Estatística I

Teoria das probabilidades

Experiência aleatória

- Teoria das probabilidades: estuda os fenómenos aleatórios ou seja os acontecimentos influenciados pelo acaso.
- Na base está o conceito de experiência aleatória, cujas características são:
 - Pode ser repetida em condições semelhantes;
 - Embora se conheçam todos os resultados possíveis não se conhece o resultado de cada experiência;
 - Regularidade, quando a experiência é repetida muitas vezes

Experiência aleatória: lançamento de uma moeda

Experiência determinística: temperatura de entrada em ebulição da água

Espaço de resultados

- Espaço de resultados (Ω): conjunto de todos os resultados possíveis que se podem obter na realização de uma experiência
- Exemplo:
 - Experiência aleatória: lançamento de uma moeda ao ar
 - Espaço de resultados: Ω={cara, coroa}
- O espaço de resultados:
 - Discreto: contem um número finito ou infinito numerável de elementos
 - Exemplo: lançamento de uma moeda ao ar
 - Contínuo: contem um número infinito não numerável de elementos
 - a temperatura do ar medida ao longo de 24 h
- Os elementos podem ser indicados em:
 - Extensão: Ω={(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}
 - Compreensão: $\Omega = \{(i,j): 1 \le i \le 3, 1 \le j \le 2\}$

Acontecimento

- ightharpoonup Acontecimento: é um subconjunto A $\subseteq \Omega$.
- Diz-se que o acontecimento A se realizou se o resultado da experiência aleatória ω é um elemento de A
- Exemplo:
 - Exp aleatória: lançamento de um dado: Ω={1,2,3,4,5,6}
 - Acontecimento:
 - saída de uma face superior a 2: A={2,3,4,5,6}
 - Saída de uma face inferior a 1 A={} : Acontecimento impossível
 - Saída de uma face superior a 0: A={1,2,3,4,5,6} : Acontecimento certo
- Álgebra dos acontecimentos:
 - Dada uma sucessão infinita de acontecimentos, A₁, A₂, ..., define-se:
 - a sua união $\bigcup_{i=1}^{k} A_i$ como sendo o acontecimento que ocorre se e só se ocorrer pelo menos um dos acontecimentos A_i

Acontecimento

- Álgebra dos acontecimentos:
 - Dada uma sucessão infinita de acontecimentos, A₁, A₂, ..., define-se a sua intersecção na como sendo o acontecimento que ocorre se e só se todos os acontecimentos Aᵢ ocorrerem
 - Dados dois acontecimentos A e B, define-se diferença entre dois acontecimentos como sendo o acontecimento constituído por todos os elementos de A que não pertençam B por
 - $A-B=A\setminus B=\{\omega: \omega \in A \in \omega \notin B\}$
 - Dois acontecimentos dizem-se mutuamente exclusivos ou incompatíveis se A∩B=Ø

Propriedades

Propriedades	União	Intersecção
Comutativa	AUB=BUA	A∩B=B∩A
Associativa	AU(BUC)=(AUB)UC	$A\cap (B\cap C)=(A\cap B)\cap C$
Distributiva	AU(B∩C)=(AUB)∩(AUC)	$A\cap (BUC)=(A\cap B)U(A\cap C)$
Elemento neutro	AUØ=A	Α∩Ω=Α
Elemento absorvente	ΑUΩ=Ω	A∩Ø=Ø
Idempotência	AUA=A	A∩A=A
Lei do complemento	AUĀ=Ω	A∩Ā=Ø
Leis de Morgan	ĀŪB=Ā∩B	Ā∩B=ĀUB

Axiomas da teoria das probabilidades

Dado um acontecimento A de Ω, probabilidade é uma função

$$P(): A \rightarrow [0,1]$$

que satisfaz os seguintes axiomas:

