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PREFACE 

Every International Congress on Mathematics Education (ICME) is 

structured around a "scientific program," but mathematics education is not 

a science of the same character as mathematics or most of the other sci

ences. The definition of our field is fuzzier, it overlaps a number of other 

domains, and its achievements are less likely to achieve consensus. Fur

thermore, mathematics education is an applied science and its practices vary 

considerably with the social, economic, and cultural environments in which 

it takes place. An international meeting on mathematics education must there

fore provide opportunities not only for the dissemination of what is currently 

known about the major problems, advances, and trends in the field world

wide, but also for interaction, and possibly confrontation, among participants 

whose views of the purposes and methods of mathematics education are 

radically different. 

The sequence of quadrennial ICME's has increasingly emphasized the 

intrinsic importance for mathematics educators of face-to-face debate and 

discussion. The ICME programs have increasingly incorporated these ac

tivities within the scientific sessions, not leaving them to the corridors and 

cafeterias. For example, the programs for the more recent congresses have 

included a substantial number of working groups whose mandate requires 

the leaders to encourage and facilitate the exchange of views among partic

ipants. 

Past ICME programs, other than the first, have tended to downplay 

the role of the traditional lecture. This is perhaps not surprising since the 

inefficacy of the traditional lecture as a teaching method is one of the few 

items of education lore that has almost acquired the status of a consensual 

truth. The program for ICME-6, in 1988, offered only four plenary lectures 

during the week; and, although a large number of smaller presentations, or 
mini-lectures, took place within the groups, the feedback from that Con

gress suggested that the marginalization of the lecture had gone too far. The 
International Program Committee for ICME-7, therefore, decided to sched
ule about 40 lectures in one-hour slots in addition to the plenary lectures 

and the mini-lecture presentations to groups. Invitations were issued-some 
specifying the lecture topic, others leaving the topic open-to a selection of 
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the best theoreticians, researchers, and practitioners in the field around the 
world. Forty-two lectures were eventually included in the ICME-7 program. 

Twenty-seven of those lectures are represented in this volume. In a 
few cases the speaker did not want the lecture published here; in a few 
others, the editors decided that the treatment of the topic was not suitable 
for this publication. The papers that remain sample the very best work in 
the field of mathematics education today. 

The sample is, however, heavily biased. The lectures were only one 
component in the ICME-7 program. It is clear that they do not by them
selves cover the field of mathematics education, nor do they combine to 
give a complete picture of the ICME-7 program as a whole. Readers should 
consult the /CME-7 Proceedings to obtain a more comprehensive view of 
the overall state of mathematics education internationally. There they will 
see that the lecture topics complement the topics treated in the other pro
gram strands: the plenary lectures, the Working Groups, the Topic Groups, 
the reports of ongoing work by the official Study Groups of the Internation
al Commission on Mathematical Instruction (ICMI), the reports of the ICMI 
Studies, the miniconference on calculators and computers, and so on. Here, 
however, in detail, are the records of some fine talks, well worth the time of 
any mathematics educator to read and reflect upon. 

The editors acknowledge the contribution of a number of people to the 
preparation of this volume. Considerable gratitude is owed the authors of 
the selected papers who met their deadlines and patiently negotiated the 
cuts and other modifications we asked them to make. The main work of 
keyboarding the final texts, preparing the artwork, and copy editing the 
papers was carried out at the University of British Columbia under the 
direction of Stuart Donn and with the assistance of Sue Bryant, Cynthia 
Nicol, Sandra Crespo, Sandra Robinson, and Susan Dawson. The complete 
text was formatted and converted to camera-ready form by Therese Gadbois, 
Editions l'Ardoise, Quebec. Claude Gaulin and Bernard Hodgson supervised 
the final stages of the preparation of this volume and coordinated them with 
the production of the /CME-7 Proceedings. Jacques Chouinard and Suzanne 
Allaire saw the publication through its final production stages by Les Presses 
de l'Universite Laval. We thank all of the above most warmly. 

December 1993 
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David F. Robitaille 
David H. Wheeler 
Carolyn Kieran 



PREFACE 

Chaque Congres international sur l'enseignement des mathematiques 

(ICME) se construit autour d'un «programme scientifique » - quoique Ia 

didactique des mathematiques ne soit pas une science de meme nature que 

les mathematiques ou Ia plupart des autres sciences. Sa definition est plus 

floue, elle chevauche plusieurs autres domaines et ses resultats font moins 

facilement consensus. De plus, Ia didactique des mathematiques est une 

science appliquee et sa pratique varie considerablement selon le milieu social, 

economique et culturel ou elle s'applique. Une rencontre internationale sur 

l'enseignement des mathematiques doit done fournir l'occasion non seulement 

de faire connaitre Ia situation actuelle dans le monde concernant les pro

blemes, les progres et les tendances dans ce domaine, mais egalement de 

susciter des echanges, voire des confrontations, entre des participants et 

participantes ayant une vision radicalement differente des buts et des me

thodes de l'education mathematique. 

Les congres ICME ont lieu tous les quatre ans. D'une fois a l'autre, on 

a accorde une importance sans cesse croissante aux discussions et aux debats 

face a face. On a fait une place de plus en plus grande a de telles activites 

dans le programme scientifique - au lieu de les laisser survenir spon

tanement dans les corridors et les cafeterias. C'est ainsi que le programme 

des derniers congres ICME comprenait un nombre important de groupes de 

travail dont les responsables avaient pour tache d'encourager et de faciliter 

les echanges de points de vue entre participants et participantes. 

Aux congres ICME precedents, sauf au premier, on a eu tendance a ne 

mettre qu'un petit nombre de grandes conferences au programme. Cela n'est 

peut-etre pas etonnant, compte tenu que l'inefficacite de la conference tradi

tionnelle comme mode d'enseignement fait pratiquement consensus depuis 
longtemps en education. Ainsi, durant toute la semaine du congres ICME-6 
en 1988, seulement quatre conferences plenieres avaient ete prevues; malgre 
Ia presentation d'un grand nombre d'exposes plus courts dans les groupes, 
les commentaires re�us a propos du congres ont souligne que Ia place des 
grandes conferences etait devenue trop marginate. C'est pourquoi le Comite 
international du programme d'ICME-7 a decide de mettre a l'horaire une 
quarantaine de conferences d'une heure- en plus des conferences plenieres 
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et des exposes faits dans les groupes. Certains des meilleurs theoriciens, 
chercheurs et praticiens du domaine dans le monde furent incites a parter, 
les uns sur un sujet determine, les autres sur un theme de leur choix. Fina
lement, quarante-deux conferences d'une heure furent presentees. 

Les textes de vingt-sept de ces conferences sont reproduits dans ce 
volume. Quelques conferenciers ont prefere ne pas publier leur texte ici. 
Par ailleurs, les redacteurs ont dfi omettre certaines conferences parce que 
le traitement du sujet ne convenait pas a cette publication. Les textes pre
sentes ici constituent une selection des meilleurs travaux dans le domaine 
de l'education mathematique aujourd'hui. 

Ces conferences, qui constituaient l'un des volets du programme 
d'ICME-7, ne sauraient toutefois pretendre couvrir tout le champ de l'edu
cation mathematique, pas plus d'ailleurs qu'elles ne peuvent donner une 
image complete du contenu scientifique du programme. Le volume desActes 

d'/CME-7 fournit une vision plus globale de la situation mathematique au 
plan international. On y constatera que les themes traites dans les conferences 
sont complementaires des sujets abordes ailleurs dans le programme : confe
rences plenieres, groupes de travail, groupes thematiques, Groupes d'etude 
officiels de la Commission internationale de l'enseignement mathematique 
(ClEM), Etudes de la ClEM, mini-congres sur les calculatrices et les ordi
nateurs, etc. Dans le present volume, on trouvera les textes de conferences 
remarquables, dont la lecture devrait interesser tous ceux qui reuvrent en 
education mathematique et leur fournir matiere a reflexion. 

