Investimentos

António M. R. G. Barbosa

ISCTE Business School
Instituto Universitário de Lisboa

Dia 25: 17/Abr/12

Sumário

1 Efeito de diversificação entre 2 activos

2 Efeitos de diversificação entre múltiplos activos

Outline

1 Efeito de diversificação entre 2 activos

Efeitos de diversificação entre múltiplos activos

Correlação e a variância da carteira (1/2)

• A variância de uma carteira de 2 activos é

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \rho_{1,2} \sigma_1 \sigma_2$$

• Para pesos w_1 e w_2 fixos e positivos, quanto menor o coeficiente de correlação $\rho_{1,2}$, menor o risco da carteira

$$\frac{\partial \sigma_p^2}{\rho_{1,2}} = 2w_1 w_2 \sigma_1 \sigma_2 > 0$$

Correlação e a variância da carteira (2/2)

• Aliás, e como já vimos anteriormente, se $\rho_{1,2} = -1$, conseguimos encontrar uma carteira sem risco

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 - 2w_1 w_2 \sigma_1 \sigma_2 = (w_1 \sigma_1 - w_2 \sigma_2)^2$$

Resolvendo para zero

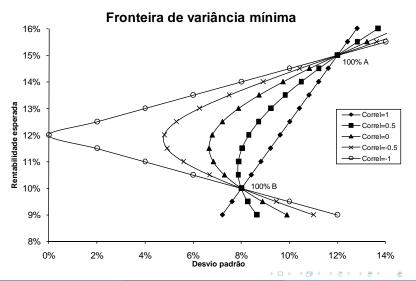
$$\sigma_p^2 = (w_1 \sigma_1 - w_2 \sigma_2)^2 = 0$$

$$\Leftrightarrow w_1 \sigma_1 - w_2 \sigma_2 = 0$$

$$\Leftrightarrow w_1 \sigma_1 - (1 - w_1) \sigma_2 = 0$$

$$\Leftrightarrow w_1 = \frac{\sigma_2}{\sigma_1 + \sigma_2}$$

Correlação e a fronteira de variância mínima



Efeito de diversificação

- \bullet À redução de risco obtida pelo facto de $\rho<1$ chamamos de efeito de diversificação
 - a maior rentabilidade de um activo compensa parcialmente a menor rentabilidade do outro activo
 - logo, em média a variação do valor da carteira é menor, ou seja, a sua variância é menor
 - mas para que isto aconteça é necessario que $\rho < 1$, caso contrário as rentabilidades dos 2 activos evoluem em sincronia e não há qualquer efeito de compensação
 - a assincronia entre a evolução da rentabilidade dos 2 activos deve-se ao facto de alguns factores que influenciam essas rentabilidade serem diferentes:
 - factores específicos da empresa
 - sectoriais
 - nacionais

Ganhos de diversificação

- A diversificação permite reduzir o risco de uma carteira
- Logo a diversificação permite diminuir o risco assumido para uma mesma rentabilidade esperada
- Sem grande surpresa, para o mesmo nível de risco assumido (o que requer uma alteração na composição da carteira) podemos obter uma rentabilidade esperada superior
- O acréscimo de rentabilidade esperada proporcionada pela diversificação designa-se por ganho de diversificação

Exemplo

• Considere-se 2 activos com os seguintes pares de rentabilidade esperada e desvio-padrão:

•
$$E(r_1) = 15\%, \sigma_1 = 12\%$$

•
$$E(r_2) = 10\%, \, \sigma_2 = 8\%$$

 Os ganhos de diversificação para uma carteira com desvio-padrão de 10% são

ρ	w_1	$E\left(r_{p}\right)$	σ_p	Ganho diversificação
1	50,00%	$12,\!50\%$	10%	-
0.5	72,75%	$13{,}64\%$	10%	$1{,}14\%$
0	$82,\!51\%$	$14,\!13\%$	10%	$1,\!63\%$
-0.5	$87,\!26\%$	$14{,}36\%$	10%	$1{,}86\%$
-1	90,00%	$14,\!50\%$	10%	$2{,}00\%$

Outline

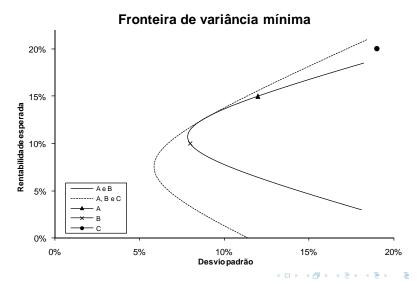
Efeito de diversificação entre 2 activos

2 Efeitos de diversificação entre múltiplos activos

Expansão do conjunto de possibilidades de investimento

- Sempre que adicionamos activos que não estejam perfeitamente positivamente correlacionados com algum activo já considerado, o conjunto de possibilidades de investimento expande-se para a esquerda
- Significa isto que podemos:
 - encontrar carteiras com menor risco para a mesma rentabilidade esperada
 - e também com maior rentabilidade esperada para o mesmo risco

Exemplo



Limites à diversificação

- Obviamente que o conjunto de possibilidades de investimento não se pode expandir indefinidamente para a esquerda
 - o desvio-padrão não pode ser negativo
- Na prática, antigimos o limite de diversificação antes desse ponto
 - isto porque nem todo o risco pode ser diversificado