- $P[A] \ge 0$, para todo o $A \in \Omega$
- P[Ω]=1
- P[$\bigcup_{i=1}^{n} A_i$] = $\sum_{i=1}^{n} P[A_i]$, em que A_i são acontecimentos definidos em Ω

e mutuamente exclusivos, ou seja $\bigcap_{i=1}^{n} A_i = \emptyset$

Conceitos de probabilidades

Clássico (à priori): Consideremos uma experiência aleatória com N resultados possíveis, mutuamente exclusivos e igualmente prováveis. Seja n_A o número de resultados favoráveis a um acontecimento A. Então

$$P[A] = \frac{n_A}{n}$$

- Exemplo: num lançamento de um dado, seja A "saída da face um". Então P[A]=1/6
- Conceito frequencista (à posteriori): Consideremos um experiência aleatória realizada N vezes em que o acontecimento A se verificou n vezes. Designa-se por frequência relativa de A

$$f_A = \frac{n}{N}$$

Devido à regularidade, quando N aumenta f_{A} tende a estabilizar e portanto $P[A] = \lim_{N \to +\infty} f_{A}$

Conceitos de probabilidades

- Conceito subjectivo ou personalista: baseado no grau de credibilidade ou confiança dado ao acontecimento
 - Exemplo: A minha filha vai passar no exame de condução com 95% de confiança

Probabilidade baseada no conhecimento da pessoa Não é possível aplicar os outros conceitos

Teoremas

> Teoremas:

$$T1: P[\overline{A}] = 1 - P[A], \forall A \in \Omega$$

$$Dem: \Omega = A \cup \overline{A} \Rightarrow P[\Omega[= P[A \cup \overline{A}] \underset{mut.exc.}{\Leftrightarrow} P[\Omega[= P[A] + P[\overline{A}] \Leftrightarrow 1 = P[A] + P[\overline{A}]$$

$$\Leftrightarrow P[\overline{A}] = 1 - P[A]$$

$$T2: P[\varnothing] = 0$$

$$Dem: \Omega = \Omega \cup \varnothing \Rightarrow P[\Omega[= P[\Omega \cup \varnothing] \underset{mut.exc.}{\Leftrightarrow} P[\Omega[= P[\Omega] + P[\varnothing] \Leftrightarrow 1 = 1 + P[\varnothing]$$

$$\Leftrightarrow P[\varnothing] = 1 - 1 = 0$$

Teoremas

T3:
$$P[B - A] = P[B] - P[A \cap B], \forall A, B \in \Omega$$

Dem: $B = B \cap \Omega \Rightarrow B = B \cap (A \cup \overline{A}) \Rightarrow B = (B \cap A) \cup (B \cap \overline{A}) \Rightarrow$
 $B = (A \cap B) \cup (B - A) \Rightarrow P[B] = P[(A \cap B) \cup (B - A)]$
 $\Leftrightarrow P[B] = P[A \cap B] + P[(B - A)] \Leftrightarrow P[(B - A)] = P[B] - P[A \cap B]$

Nota: a partir de T3 vem que:

se
$$A \subseteq B \Rightarrow P[B - A] = P[B] - P[A]$$

Dem : Se
$$A \subseteq B \Rightarrow P[A \cap B] = P[A]$$

Teoremas

T4:
$$P[A \cup B] = P[A] + P[B] - P[A \cap B], \forall A, B \in \Omega$$

Dem: $A \cup B = (A \cup B) \cap \Omega \Rightarrow A \cup B = (A \cup B) \cap (A \cup A) \Rightarrow A \cup B = (A \cap A) \cup (B \cap A) \Rightarrow A \cup B = A \cup (B \cap A) \Rightarrow A \cup (B \cap A$

Gen T4:
$$P[\bigcup_{i=1}^{n} A_i] = \sum_{i=1}^{n} P[A_1] - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P[A_i \cap A_j] + \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n} P[A_i \cap A_j \cap A_k] \dots$$

+ $(-1)^{n+1} P[A_1 \cap A_2 \cap ...A_n]$

Nota: Seja A um acontecimento impossível. Então P[A]=0 Contudo se P[A]=0 não significa que o acontecimento seja impossível.