L'equipe de redaction desire souligner la contribution de nombreuses 
personnes. Nous sommes tres reconnaissants envers les auteurs des textes 
choisis d'avoir respecte les echeances que nous avions fixees et d'avoir 
accepte les coupures et autres modifications que nous leur avions demandees. 
La saisie des versions finales des articles, le graphisme et la correction des 
textes ont ete realises principalement a l'Universite de la Colombie-Britan
nique, sous la direction de Stuart Donn et avec l'aide de Sue Bryant, Cynthia 
Nicol, Sandra Crespo, Sandra Robinson et Susan Dawson. La mise en page 
du texte et le montage final ont ete effectues par Therese Gadbois, des 
Editions l'Ardoise, a Quebec. Claude Gaulin et Bernard Hodgson ont 
supervise les dernieres etapes de Ia production de ce volume et en ont assure 
la coordination avec celle des Actes d'ICME-7. Jacques Chouinard et 
Suzanne Allaire se sont charges de l'etape finale de publication par Les 
Presses de l'Universite Laval. Nous remercions toutes ces personnes tres 
chaleureusement. 

Decembre 1993 
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David F. Robitaille 
David H. Wheeler 
Carolyn Kieran 



CONTRIBUTION DE L'APPRENTISSAGE DE 
LA GEOMETRIE A LA FORMATION SCIENTIFIQUE 

Gerard Audibert 

Universite des sciences et techniques du Languedoc, France 

Le texte qui suit a pour but de repondre a la question suivante : La 

geometrie est-elle actuellement essentielle a la formation scientifique des 

eleves ayant entre 11 et 18 ans? 

11 est constitue de quatre paragraphes analysant quatre aspects de la 

geometrie: 

• la geometrie, discipline de service ; 

• la geometrie, discipline proche des activites spontanees des eleves ; 

• la geometrie et la formation scientifique ; 

• la geometrie et le dessin. 

LA GEOMETRIE DISCIPLINE DE SERVICE 

Meso res 

Dans ses Elements de geometrie Alexis Claude Clairaut (1741) ecrit: 
« la mesure des terrains m'a paru ce qu'il y avait de plus propre a faire naitre 

les premieres propositions de geometrie ». 11 ajoute dans la quatrieme partie 

de son traite que la mesure des solides a ete sans doute un des premiers 

objets qui ait pu fixer !'attention des geometres. Jacques Hadamard (1901) 
dans ses le<;ons de geometrie elementaire n'hesite pas a consacrer un chapitre 

entier aux « notions sur la topographie ». Ces deux illustres mathematiciens 
n'ont done pas peur de faire jouer a la geometrie un role de discipline de 
service. 

Geographie 

Si nous examinons les notions necessaires a une initiation a Ia geogra
phie nous trouvons : triangulation, latitude, longitude, paralleles, meridiens, 
projecteur, nivellement, echelle, courbe de niveau, coupe, pente, etc. Nous 
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y trouvons beaucoup de concepts introduits en geometrie. Cette derniere 
joue done un role de discipline de service pour la geographie. 

Examinons encore trois autres secteurs d'activites professionnelles ou 

scientifiques : la cristallographie, le bureau d'etudes, la robotique. 

Cristallographie 

En cristallographie les 32 groupes ponctuels de symetrie cristallo

graphique jouent un role privilegie. Chacun de ces groupes est Ia reunion 

d'un nombre fini de rotations et de symetries-rotations, les axes de rotation 

et les plans de symetrie passant tous par un meme point ; une symetrie

rotation est le produit d'une rotation autour d'une droite D et d'une symetrie 

orthogonale par rapport a un plan P, D et P etant orthogonaux entre eux. 
Considerons par exemple le groupe des douze rotations conservant globale

ment le tetraedre regulier, groupe dont le symbole international Hermann

Mauguin est 23. II peut etre illustre par la figure 1 representant en perspective 

cavaliere un tetraedre regulier, un axe de rotation de 180° et un axe de rotation 

de 120° ou 240°. Comme nous avons 3 axes de rotation de 180° et 4 axes de 

rotation de 120° ou 240° conservant globalement le tetraedre regulier, le 

groupe 23 est done constitue par 12 (3 + 8 + 1) rotations dont les axes 

passent par le centre de gravite G du tetraedre regulier. Des notions geome

triques necessaires a la cristallographie apparaissent a propos de ces groupes 

ponctuels de symetrie cristallographiques. Les polyedres, la geometrie de 

l'espace et la structure euclidienne sont particulierement indispensables. 

Figure 1 
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Bureau d I etudes 

Si nous examinons des activites de trac:;age en bureau d'etudes nous y 

trouvons les principales constructions geometriques, les perspectives, le trace 

des intersections courantes de surface. II est indeniable que la geometrie est 
au service de ce bureau d'etudes, on peut meme dire que ces activites de 

trac:;age ne sont que de Ia geometrie. Si nous devons par exemple obtenir le 

trace de }'intersection d'une sphere et d'un cylindre tel qu'il est represente 

en perspective cavaliere sur Ia figure 2, il nous faut utiliser Ia sphere, le 

cylindre, les equations parametriques de courbes gauches, Ia perspective 

cavaliere. D'une maniere plus generale nous voyons que Ia geometrie est au 

service du bureau d'etudes. 

Figure 2 

Robotique 

Examinons le robot ACMA S 18 utilise en metallurgie du soudage. Il 
est represente par la figure 3. Les six articulations de ce robot font que 
certaines parties du robot pivotent autour d'autres parties ou encore que 
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certaines parties ont un mouvement de rotation autour d'autres parties. Si 

on represente ces liaisons on obtient la figure 4 ou six cylindres et leurs 

axes A, B, C, D, E, F scbematisent ces liaisons. 

Figure 3 

Plusieurs reperes sont aussi necessaires pour analyser la situation : un 

repere fixe lie au socle du robot OXYZ, un repere 0' X' Y' Z' lie au porte 

outil, des reperes 0" X' Y' Z' ou 0" X" Y" Z" lies a l'outil. Nous avons repre

sent€ ces reperes orthonormes sur la figure 4. Les notions geometriques 

necessaires a l'etude des robots sont done les rotations, les translations, les 

mouvements de rotation et de translation et aussi les changements de reperes 
orthonormes. Nous avons la des notions de geometrie au service de la 

robotique. 

Pour la mesure des terrains et des solides, la geographie, la cristallo
graphie, le bureau d'etudes et la robotique, la geometrie est une discipline 
de service. Nous pourrions multiplier les exemples et constater de plus que 
Ia geometrie de l'espace et Ia structure euclidienne sont des outils particu
lierement privitegies. 

4 
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LA GEOMETRIE, DISCIPLINE PROCHE DES ELEVES 

Observons des eleves ayant une douzaine d'annees cherchant en classe 

le probleme suivant : 

Le perimetre d'un triangle est de 12 em; sachant que Ia mesure d'un cote est 
toujours un nombre en tier, dessinez le triangle. Existe-t-il plusieurs solutions ? 

Nous faisons quelques constatations. Tout d'abord les eleves ont une 

grande activite materielle ; ils dessinent de nombreux triangles, mesurent, 

echangent leurs dessins. D'autre part ils utilisent des demarches de pensee 

variees : font des essais, rectifient des erreurs, verifient, voient des contra

dictions, fournissent des explications, cherchent des contre-exemples. Et 

enfin abordent des relations et des concepts ; ils reflechissent notamment a 

Ia notion d'approximation, prennent contact avec l'inegalite triangulaire et 
avec Ia plus courte distance entre deux points. 

Plus generalement Ia geometrie est propice a des activites spontanees 
des eleves a condition de valoriser trois aspects essentiels de Ia geometrie : 
l'activite materielle, Ia recherche de problemes, les demarches de pensee. 
Examinons separement ces trois aspects. 
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Activite materielle 

La geometrie est a Ia base de nombreuses activites materielles, 

notamment des activites d'atelier (atelier de menuiserie) ou de terrain; on 

peut par exemple tracer au sol une piscine rectangulaire de 5 m sur 10 m. 

Mais aussi des constructions de maquettes, notamment Ies constructions 

des cinq polyedres reguliers. On peut demander par exemple aux eleves de 

tracer le patron d'un dodecaedre regulier ; il doit alors obtenir deux patrons 

semblables a celui represente par Ia figure 5. On lui demande alors de 

construire le dodecaedre. On peut lui demander aussi de fabriquer Ia maquette 

du ballon de football represente par Ia figure 6 (d'apres Luca Pacioli, 1509). 
Mais l'activite materielle Ia plus importante en geometrie pour des eleves 

ayant entre 11 et 18 ans consiste a dessiner des objets et en premier lieu des 

polyedres, comme par exemple celui represente par Ia figure 7. La encore 

nous retrouvons essentiellement Ia geometrie euclidienne de l'espace a trois 

dimensions. 

