ISCTE – Instituto Superior de Ciências do Trabalho e da Empresa Licenciaturas em Gestão e Finanças & Contabilidade – 1º Teste de Estatística II

24 de Março de 2012 Duração: 1h +30m

formulário, das tabelas estatísticas e o uso da calculadora.

NOME:

Nota: Não são prestados esclarecimentos durante a prova! Só é permitida a consulta do

NOME:

No Aluno(a):

QUESTÃO 1 (4,5 valores)

Considere uma população X cuja distribuição de probabilidade é dada por:

$$f(x) = \frac{(1-\theta)^x}{\theta^{x-1}}$$
 $x = 0, 1$ $0 < \theta < 1$

- a) Deduza a distribuição conjunta de uma amostra aleatória de tamanho n=10 retirada daquela população e explique o seu significado.
- b) Suponha que retirou a seguinte amostra concreta daquela população: $x_{(10)}^* = (1,0,1,1,1,1,1,0,1,1)$. Se $\theta = 0,1$, qual a probabilidade de obter aquela amostra?
- c) A população X tem valor esperado (1- θ) e variância θ (1- θ). Mostre que o estimador $\widehat{\theta}=1-\overline{X}$ é estimador consistente em média quadrática para θ .

	1° Teste de Estatística II:
	24 de Março de 2012
NOME:	
Nº Aluno(a):	

QUESTÃO 1

NOME:		
Nº Aluno(a):		

QUESTÃO 2 (6.5 valores)

Considere duas populações normais X_1 e X_2 com médias μ_1 =90 e μ_2 =100 e variâncias desconhecidas das quais foram retiradas 2 amostras aleatórias independentes, uma de cada população com 36 e 25 elementos, respetivamente, tendo-se obtido os seguintes resultados amostrais:

Amostra retirada da população X_1 : $\frac{1}{36}\sum_{i=1}^{36}(X_{1i}-\bar{X}_1)^2=1080$

Amostra retirada da população X_2 : $\frac{1}{25}\sum_{i=1}^{25}(X_{2i}-\bar{X}_2)^2=1200$

- a) Indique as melhores estimativas para as variâncias das duas populações X_1 e X_2 justificando convenientemente as suas respostas com base nas propriedades dos estimadores que escolheu.
- b) Construa um intervalo de confiança a 90% para a variância da população X_2 .
- c) Calcule a probabilidade da média da segunda amostra exceder a média da primeira amostra em mais de 19 unidades admitindo agora que $\sigma_1^2 = 1080$ e $\sigma_2^2 = 1275$.

NOME:		
Nº Aluno(a):		

QUESTÃO 3 (6 valores)

Uma empresa que comercializa produtos de grande consumo pretende estimar a proporção de potenciais clientes interessados em consumir um novo gel de banho que está a preparar para lançar no mercado. Como se trata de um produto suscetível de ser consumido pela generalidade das pessoas, admite-se que a população alvo seja relativamente elevada.

- a) Defina adequadamente a população em estudo e o parâmetro a estimar.
- b) Indique, justificando, qual a dimensão da amostra que sugere, admitindo que a empresa pretende uma estimativa que não se afaste da verdadeira proporção da população por mais de 2%, com um nível de confiança de 95%.
- c) Suponha agora que, com base na dimensão da amostra que determinou na alínea b) tinha obtido 1441 indivíduos que declararam vir a consumir regularmente aquele gel de banho. Construa um intervalo de confiança a 99% para a verdadeira proporção de consumidores daquele produto e interprete o resultado obtido. <u>Caso não tenha resolvido a alínea b) considere n=2400</u>.
- d) Comente a margem de erro associada ao intervalo que encontrou na alínea c) face às condições explicitadas na alínea b).

	1° Teste de Estatística II:
	24 de Março de 2012
NOME:	
Nº Aluno(a):	

QUESTÃO 3

	24 de Maço de 2012
N	OME:
N	P Aluno(a):
	QUESTÃO 4 (3 valores)
	ara cada uma das questões seguintes existe apenas uma resposta correta. Assim, assinale essa sposta com uma cruz.
1)	Para uma população $\{1,1,2\}$, definiram-se amostras aleatórias (X_1,X_2) recolhidas com reposição. Nesse caso, a estatística $T=(X_1-X_2)^2$ tem distribuição: \square a) Qui-quadrado; \square c) Bernoulli; \square b) Normal; \square d) Nenhuma das anteriores.
2)	Uma distribuição amostral é a distribuição de probabilidade de: □ a) uma amostra; □ b) uma estatística; □ c) uma população; □ d) um parâmetro da população.
3)	O facto de a média amostral não sobreestimar ou subestimar a média da população torna a média amostral um estimador: □ a) Consistente; □ c) Eficiente; □ b) Não enviesado; □ d) Nenhuma das respostas anteriores.
4)	Para a amostra aleatória $(X_1,X_2,,X_n), n>1$, proveniente de uma população Bernoulli com probabilidade de sucesso p , definiu-se o estimador: $\hat{p}=\frac{1}{n-1}\sum_{i=1}^{n-1}X_i+\alpha.X_n$, em que α é uma constante função da dimensão da amostra. O estimador \hat{p} é um estimador não enviesado assimptoticamente para p , quando: \Box a) $\alpha=1$ \Box c) $\alpha=0$ \Box b) α é um infinitésimo; \Box d) As opções b) e c) estão corretas.
5)	Qual das seguintes afirmações exprime melhor a relação entre um parâmetro e uma estatística: □ a) Um parâmetro tem uma distribuição amostral cujo valor esperado é uma estatística; □ b) Uma estatística pode ser utilizada para fazer inferência sobre um parâmetro; □ c) Um parâmetro é utilizado para estimar uma estatística; □ d) Nenhuma das afirmações anteriores é correta.
6	 Para reduzir a amplitude de um intervalo de confiança deve: □ a) Aumentar a dimensão da amostra (mantendo os restantes fatores constantes); □ b) Reduzir o nível de confiança (mantendo os restantes fatores constantes); □ c) Ambas a) e b) estão corretas; □ d) Nem a) nem b) estão corretas.