Probabilidade condicional

Dados dois acontecimentos A e B tais que P[B]>0, a probabilidade de A se realizar dado que B se realizou é dada por

$$P[A/B] = \frac{P[A \cap B]}{P[B]} \longrightarrow P[A \cap B] = P[A/B] \times P[B]$$

De modo análogo, se P[A]>0 tem-se que

$$P[B/A] = \frac{P[A \cap B]}{P[A]} \qquad \Longrightarrow \qquad P[A \cap B] = P[B/A] \times P[A]$$

Axiomas e Teoremas

Seja P[B]>0:

- $P[A/B] \ge 0$, para todo o A e B
- P[Ω/B]=1
- P[(A₁ U A₂)/B] = P[A₁ /B]+P[A₂ /B] , em que A₁ e A₂ são acontecimentos definidos em Ω e mutuamente exclusivos, ou seja A₁∩ A₂ Ø

Teoremas:

T1:
$$P[\overline{A}/B] = 1 - P[A/B]$$

T2: $P[\emptyset/B] = 0$
T3: $P[(A_1 - A_2)/B] = P[A_1/B] - [(A_1 \cap A_2)/B]$
T4: $P[(A_1 \cup A_2)/B] = P[A_1/B] + P[A/B]_2 - [(A_1 \cap A_2)/B]$

Acontecimentos independentes

- Dois acontecimentos, A e B, dizem-se independentes se P[A/B]=P[A] ou P[B/A]=P[B]
- Da definição anterior resulta o seguinte:
 - Dois acontecimentos, A e B, são independentes se e só se P[A∩B]=P[A]xP[B] (mesmo que P[A]=0 ou P[B]=0)
- > Teoremas: Se A e B são acontecimentos independentes então
 - A e B também são independentes, A e B também são independentes
 - A e B também são independentes
- ➢ Generalizando: Os acontecimentos A₁, A₂, ..., Aₙ são independentes se

$$P[A_{i} \cap A_{j}] = P[A_{i}] \times P[A_{j}], \forall i, j : i \neq j \qquad \text{independentes 2 a 2}$$

$$P[A_{i} \cap A_{j} \cap A_{k}] = P[A_{i}] \times P[A_{j}] \times P[A_{k}] \forall i, j, k : i \neq j, i \neq k, j \neq k$$

$$3 \text{ a a}$$

$$P[\prod_{i=1}^{n} A_{i}] = \prod_{i=1}^{n} P[A_{i}]$$

Nota: Os acontecimentos podem ser independentes 2 a 2 mas não serem 3 a 3, 4 a 4, etc e, como tal, não são independentes.

Maria João Cortinhal 08/09

Notas

- Dois acontecimentos de probabilidade não nula não podem ser simultaneamente independentes e mutuamente exclusivos
 - Dem: Se P[A]>0 e P[B]>0 então sendo independentes vem que P[A∩B]=P[A]P[B]>0, logo não podem ser mutuamente exclusivos
- Só quando um dos acontecimentos for impossível, ou seja com probabilidade nula, é que dois acontecimentos podem ser independentes e mutuamente exclusivos

Partição

Diz-se que os acontecimentos A₁,A₂,...,A_n, definem uma partição em Ω quando:

 $\bigcup_{i=1}^{n} A_{i} = \Omega : \text{a união de todos \'e o espaço de resultados}$ $A_{i} \cap A_{j} = \emptyset, i \neq j, i, j = 1, 2, ..., n : \text{são imcompatíveis 2 a 2}$ $P[A_{i}) > 0, i = 1, 2, ..., n : \text{todos têm probabilidade não nula}$