Figure 5 

Figure 6 
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Figure 7 

Resolution de probleme 

La resolution de probleme reste une activite prioritaire dans l'ensei

gnement de Ia geometrie. Certains problemes sont restes presents durant 
plusieurs siecles: celui de Ia trisection de l'angle (partager un angle donne 

en trois parties egales), celui de Ia duplication du cube (construire un cube 

de volume double de celui d'un cube donne) ou celui de Ia demonstration du 
postulat des paralleles. Des Iivres sont confius comme des recueils de 

problemes de geometrie: celui de Lame (1818), celui de Ritt (1847) ou 
ceux de Yaglom (1962, 1968, 1973). Certains problemes plus scolaires que 

nous venons de citer sont souvent proposes. II en est ainsi du probleme : 

Circonscrire a un quadrilatere donne un autre quadrilatere semblable a une 
figure donnee 

que l'on trouve dans Lame (1818) et qui est aussi longuement developpe 

dans Yaglom (1968). 

Mais si Ies problemes enonces precedemment ne sont pas proches de 

nos eleves, nous disposons par ailleurs d'une grande variete de problemes 

de geometrie qui eux interesseront vivement nos eleves. Donnons-en quel

ques exemples : 

Decoupe un disque de 15 em de rayon. Trace un angle de 120° comme le 
montre Ia figure 8. Enleve le morceau du disque qui se trouve dans cet angle. 
Fabrique avec le reste un chapeau de clown ayant Ia forme d'un cone. Quelle 
est Ia hauteur de ce cone ? Quel est le rayon du cercle de base de ce cone ? 

ABC est un triangle fixe. MNPQ est un rectangle variable. Les points M et N 
sont sur le cote BC du triangle, le point P sur le cote AC, Q sur le cote AB. 
Determiner !'ensemble des positions possibles pour le centre du rectangle 
variable MNPQ. 

Peut-on couper un cube de telle sorte que cette section soit un pentagone ? 
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Peut-on couper un tetraedre regulier de telle sorte que cette section soit un 
triangle rectangle isocele ? 

Une salle de classe a pour dimension 7 m de long, 5 m de large et 3m de haut. 
Un fil est tendu verticalement du plafond au sol. Une balle de revolver traverse 
Ia salle. Elle part d'un des coins du plafond et aboutit a Ia base d'un mur en son 
milieu. La balle se deplace en ligne droite a partir de ce coin et coupe le fil a 

1,5 m au-dessus du sol. A queUe distance de chaque mur le fil etait-il place ? 

Figure 8 

Toutefois, pour que face a un probleme l'eleve soit interesse, curieux 

et actif, encore faut-il apporter un grand soin aux enonces. Les enonces doi

vent utiliser un symbolisme rudimentaire, un vocabulaire simple (celui du 

dictionnaire familial suffit amplement Ia plupart du temps) et etre courts. 

Ils seront alors vite compris et bien exploites par les eleves. Malheureusement 

un grand nombre d'enonces de nos livres scolaires, surtout ceux qui exigent 

explicitement des demonstrations, ne sont pas adaptes a nos eleves. Ces 

derniers ont !'impression qu'on leur demande de jongler avec des subtilites 

linguistiques ou des manies de professeurs. 

Demarches de pensee 

Les eleves lorsqu'ils pratiquent avec creur la geometrie utilisent les 
demarches de pensee les plus riches et les plus fondamentales parmi celles 

qui sont necessaires a la formation de l'esprit scientifique. On peut trouver 
dans la these de Chevalier (1984) et dans Audibert (1982) une etude detaillee 
de demarches de pensee geometriques. Nous avons pu observer de tres pres 
la richesse de ces demarches chez de jeunes eleves. 

On pourra examiner par exemple le travail de Kar, une eleve de 11 ans 
et 7 mois, presente de Ia page 569 a 577 dans Audibert (1982). Cette eleve 
cherchait le probleme suivant : 

8 
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AUDIBERT 

Donnons en deux phrases ce qui nous semble essentiel dans les 

demarches sui vies par les eleves. Les contradictions y jouent un grand role ; 

qu'elles prennent Ia forme de contradictions observees ou de contradictions 

logiques (Audibert, 1982). L'empirisme et les demarches experimentales y 
tiennent une place importante (Audibert, 1983) ainsi que les verifications, 

les contre-exemples et les tatonnements (Chevalier, 1984, 1988). 

GEOMETRIE ET FORMATION SCIENTIFIQUE 

La geometrie est proche des activites spontanees des eleves par les 

realisations materielles qu'elle suscite, par Ia resolution des problemes qu'elle 

propose, par les demarches de pensee qu'elle necessite. 

De plus Ia geometrie avec sa materialite, ses resolutions de problemes 

et ses demarches de pensee developpe des aptitudes indispensables dans les 
activites scientifiques et techniques. Mais l'apprentissage de Ia geometrie 

introduit d'autres processus contribuant ala formation scientifique des eleves. 

Nous allons en examiner quelques-uns dans Ia suite de ce paragraphe. 

Dans l'enseignement traditionnel de Ia geometrie une place importante 

est donnee a la demonstration. Mais la forme scolaire donnee a Ia demons

tration a estompe Ia richesse et Ia variete des processus intellectuels qui 

doivent accompagner l'enseignement de la geometrie. Ces processus se re
connaissent a travers les mots clefs suivants : symbolisme, formalisme, 

abstraction, structures, raisonnement, proprietes, demonstrations, images 
mentales, concepts. La pratique de ces processus est indispensable aux 
sciences et aux techniques ; Ia geometrie en est une bonne initiation. 

Donnons quelques exemples d'activites geometriques et montrons 

!'emergence au cours de ces activites du raisonnement, des images mentales, 

du formalisme ou des concepts. 

Exhaustivite 

Le raisonnement prend des aspects multiples, mais une de ses formes 
semble tres adaptee a Ia geometrie qui s'adresse aux eleves. C'est l'analyse 

exhaustive de tous cas que presente une situation. 

On peut par exemple decrire les douze premiers polygones reguliers ; 
ou bien chercher toutes les positions relatives de deux cercles d'un meme 
plan ; ou bien etant donne deux triangles ABC et A'B'C', chercher parmi les 

six relations LA= LA',LB = LB',LC = LC',AB = A'B',BC = B'C',AC = A'C' 

toutes les families de relations qui entrainent l'egalite des deux triangles ; ou 
encore chercher toutes les classes de triangles obtenues en prenant trois 
sommets d'un cube, deux triangles egaux etant dans Ia meme classe ; ou 
encore tous les patrons d'un cube ; ou bien toutes les sortes de sections d'un 
cube ou d'un tetraedre regulier. On peut realiser aussi d'autres inventaires 
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exhaustifs plus difficiles : classer toutes les courbes planes du second degre 
(les coniques), classer toutes les isometries du plan ou de l'espace; classer 

toutes les surfaces du second degre (quadriques); classer toutes les matrices 

reelles d'ordre 2 ou 3 ; faire l'inventaire des polyedres reguliers ; faire 

l'inventaire des groupes finis d'isometries. 

Image mentale 

La geometrie inculque des images mentales qui sont necessaires en 

sciences et techniques. Elle montre aussi comment s'elaborent et s'utilisent 

les images mentales, ce qui par la suite permet au professionnel en activite 

de creer les images mentales qui lui sont indispensables. 

La formation des images mentales s'obtient grace a !'observation et a 

la realisation d'objets (rare) et de dessins (moins rare) que no us proposons 

a nos eleves ; ces images vont cristalliser les concepts et les relations, et 

leur donner ainsi l'efficacite necessaire. Donnons deux exemples d'images 

mentales. La trigonometrie repose essentiellement sur une image mentale : 

le cercle trigonometrique qui est represente par la figure 9. Tant que l'eleve 
n'est pas capable de retlechir en ayant bien amene cette image dans sa tete, 
il faut l'obliger a dessiner ce cercle et a completer son dessin pour organiser 
et justifier ses raisonnements. 

Figure 9 

En dessin technique les vues (AFNOR, 1978) necessitent une image 
mentale permettant de coordonner l'objet, les projections et le dessin lui
meme. Cette image mentale peut s'elaborer a partir de maquettes et de mul
tiples dessins, mais nous proposons avec la figure 10 un dessin de synthese 
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representant en perspective cavaliere l'objet, ses six projections sur les six 

faces interieures d'un cube contenant l'objet, et ce cube presque totalement 

developpe, faisant apparaitre ainsi les six vues de l'objet. C'est cette figure 

10 que nous proposons comme dessin essentiel a Ia formation de l'image 
mentale accompagnant l'usage des vues en dessin technique. 

