Instituto Universitário de Lisboa (ISCTE - IUL)

Licenciatura em Gestão - Exame de 2ª Época de Estatística II

27 de Junho de 2011 Duração: 2h +30m

Nota: Não são prestados esclarecimentos durante a prova! Só é permitida a consulta do formulário, das tabelas estatísticas e o uso da calculadora.

NOME:	 	
Nº Aluno(a):		

QUESTÃO 1 (5,5 valores)

1. Foi realizado um estudo de mercado com o objectivo de conhecer o perfil de compra dos consumidores portugueses relativamente a óculos de sol, tendo sido solicitado aos alunos de Estatística 2 do ISCTE que analisassem a base de dados dos resultados do inquérito aos consumidores. Dessa análise obtiveram-se, entre outros, os seguintes resultados:

How much did they cost

	Observed N	Expected N	Residual
Less then 100€	72	153,3	-81,3
100€ - 200€	123	153,3	-30,3
200€ - 300€	360	153,3	206,8
300€ or more	58	153,3	-95,3
Total	613		

Test Statistics

	How much did they cost
Chi-Square	(a) ^a
df	3
Asymp. Sig.	,000,

a. **(b)** cells (**(c)**%) have expected frequencies less than 5. The minimum expected cell frequency is **(d)**.

- a) Identifique as variáveis em análise.
- b) Calcule os valores (a), (b), (c) e (d) em falta nos quadros de output.
- c) Identifique o teste de hipóteses efectuado e o seu objectivo. Formule as hipóteses e retire conclusões (utilize α =0,05).
- d) De que tipo é a região crítica do ensaio de hipóteses elaborado na alínea c)? Porquê? Justifique adequadamente a sua resposta.

NOME:		
Nº Aluno(a):		

QUESTÃO 1 (continuação)

2. Para o mesmo estudo foram ainda apresentados os seguintes resultados respeitantes à variável "Importância dada ao factor Preço e Promoções na escolha de óculos de sol" definida numa escala métrica de 1 = nada importante a 10 = extremamente importante:

Group Statistics

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Price & promotions	Female	332	6.54	1.11	0.06
	Male	308	6.71	1.03	0.06

Independent Samples Test

			e's Test for of Variances		t-te	est for Equ	ality of Means	3
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference
Price & promotions	Equal variances assumed	,989	,320	-1,98	638	,048	-0.17	0.09
	Equal variances not assumed			-1,99	637,9	,047	-0.17	0.08

Para cada uma das questões seguintes, identifique com um círculo a resposta correcta:

- a) A importância média dada ao Preço e Promoções pelos consumidores portugueses femininos e masculinos:
 - 1. É igual.
 - 2. É diferente.
 - 3. É maior para os consumidores femininos.
 - 4. É maior para os consumidores masculinos.
- b) A hipótese nula do teste de Levene é:
 - 1. As duas médias amostrais são iguais.
 - 2. As duas médias populacionais são iguais.
 - 3. As duas variâncias amostrais são iguais.
 - 4. As duas variâncias populacionais são iguais.
- c) Para um $\alpha = 0.05$ rejeita-se a hipótese nula do teste de igualdade de médias porque:
 - 1. O valor de sig dado pelo SPSS é 0,047.
 - 2. O valor de sig dado pelo SPSS é menor que α = 0,05. 3. O valor de sig dado pelo SPSS é 0,32.

 - 4. O valor de sig dado pelo SPSS é 0,09.
- d) Para se aplicar o teste t para a igualdade de duas médias é necessário que se verifique o seguinte pressuposto:
 - 1. As amostras deverão ser emparelhadas com dimensões superiores a 30.
 - 2. As variâncias populacionais deverão ser iguais.
 - 3. As populações deverão ter distribuição normal.
 - 4. Deve rejeitar-se a hipótese nula do teste de Kolmogorv-Sminrnov para a normalidade.

NOME:		
Nº Aluno(a):		

QUESTÃO 2 (4,5 valores)

João, um estudante de Gestão do ISCTE, afirmou a Jonathan, um aluno ERASMUS a frequentar a mesma licenciatura, que mais de 65% dos alunos da disciplina de Estatística obtinham notas superiores a 8 valores. Maria, também aluna da mesma licenciatura, aparentemente céptica em relação à afirmação de João, resolveu recolher uma amostra aleatória de 95 alunos que se apresentaram ao exame de Estatística, tendo obtido 70 com nota superior a 8 valores.