Teorema da Probabilidade Total

Sejam A₁,A₂,...,A_n acontecimentos que definem uma partição em Ω e B um qualquer acontecimento definido em Ω. Então

$$P[B] = \sum_{i=1}^{n} P[B/A_i] \times P[A_i]$$

$$Dem: B = B \cap \Omega = B \cap (A_1 \cup A_2 \cup ... \cup A_n) = (B \cap A_1) \cup (B \cap A_2) \cup ... \cup (B \cap A_n) = \bigcup_{i=1}^n (B \cap A_i)$$

$$\therefore P[B] = P[\bigcup_{i=1}^{n} (B \cap A_i)]$$

 $\text{Mas os acontecimentos } A_i \text{definem uma partição em } \Omega \ \log o \ A_i \cap A_j = \varnothing \Rightarrow (B \cap A_i) \cap (B \cap A_j) = \varnothing.$

Desta forma,
$$P[\bigcup_{i=1}^{n} (B \cap A_i)] = \sum_{i=1}^{n} P[B \cap A_i].$$

Por definição de probabilidade condicionada vem que $\sum_{i=1}^{n} P[B \cap A_i] = \sum_{i=1}^{n} P[B/A_i] \times P[A_i]$

Exemplo

- Sejam M₁, M₂ e M₃ três máquinas utilizadas na produção de parafusos. Suponhamos que:
 - M₁ produz 25% dos parafusos sendo 5% defeituosos
 - M₂ produz 35% dos parafusos sendo 2% defeituosos
 - M₃ produz 40% dos parafusos sendo 4% defeituosos
- Seja D: "um parafuso, escolhido ao acaso, ser defeituoso". Qual a P[D]?
- Resolução:
- Sejam
 - A₁: "um parafuso, escolhido ao acaso, provir de M₁"
 - A₂: "um parafuso, escolhido ao acaso, provir de M₂"
 - A₃: "um parafuso, escolhido ao acaso, provir de M₃"
- A₁, A₂, A₃ formam uma partição pois:
 - Apenas as máquinas M₁, M₂, M₃ podem produzir parafusos
 - Cada parafuso é produzido numa única máquina
 - Qualquer máquina produz parafusos

Continuação do exemplo

- > Pelo enunciado sabemos que:
 - P[A₁]=0,25; P[A₂]=0,35; P[A₃]=0,40
 - P[D/A₁]=0,05; P[D/A₂]=0,2; P[D/A₃]=0,04
- Então, como estamos perante uma partição podemos aplicar o teorema da probabilidade total:

$$P[D] = \sum_{i=1}^{3} P[D/A_i]P[A_i] = 0.25 \times 0.05 + 0.35 \times 0.02 + 0.4 \times 0.04 = 0.00355$$

Fórmula de Bayes

Sejam A₁,A₂,...,A_n acontecimentos que definem uma partição em Ω e B um qualquer acontecimento definido em Ω. Então

$$P[A_{i}/B] = \frac{P[A_{i}] \times P[B/A_{i}]}{\sum_{j=1}^{n} P[B/A_{j}] \times P[A_{j}]}, i = 1, 2, ..., n$$

Dem:

$$P[A_i/B] = \frac{P[A_i \cap B]}{P[B]} = \frac{P[A_i] \times P[B/A_i]}{P[B]} = \frac{P[A_i] \times P[B/A_i]}{P[B]} = \frac{P[A_i] \times P[B/A_i]}{\sum_{j=1}^{n} P[A_j] \times P[B/A_j]}, i = 1, 2, ..., n$$

Exemplo

- Consideremos o exemplo anterior.
- Suponhamos que se tirou um parafuso defeituoso. Qual é a probabilidade de ele provir da máquina M₁?
 - Queremos determinar P[A₁/D]
 - Como estamos perante uma partição, podemos aplicar a fórmula de Bayes:

$$P[A_1/D] = \frac{P[D/A_1]P[A_1]}{\sum_{i=1}^{3} P[D/A_i]P[A_i]} = \frac{0,25 \times 0,05}{0,0355} = 0,352$$
$$= 0,00355$$