Figure 10 

Deplacements et matrices 

Les deplacements dans l'espace se reduisent a des rotations ou a des 

translations. Ils peuvent se ramener a du calcul matriciel plus facile a 

pratiquer. Mais comment passer de ces deplacements geometriques a ce 

calcul formel ? Pour comprendre ce passage, examinons tout d'abord les 

deplacements plans et illustrons Ia situation au moyen de la figure 11. 

Considerons un plan P et un repere orthonorme Ai J dans ce plan. Un 

deplacement de ce plan est le produit d'une translation definie par le vecteur 
AB = ai + b J suivie d'une rotation r de centre B, d'angle t telle que r(i) = ii 

et r(}) = v. Pla<;ons le plan P dans l'espace a trois dimensions et considerons 
le point c n'appartenant pas a pet CA = k. ci J k est un repere de l'espace. 
Alors la mat rice de passage de la base i J k a la base ii v w' ou w = CB' est 

r=· 
-sint a 

S= s�t cost b 

0 1 
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/ 
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i 

Figure 11 

Un point M du plan P se deplace en M'. Si x et y sont les coordonnees 

de M' dans le repere Bu ii, quelles sont ses coordonnees dans le repere Ai J? 
Les coordonnees de M' dans le repere Cu ii w sont x, y et 1. Dans le rep ere 

ci J k elles sont done donnees par la matrice colonne 

X cost -sint a X x cos t -y sin t + a 

s y sint cost b • y x sin t + y cost + b 

1 0 0 1 1 1 

Les coordonnees de M' dans Ai J sont done 

x cost-y sint +a 

y sint + y cost+ b 

Nous avons ramene les deplacements a une matrice S reelle d'ordre 3. 

On montrerait si on voulait continuer cette analyse que des compositions de 

deplacements dans le plan se reduisent a du calcul matriciel. De meme un 

deplacement de l'espace peut se ramener a du calcul portant sur des matrices 

d'ordre 4 de la forme 

al az a3 a 

� bz � b 

[= 
az a3 

oil bz b3 est une matrice orthogonale 
CJ Cz c3 c 

0 0 0 1 
CJ Cz c3 
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Si bien que pas a pas nous passons de la geometric plane a Ia geometric 

de l'espace puis au calcul matriciel. Cette demarche qui consiste a passer 

d'une situation assez tangible (deplacement dans le plan) a une autre plus 

formelle (le calcul matriciel) est assez generale en sciences. La geometric 
qui fait pratiquer cette demarche a done un role formateur vis-a-vis des 
sciences et des techniques. 

Concepts 

L'acces aux concepts peut etre considere depuis Ia geometric d'Euclide 
comme !'essence meme de Ia geometric. Nous ne nous etendrons done pas 

sur la maniere de passer des polygones reguliers aux concepts de rotation 
ou de groupe, ou de l'equilibre d'une poutre aux torseurs, ou de !'angle droit 

au produit scalaire, ou de !'orientation de l'espace aux determinants, etc. 

GEOMETRIE ET DESSIN 

Le dessin ou plus generalement les graphismes jouent un role important 
dans les sciences ; et de Ia representation graphique a Ia representation 
symbolique il n'y a quelquefois qu'un pas. Le dessin est aussi une des clefs 
de l'activite geometrique; il n'y a pas de geometric sans dessin; et il n'y a 

pas de dessin sans geometric. Ainsi le dessin geometrique va contribuer de 
fa<;on importante a Ia formation scientifique. Dans Ia revue Repere no 4 

editee par l'IREM en France nous avons eu !'occasion d'ebaucher un 
inventaire des roles joues par le dessin en geometric. Nous allons ici insister 

sur certains roles propices a la formation scientifique. 

Materialite 

Utiliser correctement les instruments de dessin necessite un appren
tissage de Ia part de l'eteve. Tracer des paralleles, des perpendiculaires, 
mesurer des angles est difficile a 11 ans. Mais c'est le prix a payer pour acce

der a Ia precision, ala minutie, a la rigueur. La connaissance des differentes 
representations de l'espace, des vues, des perspectives fait partie de Ia culture 

scientifique minimum. Les regles de representations de Ia perspective 

Cavaliere peuvent etre introduites des 11 ans (Audibert, 1990); les vues du 
dessin technique (AFNOR, 1978) etudiees vers 15 ou 16 ans. Cette pratique 
du dessin geometrique mettant en relation l'activite manuelle et Ia reflexion 
conceptuelle est peut-etre l'activite Ia plus formatrice dans Ia voie qui mene 
aux sciences et aux techniques. 

Resolution de probleme 

Le dessin va permettre de commencer tout de suite a chercher le 
probleme : « avant de faire quoi que ce soit, je decide de faire un dessin 
pour y voir plus clair», dit Marc. La realisation ou !'observation du dessin 
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va donner des idees. Mais aussi, certaines idees auront besoin d'etre synthe

tisees au moyen d'un petit dessin a main levee. Puis les dessins vont permettre 

Ia demarche experimentale, les verifications ; ils vont fournir des contre

exemples. Ensuite ils vont susciter ('organisation du raisonnement. Enfin 

ils vont permettre de clarifier, d'agrementer l'expose de Ia solution. 

Cal cui 

Dans notre enseignement de Ia geometrie, le calcul numerique puis le 

calcul algebrique ont pris trop de place par rapport au dessin. L'interaction 

entre le calcul et le dessin est extremement fructueuse et doit etre cultivee. 

Donnons un exemple : Ia figure 12 represente un cube ABCDEFGH et 

AG un axe de rotation d'ordre 3, ainsi que les trois pyramides ABCGF, 

ACDHG et AEFGH qui reunies donnent le cube. Chacune de ces pyramides 

de sommet A et de base carree a un volume egal au 1 du volume du cube ; 

d'oii le coefficient 1 intervenant dans le volume d'une pyramide. Le dessin, 

illustrant Ia realite spatiale, doit donner du sens a Ia formule indiquant que 

le volume de Ia pyramide est egal au tiers de Ia base multiplie par Ia hauteur. 

Figure 12 

A�� 

wu 

Les rotations et les symetries ne peuvent pas se reduire a des matrices. 

Les applications lineaires memes ne seront vraiment comprises que si on 

voit bien une base se deformer, ou plus concretement encore comme sur Ia 

figure 13, si le repere de depart 0 OA OB OC a partir duquel nous avons 
dessine un parallelepipede se deforme pour donner a l'arrivee un repere 0 

OA' OB' OC' a partir duquel nous avons dessine un autre parallelepipede. 

Figure 13 
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Les equations et les fonctions ne prennent pleinement leur sens qu'avec 

le trace des courbes et des surfaces correspondantes. Les fonctions sin x, 
cos x, tan x, x2, e-", ln x, Fx, � sont inseparables de leurs representations 

graphiques. 

Configuration et image mentale 

Parmi toutes les figures utilisees en geometrie un certain nombre d'entre 

elles que nous appelons configurations ont un statut un peu particulier. Une 

configuration ou dessin fondamental est un dessin qui illustre un concept 

ou une propriete importante, qui respecte de fortes contraintes d'equilibre 

et qui est socialement reconnu. 

La figure 14 representant un hexagone regulier, son cercle circonscrit 

et le centre de ce cercle, est une configuration. La figure 15 en est une autre, 

elle represente un cylindre ; la figure 16 est une configuration associee au 

theoreme de Thales. 

Figure 14 

Figure 15 Figure 16 

Les concepts importants ont besoin d'etre associes a des configurations. 
C'est ainsi que nous avons des configurations pour la repartition de masse, 
pour la perpendiculaire commune a deux droites, pour l'exponentielle, pour 
l'hyperbololde a une nappe dont le galbe si rectiligne donne tout son sens au 
concept de surface reglee (cf. figures 17, 18, 19, 20). 
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Figure 17 

Figure 18 

Figure 19 Figure 20 

Pour que les concepts et les proprietes atteignent toute leur efficacite, 

non seulement ils doivent etre illustres par une ou plusieurs configurations, 

mais encore cette configuration doit tres vite laisser Ia place a une image 

mentale. II y a image mentale s'il y a reference a un objet, un dessin ou une 

configuration en l'absence de cet objet, ce dessin ou cette configuration. 

