\frac{120}{365}$ anos é reinvestido à $ytm_{1+\frac{120}{365}}^{ask}=1,6894\%$ até à maturidade da obrigação
 - ② esse cash-flow é reinvestido à taxa forward $f\left(0; \frac{120}{365}; 1 + \frac{120}{365}\right)$

$$\left[1 + r\left(0; \frac{120}{365}\right)\right]^{\frac{120}{365}} \left[1 + f\left(0; \frac{120}{365}; 1 + \frac{120}{365}\right)\right]^{1} = \left[1 + r\left(0; 1 + \frac{120}{365}\right)\right]^{1 + \frac{120}{365}}$$

$$\Leftrightarrow f\left(0; \frac{120}{365}; 1 + \frac{120}{365}\right) = \frac{(1 + 1, 4543\%)^{1 + \frac{120}{365}}}{(1 + 0, 4328\%)^{\frac{120}{365}}} - 1 = 1,7924\%$$

- Qual o valor acumulado na maturidade da obrigação?
- Qual a taxa de rentabilidade obtida?

← ← □ → ← □ → ← □ → ← □ → へ ○ ○

No primeiro cenário o valor acumulado é

$$5,15 \times (1+1,6894\%)^1 + 105,15 = 110,3870$$

e a taxa de rentabilidade r obtida é

$$\underbrace{107,9568}_{VT_0^{ask}} = \frac{110,3870}{(1+r)^{1+\frac{120}{365}}}$$

$$\Leftrightarrow r = \left(\frac{110,3870}{107,9568}\right)^{\frac{1}{1+\frac{120}{365}}} - 1 = 1,6894\% = ytm_{1+\frac{120}{365}}^{ask}$$

• Isto é sempre o caso quando se reinveste à yield-to-maturity

Exemplo 2: YTM e taxa de rentabilidade esperada (3/3)

No segundo cenário o valor acumulado é

$$5,15 \times (1+1,7924\%)^1 + 105,15 = 110,3923$$

e a taxa de rentabilidade r obtida é

$$r = \left(\frac{110,3923}{107,8068}\right)^{\frac{1}{1+\frac{120}{365}}} - 1 = 1,7996\% \neq ytm_{1+\frac{120}{365}}^{ask}$$

• Portanto, a yield-to-maturity nem sequer é igual à taxa de rentabilidade esperada!

Exemplo 3: YTM para obrig. com cupões diferentes (1/2)

- Considere-se agora uma obrigação em tudo igual à OT analisada, mas com cupão de 4% (em vez de 5,15%)
- Para nos focarmos no efeito que cupões diferentes têm na yield-to-maturity, consideramos que VT_0 é igual ao valor justo das obrigações:
 - caso contrário eventuais diferenças na yield-to-maturity poderiam resultar de desajustes nas cotações de mercado das duas obrigações
- Os valores de transacção (assumido) das duas obrigações serão então de

$$VT_{OT1} = \frac{5,15}{[1+0,4328\%]^{\frac{120}{365}}} + \frac{105,15}{[1+1,4543\%]^{1+\frac{120}{365}}} = 108,2947$$

$$VT_{OT2} = \frac{4}{[1+0,4328\%]^{\frac{120}{365}}} + \frac{104}{[1+1,4543\%]^{1+\frac{120}{365}}} = 106,0181$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 り<

Exemplo 3: YTM para obrig. com cupões diferentes (2/2)

• Utilizando estes valores de transacção as yields-to-maturity são

$$ytm_{OT1} = 1,4418\%$$

 $ytm_{OT2} = 1,4445\%$

- Estas duas obrigações:
 - têm o mesmo nível de risco
 - pagam cash-flows exactamente nas mesmas datas (podíamos ter considerados cash-flows pagos em datas diferentes, desde que a maturidade coincidisse)
 - têm valores de transacção iguais ao valor justo
 - mas têm yields-to-maturity diferentes
- A yield-to-maturity é assim uma medida de rentabilidade ambígua

Outline

- 1 Yield-to-maturity (YTM)
- 2 Taxa de rendimento realizado (TRR)

3 Comparação entre YTM e TRR

Definição de taxa de rendimento realizado

Definição: taxa de rendimento realizado

A taxa de rendimento realizado de uma obrigação corresponde à taxa de rendibilidade efectiva anual gerada, a posteriori, pelo investimento nessa obrigação:

$$TRR_{t_k} = \left(\frac{CF_{t_k} + \sum_{j=1}^{k-1} CF_j \left[1 + TR(t_j, t_k)\right]^{t_k - t_j}}{VT_0}\right)^{\frac{1}{t_k}} - 1$$

onde t_k é a data para a qual se calcula a TRR, e $TR(t_j,t_k)$ é a taxa de juro efectiva anual à qual se reinvestiu os cash-flow pago na data t_j para a data t_k .

• O que fizemos no exemplo 2 foi calcular a TRR com base em taxas de reinvestimento esperadas (taxas forward) em vez de utilizarmos as, ainda desconhecidas, taxas de reinvestimento (as futuras taxas spot)

- 《 ㅁ 》 《畵 》 《 팔 》 《 팔 》 _ 팔

Exemplo 1

• Retomando o exemplo 1, se dentro de $\frac{120}{365}$ anos o obrigacionista reinvestir o cash-flow de 5,15 por 1 ano à taxa de 2\%, a TRR na maturidade da obrigação é

$$TRR_{1+\frac{120}{365}} = \left(\frac{105, 15 + 5, 15 \times (1 + 2\%)^{1}}{107, 9568}\right)^{\frac{1}{1+\frac{120}{365}}} - 1 = 1,7005\%$$

• Temos que $TRR_{1+\frac{120}{365}}=1,7005\%>1,6894\%=ytm_{1+\frac{120}{365}}^{ask}$ porque a taxa de reinvestimento foi superior à vield-to-maturity

Exemplo 2

- Podemos calcular a TRR para qualquer prazo de investimento:
 - ao contrário da yield-to-maturity não é necessário assumir que a obrigação é mantida em carteira até à sua maturidade
- Se o obrigacionista vender a obrigação por 103,5 na data em que receber o próximo cupão

$$TRR_{\frac{120}{365}} = \left(\frac{103, 5+5, 15}{107, 9568}\right)^{\frac{1}{120}} - 1 = 1,9659\%$$

• Se o obrigacionista vender a obrigação 0.5 anos após receber o próximo cupão por 104.5 e conseguir reinvestir o cupão por 0.5 anos à taxa de 1.9%

$$TRR_{\frac{1}{2} + \frac{120}{365}} = \left(\frac{104, 5 + 5, 15 \times (1 + 1, 9\%)^{\frac{1}{2}}}{107, 9568}\right)^{\frac{1}{\frac{1}{2} + \frac{120}{365}}} - 1 = 1,9501\%$$

Outline

- 1 Yield-to-maturity (YTM)
- 2 Taxa de rendimento realizado (TRR)

3 Comparação entre YTM e TRR

26 / 26

Comparação entre YTM e TRR

YTM	TRR
(+) Pode ser calculada	(-) Pode ser calculada
antecipadamente	apenas a posteriori ³
(-) Pressupõe investimento até	(+) Investimento pode ser
à maturidade da obrigação	por qualquer prazo
(-) Assume reinvestimento	(+) Considera as taxas
à ytm	de reinvestimento efectivas

 $^{^3}$ Utilizar as taxas forward é uma forma de contornar este problema e calcular uma TRR esperada.