Risco específico e risco sistemático

- O risco pode-se dividir em dois componentes:
 - risco específico, que resulta de factores que afectam (isto é, são específicos de) um número limitado de activos:
 - risco da empresa (se o BCP sofrer uma perda por má gestão, o BES e o BPI não serão influenciados)
 - risco do sector (se o sector dos media estiver em declínio, a Impresa e Media Capital serão afectadas, mas não a EDP)
 - risco do país (um golpe militar no Congo terá impacto nas acções congolesas mas não nas portuguesas)
 - risco sistemático (ou risco de mercado) que resulta de factores que afectam todos os activos embora com diferente intensidade:
 - ciclos económicos
 - taxas de juro
 - crises mundiais como a actual crise financeira

Diversificação = eliminação do risco específico

- Já vimos que a diversificação permite reduzir o risco assumido para a mesma rentabilidade esperada
- Isto acontece porque o risco específico é reduzido e, no limite, eliminado
- Quantos mais activos uma carteira tiver, maior a probabilidade da rentabilidade positiva devido a um factor de risco específico de um activo compensar a rentabilidade negativa devido a um factor de risco específico de outro activo
- Como os factores de risco são específicos estes tendem a mover as rentabilidades em direcções opostas (ou pelo menos não em sincronia)
- A agregação de diversos activos numa carteira permite eliminar estas variações da rentabilidade, eliminando portanto o risco específico

Quanto ao risco sistemático... não há nada a fazer

- Quanto ao risco sistemático, não há nada a fazer
- O risco sistemático não pode ser reduzido através da diversificação, muito menos eliminado
 - a razão é que os factores de risco sistemático afectam todos os activos por igual embora com intensidades diferentes (ou seja, em sincronia)
 - assim, se ocorrer uma crise, todos os activos terão rentabilidades negativas
 - não existem activos com rentabilidades positivas para compensar¹

16 / 22

¹Melhor dizendo, podem existir activos com rentabilidades positivas, mas isso dever-se-á a factores de risco específicos. Ou seja, foi um caso de sorte 💿

Diversificação é a estratégia óptima

- Uma carteira diz-se completamente diversificada quando esta possui apenas risco sistemático
 - ou seja, o risco específico foi completamente diversificado
- Qualquer investidor racional tem, portanto, um incentivo para deter carteiras completamente diversificadas
 - eliminar o risco específico é tão fácil quanto possuir uma carteira diversificada
- Assim sendo, para o investidor o único risco que interessa é o risco sistemático
 - o investidor requer uma remuneração extra para deter carteiras com mais risco sistemático, independentemente do seu risco total (sistemático + específico)
 - isto porque ninguém é forçado a suportar risco específico: basta diversificar

Efeito de diversificação (1/5)

- Consideremos uma carteira de *n* activos, com peso igual para cada activo
- A sua variância é

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{i,j} = \sum_{i=1}^n \sum_{j=1}^n \frac{1}{n^2} \sigma_{i,j}$$

$$= \sum_{i=1}^n \frac{1}{n^2} \sigma_i^2 + \sum_{i=1}^n \sum_{j=1, j \neq i}^n \frac{1}{n^2} \sigma_{i,j}$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{\sigma_i^2}{n} + \frac{n-1}{n} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \frac{\sigma_{i,j}}{n(n-1)}$$

Efeito de diversificação (2/5)

• Como existem n variâncias e n(n-1) covariâncias,

$$\sum_{i=1}^{n} \frac{\sigma_i^2}{n} \equiv \bar{\sigma_i}^2$$

é a média das variâncias e

$$\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\sigma_{i,j}}{n(n-1)} \equiv \bar{\sigma}_{i,j}$$

é a média das covariâncias

Assim sendo

$$\sigma_p^2 = \frac{1}{n}\bar{\sigma_i}^2 + \frac{n-1}{n}\bar{\sigma}_{i,j}$$

e a variância da carteira é uma média ponderada da variância média e da covariância média

Efeito de diversificação (3/5)

• No limite, quando $n \to \infty$

$$\sigma_p^2 = \lim_{n \to \infty} \frac{1}{n} \bar{\sigma_i}^2 + \frac{n-1}{n} \bar{\sigma}_{i,j} = \bar{\sigma}_{i,j}$$

 Ou seja o risco específico está associado às variâncias, e o risco sistemático às covariâncias

$$\sigma_p^2 = \underbrace{\frac{1}{n}\bar{\sigma_i}^2}_{risco\ específico} + \underbrace{\frac{n-1}{n}\bar{\sigma}_{i,j}}_{risco\ estemático}$$

- O risco específico pode ser eliminado diversificando a carteira $(n \to \infty)$
- Mas o risco sistemático permanece inalterado

Efeito de diversificação (4/5)

• Assumindo que todos os activos têm a mesma variância σ^2 e correlação com os outros activos de ρ

$$\sigma_p^2 = \underbrace{\frac{1}{n}\sigma^2}_{risco\ específico} + \underbrace{\frac{n-1}{n}\rho\sigma^2}_{risco\ sistemático}$$

 \bullet Como se pode ver só há diversificação se $\rho < 1$

Efeito de diversificação (5/5)