Par exemple si y = f (x) est une fonction reelle definie sur R, conti
nue et paire et si nous connaissons Ia moyenne de cette fonction sur 
l'intervalle (0,10), soit -rlft f(x)dx, on peut se demander quelle est sa 
moyenne sur (-10, +10). Une image mentale du concept de moyenne donne 
immediatement Ia reponse a cette question. 

II nous semble que Ia notion d'image mentale, sa formation, son usage 
ne sont pas suffisamment pris en compte dans l'enseignement de Ia geometrie 
et plus generalement des mathematiques. 
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CONCLUSION 

Le texte qui precede avait pour but de developper des arguments 

justifiant ]'affirmation suivante : la geometrie est actuellement essentielle a 

la formation scientifique des eleves ayant entre 11 et 18 ans. Nous ne 

connaissons pas d'autre discipline dont le role dans la formation scientifique 

d'eleves de cet age soit aussi efficace. 
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DIAGNOSTIC TEACHING 

Alan Bell 

University of Nottingham, England 

The Diagnostic Teaching Project began in about 1980 at a time when 

national and international surveys of mathematics attainment were arousing 

considerable surprise and concern, both on account of apparently low levels 

of achievement and relatively small yearly gains. This contrasted sharply 

with the perceptions of the teacher in the classroom who saw herself as 

teaching, day by day, a considerable amount of material which the pupils 

apparently learned, at least to some degree, and retained, at least for a short 

time. Thus the aim of our research on Diagnostic teaching has been to 

develop a way of teaching which contributes clearly to long term learning 

and which promotes transfer. The key aspects of this method are the iden

tification and exposure of pupils' misconceptions and their resolution through 

"conflict-discussion". Conceptual diagnostic tests also play a part both in 

helping pupils to become aware of their misconceptions and enabling the 

teacher to observe progress. 

The teaching materials for a particular topic aim to begin with a rich 

situation containing various items of information and with an invitation to 

consider what further information can be found out from what is given. Fol

lowing this initial exploration, there is a focus on a few particular questions 

that contain important conceptual obstacles. The questions are deliberately 

posed in such a way as to allow misconceptions to come to the surface, if 
they exist, and thus to create a conflict which can be discussed and resolved. 
The third phase of the teaching cycle consists of exercises with built-in 
feedback of correctness. The new awareness reached during the conflict
discussion is thus put into practice in a situation in which pupils know imme
diately if they have made an error, and can reconsider their response. 
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BACKGROUND 

We ourselves were just completing a commission for the Cockcroft 
Committee of Inquiry to conduct a review of existing research on mathe
matics teaching and to make it available to the profession (Bell et al., 1983). 
Most of the key principles adopted and tested in the Project derived from 
this review and analysis of research on teaching. In particular, there was the 
recognition that pupils develop their own methods for dealing with tasks, 
often ignoring the standard methods they have been taught (Jones, 1975; 

Mcintosh, 1978), which led to the principle of beginning with the presenta

tion of the tasks which were the target of the teaching, observing pupils 

approaches, and providing teaching which enabled them to develop from 
this starting point towards complete and correct methods; similarly, it was 

believed that these should be meaningful whole tasks rather than parts of a 
procedure which could only be understood later (Gold, 1978). The notion of 
cognitive conflict derived from Genevan training studies (Inhelder, Sinclair, 
& Bovet, 1974) and the importance of feedback of correctness from Gelman's 
(1969) conservation training studies. The value of intensity of experience 
was highlighted by a Gagne type training study by Trembath and White 
(1979) in which learning with a stronger mastery criterion took 25% more 
time but produced 50% more learning. 

THE PROJECT 
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The key features of the diagnostic teaching methodology are: 

• initial presentation of the target tasks, which are those which pupils 
should be able to tackle by the end of the teaching sequence; 

• choice of tasks to cover the key concepts and likely misconceptions; 

• choice of sufficiently hard critical tasks to provide cognitive conflict; 

• provision of some form of feedback of correctness; 

• intensive discussion aimed at resolving the conflict and forming a 
newly integrated knowledge structure; 

• making the key principles explicit, in general terms, in the course of 
this discussion; 

• further problems, with feedback, to consolidate the insights gained; 

• flexibility of task, to ensure an appropriate level of challenge for 
students having varying initial levels of understanding of the concept; 

• returning to the same conceptual points on further occasions, 
including using different contexts, until it is clear that the under
standing is permanent and transferable. 
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A fuller discussion of the theoretical and experimental psychological 

background to the theory appears in Bell (1993a); and experimental tests of 

the importance of cognitive conflict, of the intensity of discussion, and the 

method as a whole appear in Swan (1983a, b), Bell et al. (1985), and Bell 
(1992, 1993b). Here I wish to emphasize the implications of the work for 

the treatment of the various curriculum areas which have been studied, 

describing the findings with regard to pupils' concepts and misconceptions, 

the tasks developed, and the ways of developing them into interesting and 

effective lessons. The topics treated are geometric reflections, decimals, 

additive structures with directed numbers and rates. 

GEOMETRIC REFLECTIONS 

The objectives here were the construction and recognition of the re

flections of figures in single axes. Typical misconceptions led to results 
which looked like the confusion of reflections with half turns or with trans

lations (Figure 1 ). Less common ones were that a horizontal or vertical figure 

became horizontal or vertical, and that the reflected figure could be similar 

to the original figure, if not congruent (Figure 1, Nos. 5, 6). Figure 1 shows 

a typical Marking Homework conflict task. 

The following worksheet was given to Edward Green for homework. Mark 
the work, correcting all the mistakes. In your books, explain where Edward is 
going wrong. 

2 4 

5 6 
A 

Figure 1 

A teaching experiment with 11 and 12 year olds, in which the control 
class used a well known series of individualized booklets, showed the marked 
superiority for retention which has been the characteristic of all our 
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experiments with the diagnostic teaching method. The two graphs in Figure 2 

show the scores of each pupil in pre, post and (two month) delayed tests. 

'r-----. 
.............. 

�'--.. 

A 

Figure 2 

THE NUMBER CURRICULUM 

The curriculum in number includes pure and applied aspects, with the 
applied situations normally coming first. Thus children's first experiences 
of number can be identified as the recognition of a similarity and an order

ing among sets of, say, one, two, three milk bottles on the doorstep, and 
the association of these with the learnt sequence of words one, two, three, 

four, ... The concepts "more" and "less" come readily into use, correspond

ing, in the practical situation, to sets of bottles which match, one for one, 
leaving extra bottles over, or bottles missing; while in the number sequence 

they correspond to words which appear later or earlier in the learnt sequence. 
Addition follows, again with situational and number sequence aspects; ad

dition facts emerge both from putting sets together and counting, and from 
counting along within the number sequence. This parallel development of 

the recognition of numerical and operational structure within practical situ
ations, and of operations as properties of the number system, continues at 
each stage. Fractions first come into play to describe relative quantities

half a glass of drink, or three quarters of the cake. Only much later is an 

independent existence as numbers attributed to them. The same is true of 
fraction operations-comparison, addition, multiplication. Similarly, di
rected numbers are believed to have been used first to designate excesses or 
deficits, from a standard weight, of sacks of grain. And in all these cases the 
number or the operation may play several roles. Natural numbers may count 
sets of objects, or identify positions in an ordering; comparison and take
away situations both correspond to subtraction, and to counting back (or 
up) in the number sequence. 

Traditional teaching has assumed that what needs to be taught are the 
methods of computing in the pure number systems; and that applications 
present no conceptual difficulty, but may make the computation practice 
more interesting-indeed, may demonstrate its relevance to practical 
situations. But as the sets of possible problem structures in each conceptual 
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field have been analyzed and their difficulty levels studied, it has become 
clear that wide variations in difficulty among problem types exist, and that 

the problems in textbooks usually cover only a few of the easier types. Hence, 
in order to enable pupils to operate freely and with understanding in these 
fields, teaching needs to be directed at the whole range of problem structures. 
This teaching should probably aim to make the pupils aware of the different 
structures, and their interrelationships, and of how the more difficult ones 
may be dealt with. This will be discussed further in relation to each of the 

problem fields. 