- a) Com base nos resultados da amostra recolhida pela Maria, o que pode concluir sobre a afirmação do João (Utilize α =0.10)?
- b) De acordo com os resultados obtidos pela equipa docente de Estatística, a verdadeira percentagem de alunos com nota superior a 8 é de 70%. Que tipo de erro se pode cometer com a decisão tomada na alínea anterior? E com que probabilidade se pode cometer esse erro?
- c) Admitindo os valores avançados na alínea b) calcule o valor da potência do teste.

Exame 2ª ép	oca de	Estatíst	ica II
2	7 de Ji	inho de	2010

NOME:		
Nº Aluno(a):		

QUESTÃO 2 (continuação)

NOME:	 	 	
Nº Aluno(a):			

QUESTÃO 3 (4 valores)

Suponha que X é uma variável aleatória com distribuição normal. Com vista a estudar a variabilidade dessa variável, recolheu-se a seguinte amostra aleatória:

$$(101, 97, 99, 105, 98, 102, 104, 96, 98).$$

- a) Apresente uma estimativa para o desvio-padrão da variável X.
- b) Construa um intervalo com 95% de confiança para a variância populacional e interprete o seu significado.
- c) No decorrer deste estudo obteve-se também o seguinte intervalo de confiança:

$$[I_{\lambda}]^*_{\mu} =]96,464;103,536[$$
.

- c₁) Que estimativa encontrou para a média populacional de X?
- c2) Qual o nível de confiança associado ao intervalo anterior?
- c₃) Se pretendesse reduzir para metade a margem de erro do intervalo de confiança (ou aumentar a sua precisão para o dobro), qual deveria ser a dimensão da amostra a inquirir, admitindo que todos os restantes valores se manteriam constantes?

Exame 2ª époc	a de E	Estatísti	ca II:
27	de Jur	nho de	2010

NOME:	
Nº Aluno(a):	

QUESTÃO 3 (continuação)

NOME:	 	
Nº Aluno(a):		

QUESTÃO 4 (2 valores)

Suponha que X é uma variável aleatória que segue a seguinte função de probabilidade:

$$f(x) = \theta^x \times (1 - \theta)^{1-x}, x = 0,1 \text{ e com } 0 \le \theta \le 1$$

Considere a seguinte estatística
$$T = \frac{\sum_{i=1}^{n-1} X_i}{n}$$

- a) Verifique se T é um estimador centrado para Θ .
- b) Verifique se T é um estimador consistente para Θ .

NOME:	 	
Nº Aluno(a):		

QUESTÃO 5 (4 valores)

- 1. Seja X uma população com distribuição uniforme que assume apenas os valores <u>a</u>, <u>b</u> e <u>c</u>. Suponha que se recolheu uma amostra aleatória de dimensão 3.
 - a) Identifique todas as amostras possíveis de dimensão 3 que se podem extrair dessa população.
 - b) Calcule a probabilidade de se obter a amostra aleatória (a,c,b). Justifique.
 - c) Qual a amostra menos provável? Justifique.
- 2. Diga, justificando se as seguintes afirmações são verdadeiras ou falsas:
 - a) Considere uma amostra aleatória $(X_1, X_2, ... X_n)$ de dimensão n retirada de uma população normal com média μ e variância σ^2 .

Tem-se então que: $E[X_i.X_j] = \mu^2$ quaisquer que sejam i \neq j.

b) Considere uma variável aleatória com distribuição binomial de parâmetros n =100 e p=0,5.

Tem-se então que: $\frac{(X-50)^2}{25} \cap \chi^2_{(1)}$

c) Considere uma amostra aleatória $(Y_1, Y_2, ..., Y_n)$ de dimensão n=36 retirada de uma população Poisson com λ =9.

Tem-se então que: $\sum_{i=1}^{36} Y_i \cap N(\mu = 9; \sigma = 18)$

d) O estimador $\hat{\sigma}^2 = \frac{(X_1 - X_2 + X_3 - X_4)^2}{4}$ para a variância de uma população normal com média μ =1, obtido a partir da amostra aleatória (X₁,X₂,X₃, X₄), é um estimador não enviesado para σ^2 .

Exame 2ª	época de Estatís	stica II:
	27 de Junho d	e 2010

NOME:		 	
Nº Aluno(a):			

QUESTÃO 5 (continuação)