DECIMALS 

The teaching experiment in this field focused on the comparison of a 

conflict with a positive-only approach. Typical tasks were the following: 

1. Write down the next three terms in this sequence: 0.3, 0.6, 0.9, ... ..... . 
(Adding on 0.3's) 

2. Read this scale: 

3 

I 

t 
4 

3. Which decimal has the largest value: 5.248, 5.4, or 5.63? 

For the conflict group these were first presented as shown, to allow 
the errors to be made, then pupils were asked to do the same task on the 
number line and, sometimes, also on the calculator. For the positive-only 

teaching, the same tasks were used, but with the number line first, thus 

forewarning the pupils and avoiding conflict. 

The results are shown below. 

Results mean % 

Gain 
Pre Post Del Pre-del 

Conflict 44 78 80 +36* * difference 
N = 22 between groups 

significant 
Positive-only 52 75 76 +24* p = 0.012 

N = 25 
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The conflict group covered less material than the positive-only group, 
because of the time taken up by the discussions. So these results are partic

ularly important, since they conflict strongly with common teaching 

assumptions that discussing wrong approaches confuses students and should 

be avoided-and that time cannot be afforded for intensive discussions of 

particular points. For further details, see Swan (1983a, b, c). 

ADDITIVE STRUCTURES WITH DIRECTED NUMBERS 

The work in this field began with a series of interviews studying pupils' 

performance in combining directed numbers by addition and subtraction. 

(About 80% of the sample were successful at addition, 40% with subtraction.) 

Addition was in general performed meaningfully, with reference to 

the number line or to ideas of "quantities less than zero". (e.g. -5 + -g was 

seen as the addition of two quantities of the same kind.) For subtraction, 

most pupils had no such conceptualization, but worked from rules such as 

"subtract is go to the left" or "two minuses make a plus". These rules were 

subject to extensive degeneration; for example, -g - -2 = 11 because "mi

nusing two negatives equals a positive," and 7--2 = 5 because "negative is 

to the left," and "subtract is go to the left". The expression 5 - 12 + 8 - 3 
tended to be seen as two pairs of numbers subtracted, e.g. (5 - 12) + (8- 3) 

and the correctness of rearrangements judged by whether these pairs re

mained intact (or reversed). An application to bank balances presented 

difficulty in overcoming the reversals of the time order, for example, when 

a change and final state were given and the initial state was to be found. 

The diagnostic conclusion from the interview study was that the con
ceptual foundations for directed numbers and their operations were too thin. 

More experience was needed with situations from which directed numbers 

derived their meaning, and in which operations of both addition and sub
traction were possible. This meant, essentially, Money and Temperature. 

But a further set of situations appeared to be of interest-Pop Charts and 

League Tables, in which positions are denoted by ordinal numbers, and 
moves are directional. (The system therefore works in a similar way to the 
negative part of the number scale.) Interviews and tests in this field re
vealed the following misconceptions: 
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1 Count the start and finish 

"Norwich has gone up 6 places from 9th position. Where are they now?" 

Answer: 4th 

This is not particularly related to directionality, but has occurred quite 
extensively in some groups. The pupils do not realize the importance of 
counting off from the start or finish numbers when finding a difference. 
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2 Up is increase 

"Norwich has gone up 6 places from 9th position. Where are they now?" 

Answer: 15th 

The normal direction of increasing numbers, from 9 up 6 to 15 dominates. 

3 More means add 

"Liverpool scored 6 more goals this month than they did last month. They 
scored 13 goals this month. How many did they score last month?" 

Answer: 19 goals 

The difficulty of relating the time-order with the order of number of goals 
leads to a breakdown, and the word "more" dominates. 

4 Difference means subtract 

"A traveller went from Dakar, where the temperature was 31°, to Reykjavik, 
where it was -3° . How much did the temperature fall?" 

Answer: 28° 

31 down to -3 is 31, subtract 3, i.e. 28; a minus sign has to be "used" and 
the size of the answer does not cause conflict with expectation. 

5 Position and move confused 

"The afternoon temperature was 8°, but then fell 6° by nightfall. What was 
the temperature at nightfall?" 

Answer: 6° 

Linguistically, the confusion is between falling by 6° and falling to 6°. The 
"position" interpretation tends to be dominant. 

6 Sign denotes region 

"The temperature changed from -6° to -2°. How much was the change and 
was it a rise or a fall?" 

Answer: rise of -4° 

The degrees below zero are thought of as negative degrees even when they 
are moves. Similarly, a journey from a point 6 miles north of a given town 
to 2 miles north of the same town may be described as a journey 4 miles 
north, since it is "in the north". 

Similar misconceptions occur in temperature, money, and journey 

contexts, but differ somewhat in their degree of incidence and their charac
ter. Most of them occur also in dealing with ranking structures, such as Pop 

Charts or League Tables, where the ordering is like that of the negative 

number scale. 

"Up is increase," "more means add" and "difference means subtract" 
occur because the correct interpretation of the problem requires some reversal 
of thought from its "normal" direction, which is a cognitive strain. The 
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misconceptions have been expressed here in the form of the implicit beliefs 

held by the pupils. It seems necessary to do this in order to enable us to feel 

the reasonableness of the misconception from the pupil's point of view; we 

need to do this to have sufficient imaginative identification with the pupil's 

viewpoint to be able to set up a situation which will convincingly show 

him/her what is the correct view. This is the importance, and the difficulty, 

of the diagnostic step from recognizing an error-a wrong answer-to 

explaining it by identification of the misconception that is the pupil belief 

which governs it. 

Two further examples of tasks will be given to show how an attractive 

situation may be developed according to the principles noted above. 

On this world weather map (See Figure 3) the initial task is of course 

to fill the gaps. This involves answering questions of all three types, in 

which the unknown may be the final state, the change, or the initial state. 

Corrective feedback is provided in that the whole network should link 

together, and there are certain points at which the same answer should be 

reached from two different directions (i.e., forD and E, G and H, M and N, 

P and Q). Following this, there should be a discussion on what kinds of 

different question do we have here, leading to the identification of the three 

types mentioned, and considering also the question "In what ways do these 

operations relate to addition and subtraction?" The outcome should be the 

recognition that the first kind of task, the forward task, is a kind of addition, 

although it does not always involve adding numerical parts of the directed 

numbers involved. The second type, change unknown, is a type of subtrac

tion, though again not necessarily involving subtraction of the numerical 

parts; and the third type of question might be regarded as a subtraction in 

that it is the removal of a previously added quantity but, at the same time, it 

could be regarded as adding on the opposite change to that indicated. In the 

first two cases, the question of when numerical parts are to be added and 

when subtracted, and how the resulting sign is to be determined are also 

issues to be considered. This is not with the intention of extracting and then 

memorizing these as rules, but rather to become aware of them since they 

are significant aspects of the way in which the system works-that is they 
are additional insights. 

The next activity might well consist of the pupils making up, in groups, 
another such map with a similar set of questions built in. This will shed 

further light on the relationships within the system, and the questions 
suggested above for discussion may come into play again. Indeed, some of 
the above discussion might in fact be reserved for this point. We may note 

here the way in which the diagnostic teaching principles are exemplified. 
We are focusing strongly on the key concepts in the field, providing feedback 

of correctness, ensuring through the development of further questions and 
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the request to make up the pupils' own, that sufficiently hard challenges 
will be presented. There is intensive discussion, the making explicit of the 

contained principles and repetition with a change of view point. 

A revisiting of similar principles, but now in a fresh context can be 

illustrated by the task below, Top Twenty. (See Figure 4.) This can be 

developed in a very similar way, beginning by filling the gaps, and asking 
for two ways of checking (e.g. by getting the two-week change from the 

separate changes and, then alternatively, getting it from the positions at the 
beginning and the end). 

In making up a similar one of their own, pupils can be asked such 

questions as "How many gaps can you have in one line?", "Can they be 

anywhere?" Questions about whether this is a form of addition or subtrac

tion and in what way arise as before. 

RATES 

This field concerned multiplicative problems involving price, speed, 
currency exchange and other rates, with decimal numbers; our work focused 
on the choice of the correct operation. The teaching experiment is described 

in Bell (1992), and analyses of the pupils' conceptual structures are in Bell 
and Onslow (1987) and Bell et al. (1989). The main numerical misconcep
tions in this field, perhaps now well known, are that multiplying makes 

bigger and division makes smaller, and division must be of a large number 
by a smaller. Division by a number less than one (e.g. 8 + 0.5) tends to be 

rejected and effectively replaced by multiplication (in this case, taking half). 

The strong awareness of pupils of the size implications of the operations is 

worthy of note, as well as their failure to observe the changes in them when 
decimals and fractions less than one are involved. These size relations may 
have been the subject of comment by the teacher in the primary school, or 

they may simply have been abstracted by the pupils from their number 
experience. Equally important, and less obvious, is the increase in difficulty 
of recognizing the operation in a problem when the numbers involved change 
from small whole numbers to large numbers, or to decimal numbers (such 
as 3.7, which can typically reduce facility in a test item from 90% to 60%). 

Some further work on enlargement and mixture problems considered 

problems of the following type: 
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A picture of a painting in a book on art is 1 em high and 9 em long. If the 
actual painting is 9. 7 em high, how long is it? 

A bridge across a big river is 0.6 miles long. On a map this measures 14.7 mm. 
What is the scale of the map, in millimeters to one mile? 



NAME OF RECORD 

Pipes of Peace 

Relax 

What Is Love? 

That's Living All Right 

A Rockin" Good Way 

Bird of Paradise 

Marguerita Time 

Tell Her About It 

Running With The Night 

Islands In The Stream 

Nobody Told Me 

Hold Me Now 

Wonderland 

Love of The Common People 

Love Is A Wonderful Colour 

Wishful Thinking 

King of Pain 

Thriller 

Straight Ahead 

Here Comes the Rain 

BELL 

Position 
Jan 14th 

Position 
Jan 21st 

Position 
Jan 28th 

1st 

I UJ> 4 > 2nd 

A) I Down 1) 3rd 

) I Up 14 > 4th 

) I UJ> 8 > 5th 

) I UJ> 13 > 6th 

7th 

C) I Down4 > 8th 

( 9th 

( I Down 2 > lOth 

11th 

I Down 3) 12th 

13th 

14th 

E) 1 ue 13 >15th 

) I UJ> 20 >16th 

17th 

I Down 6 > 18th 

I Down 4) 19th 

20th 

Figure 4 
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B) 
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) 

D) 
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As well as the points noted above, we observed preferences for 

multiplying or dividing by an integer, these preferences applying both to 

the numbers as written and as they appear when decimal points are ignored. 

The numbers in a given problem may be such that these preferences lead to 
a reversal of the correct order if the decimal point is ignored (as in 8 + 0. 77) 
or whether or not the decimal point is taken into account (as in 0.39 + 0.89). 
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There is also a preference for an exact division where possible, with or 

without ignoring the decimal points (e.g. 0.24 + 48 may be reversed). 

Also some pupils have a weak grasp of the numerator and denomina

tor roles of the two quantities in a rate, which leads to an error consisting of 

a reversal of the quantities in the rate, for example, treating miles per hour 

as if it were hours per mile. 

Figure 5 

It was also shown that in proportion-type problems with one factor 

equal to 1, covering change of size (map-scale and enlargement) and mixture 

problems, some with the same units of measure and some with different 

units in the two compared situations, there was a preference for working 
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within each measure (which implies across the two situations). But in same

unit (enlargement) problems the preference was to work with the two quan
tities within each object (see examples above). There was also evidence of 

the relative ease of making estimates of ratio comparisons compared with 
estimates of the results of multiplication (Bell et al., 1989). 

Differences in difficulty level such as these are indications of factors 

affecting the perceptions of problem structure. It follows that the curriculum 
provision should certainly include examples of each different type. It is 
also plausible that pupils would be helped in understanding the problem 
field if they were made aware of these factors and their effect; that is, the 
recognition of what kinds of problem exist in the area, and what methods 

are appropriate for each. We have not so far experimented with the explicit 
teaching of problem structures but our observations suggest that it is feasible. 

Examples of teaching material in this field are published elsewhere 

(Bell, 1992, 1993a). Here we include a single example. (See Figure 5.) 

Most texts still ignore the results of this research. In a typical unit on 

division with decimal numbers there is first instruction about how to divide, 
then some practice, and finally some "problems". But there is rarely any 
demand to choose the operation-almost all the problems are divisions. Few, 
if any, divisions of smaller by bigger numbers are included; there is no 
focus on potential misconceptions, still less any arousal of conflict. 

However, a few recent texts have begun to make use of these ideas 
and results. (See Figure 6.) 

This example focuses well on a key concept and likely misconception; 
but it is "positive only", not aimed at provoking conflict or intensive 
discussion. 

CONCLUSIONS 

I wish, in this final section, to offer some general reflections, based on 
the experience of the Diagnostic Teaching Project, on current teaching 
practices and on which aspects most need changing. 

The greatest need is to provide time for reflection, review, diagnosis 

and response. Often time is more or less rigidly allocated to specific text 
book units or syllabus items. Teaching is directed to mastery of the desig
nated new method or idea, and errors or slowness arising from imperfect 
mastery of previous work are either ignored or dealt with briefly and super
ficially. These are the aspects of practice which have led to the persistence 
of the widespread and serious misconceptions which have been exposed by 
the research. Treating errors seriously and constructively, as indicating con
ceptual points which may need substantial attention, could offer great 
improvements. 
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13 a) Co not use a calculator. � 
Here ts an P.Stimation wh ich Meg is making: � /-;�) li . .r. • •• TH�ri A&>Wr f. �." • . • THATi A6ollr 410 

�.i';£ lu\:l(it...._ .so 1.4 IJI'Iflltltl IJI' 0.,. I& A8oetr 0. . ) 

� - �� �--� 
Complete her esttmate . ? 

b) Check yourrP.sult in (a) wtth your calculator 
lhJ? 

c) Copy and complete Meqs accurate calculation. W An.siUer:? 

14 a) U5e MP.CJ.5 m�thnd tn �stnnate. 

� � � 
b) Check your esumates with your calculator. 

_EXPLORATION ____________ __, 

15 Use a calculator ii you wish 

When we dtvide WP. can get one of three 

different outcomes· 

• a result larger than the dividend 

or • a result eaual to the dividend 

or • a result smaller than the dividend. 

Investigate which divisions grve which outcomes. 
Write down what you find out. 

(National Mathematics Project, 1987) 

Figure 6 

_Take note_ 
12.0 
I 

dividend 

0.6 
t 

divisor 

= 20.0 
' 

result 

Also indicated is a move away from the separate independent teach
ing of each specific point within a topic towards the offering of minimal but 
powerful instructional inputs, which are then stretched in discussion with 

the pupils to exploit all their implications. 

For example, a new method, once learnt, could be explored to see to 

what range of problems it applies, and in what circumstances it breaks down. 

Similarly, the regular practice of asking pupils to make up questions of 

their own, to raise awareness of the characteristics of the types of problem 

being dealt with and to extend the ideas to further types of problem can be 

very beneficial. 

There is also a need for more differentiated methods of teaching. Many 

classes experience a single mode of teaching almost exclusively, whether it 

be exposition and exercises, discussion or investigation. There needs to be 

more conscious deployment of these and other distinct teaching strategies 

aimed at different objectives-strategy acquisition, conceptual understand

ing or fluency. The assumption that the development of fluency in, for 

example, knowledge of multiplication facts, will take place sufficiently in 
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the course of other mathematical activity has left some pupils with intoler
able handicaps. (Making pupils as well as teachers more sharply aware of 

the different objectives of mathematical learning and the appropriate learn
ing methods is a major aim of our current project which has followed on 
from that on diagnostic teaching.) 
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READING, WRITING AND MATHEMATICS: 

RETHINKING THE "BASICS" AND 

THEIR RELATIONSHIP 

Raffaella Borasi and Marjorie Siegel 

University of Rochester, Rochester, United States 

This paper argues that conceptualizing knowledge, teaching and 

learning as the construction of meaning through a process of inquiry, rather 

than in terms of transmission, can help us rethink the nature of reading, 

writing and mathematics-the so-called "basics"-and suggest new ways 

to integrate reading and writing in mathematics instruction that take 
advantage of significant shifts that have occurred in the fields of mathematics 

education and language education in the last twenty years. 

A TRANSMISSION VIEW OF THE BASICS 

Much of traditional instruction, especially in mathematics, has been 

informed by the following set of assumptions: 

• that knowledge is a body of established facts and techniques, which 

results from the accumulation of isolated results, and can thus be 

broken down and passed along by experts to novices (logical 

positivistic view of knowledge); 

• that learning is the acquisition of isolated bits of information and 

skills, achieved mainly by listening, watching, memorizing, and 

practising (behaviorist view of learning); 

• that teaching is the direct transmission of knowledge from teachers 
and textbooks to students (direct instruction view of teaching). 

Within this transmission model, mathematics is seen as a body of 

context- and value-free facts and techniques that are hierarchically organized 
(Bishop, 1988; NCTM, 1989; NRC, 1989). Similarly, reading is reduced to 
a set of skills that can be mechanically applied to a text so as to extract the 
information contained in the material, with reading instruction focusing 
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mainly on ways to "decode" the text so that the reader can "receive" the 

author's meaning (Rosenblatt, 1978; Harste, Woodward, & Burke, 1984). 

Writing, in turn, is treated as a matter of transcribing previously formed 

ideas onto paper so as to communicate to an audience (Connolly, 1989). 

These views have limited the use of reading and writing in mathematics 

classes inasmuch as reading and writing are seen as obstacles that may 
interfere with learning. Indeed, reviews of the literature on reading math

ematics (O'Mara, 1981; Pinne, 1983; Nolan, 1984; Siegel, Borasi, & Smith, 
1989) confirm that most educational researchers have concentrated on two 

dimensions of reading mathematics regarded as major obstacles to learning 

from mathematical texts: (1) learning the specialized language of math

ematics, and (2) the comprehension of word-problems, with special attention 

paid to the way in which the syntactic and semantic organization of word

problems may affect students' interpretation and solution of the task. Writing 

mathematics, on the other hand, has received little attention in a transmission 
model since the emphasis is on "receiving" information (i.e., reading) and 

writing in school is done primarily to display what has been learned so that 

it can be evaluated by the teacher (Pimm, 1987; Connolly, 1989). 

INQUIRY AS A FRAMEWORK FOR RETHINKING THE BASICS 

The commonsense views about knowledge, teaching, and learning that 

constitute the transmission model have been challenged by scholars working 

within such diverse intellectual traditions as philosophy, psychology, 

sociology, anthropology and, of course, mathematics education. 

First of all, the transmission assumption that absolute knowledge is 
attainable has been criticized on philosophical grounds by semioticians such 

as Peirce (Skagestad, 1981; Siegel & Carey, 1989) and radical constructiv
ists (Cobb, Wood, & Yackel, 1990; Confrey, 1990; von Glasersfeld, 1991). 
This assumption has also been challenged by historical (Kuhn, 1970; Lakatos, 
1976; Kline, 1980) as well as sociological and anthropological studies of 

how scientific knowledge is actually developed (Latour & Woolgar, 1979; 
Knorr-Cetina, 1981, 1983). Together, these scholars propose that knowledge 
is generated by a continuous process of inquiry motivated by uncertainty 
and doubt, and sanctioned by social negotiations occurring within a com
munity of inquirers. Thus, all knowledge, including mathematics, is viewed 
as constructed out of the context in which it is produced, and hence fallible. 

Studies on children's learning informed by Piaget's (1970) model of 
cognitive development, cognitive science (Gardner, 1985), and Vygotsky's 
(1962, 1978) socio-cultural theory of learning, on the other hand, have 
offered potent critiques of the behavioristic view of learning embedded in 
the transmission model. With respect to the learning of mathematics 
specifically, several researchers have shown that the learner must actively 
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construct a personal understanding of concepts and techniques if meaningful 

learning is to take place. (See, for example, Ginsburg, 1983, 1989; and Steffe, 

von Glaserfeld, Richards, & Cobb, 1983.) 

Finally, the idea that knowledge and learning are acts of construction 
situated in a community of practice implies that instruction can no longer 

be defined as the efficient transmission of information from teacher to 

student. Rather, teachers will have to take on the more challenging job of 

supporting students' inquiries in their classrooms. This will involve creating 

a rich environment that invites students to engage in inquiry as well as a 

new set of social norms and values to support the inquiry process-such as 

an appreciation of the students' need to take initiative and responsibility for 

their own learning rather than expect the teacher to "teach" them, seeing 

learning as a collaborative rather than an individualistic practice, and 

regarding uncertainty and confusion as an integral part of the construction 

of knowledge that should be exploited as a positive force. 

Woven throughout all these critiques of the transmission model is a 

new portrait of inquiry as a social, constructed, and contingent process of 

knowing that suggests a powerful new model for teaching and curriculum. 

Such a model is compatible with the recent calls for reform in school math

ematics put forth by influential professional organizations in the U.S. 

(NCTM, 1989, 1991; NRC, 1989, 1990, 1991) as well as the work of math

ematics education researchers associated with radical constructivism and/ 

or a "humanistic" view of mathematics education (Brown, 1982; Davis, 

Maher, & Noddings, 1990; Lampert, 1990; Ernest, 1991; von Glasersfeld, 

1991; Borasi, 1992). 

The views of knowledge, learning, and language assumed by the inquiry 
model have also influenced the field of language education and led to the 

development of new theories of reading and writing that emphasize the 

process of generating and reflecting on meaning in the context of a discourse 

community. Writing has come to be seen as an act of meaning construction 
in which writers work out what they mean in the process of writing rather 
than in advance. This shift has inspired the "process approach" to writing 

instruction, which involves transforming classrooms into writing workshops 

where students can brainstorm ideas, write drafts, participate in peer response 
groups, revise and edit their texts. These kinds of writing experiences have 
also found a place within content area classes (including mathematics) as a 
result of the "Writing to Learn" movement (Connolly & Vilardi, 1989). 
Similarly, reading is now conceptualized as a meaning-making process 
involving the negotiation of reader, text, and context (e.g., Rosenblatt, 1978; 
Carey, Harste, & Smith, 1981; Goodman, 1984; Siegel, 1984). As in the 
new theories of writing, language is not seen as a fixed code for transmitting 
the message from author to reader but an open potential out of which the 
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reader generates a textual interpretation unique to the context in which it is 

produced. Hence, the idea of a single correct meaning for a given text has 

been replaced by the expectation that readers' interpretations will vary. The 

instructional implications of these theories can be seen in classrooms where 

"whole language" is practiced. (See Harste, Woodward, & Burke, 1984; 

Goodman, 1986; Harste, Short, & Burke, 1988; and Edelsky, Altwerger, & 

Flores, 1991, for an introduction to the theory, research, and practice of 

whole language.) 

A mathematics classroom based on the inquiry model outlined in this 

section will look quite different from those with which we are most familiar, 
as will the use of reading and writing. In the section that follows, we will 

report in depth on a specific classroom experience so as to ground our 

discussion of the integration of reading, writing and mathematics in an 

inquiry classroom. 

IMAGES OF READING, WRITING AND MATHEMATICAL 

ACTIVITIES IN AN INQUIRY CLASSROOM 

The classroom experience we have chosen to report is a three-week 

unit on "Taking a Census" developed in a U.S. middle school mathematics 

classroom. This experience was part of the "Reading to Learn Mathematics 

for Critical Thinking" research project (hereafter abbreviated as RLM), an 

interdisciplinary attempt to develop, document, and analyze instructional 

experiences that synthesized reading and mathematics in collaboration with 

classroom teachers. (See Borasi & Siegel, 1988, in preparation, for a detailed 

description of this project.) 

The impetus for the unit (which was an independent effort, planned 

and carried out solely by the classroom teacher, Lisa Grasso) was the 1990 

U.S. Census. Lisa was ready to begin a unit on statistics with her class just 

around the time the census was going to be taken and the media was full of 

information about this event. Lisa saw this as an opportunity for her stu

dents to engage in genuine mathematical inquiry while at the same time 
learning the rudiments of statistics in a meaningful context. With these goals 
in mind, she suggested that, while the U.S. Census was being taken, the 
members of the class could themselves design and take a census of their 
school. 

A crucial dimension of this experience was that the students had full 
responsibility for taking the school census, including choosing and formu
lating the questions to be asked, tabulating and analyzing the responses, 
and communicating the most significant results to the rest of the school. 

The first phase of the unit thus consisted of designing a questionnaire to be 
completed by all the students in the school. To inspire the students with an 
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example, Lisa shared some reading material about the U.S. Census

including brief essays about the history of the U.S. Census, tables and other 

diagrams reporting some interesting results from past censuses, and exam

ples of census forms. Lisa also invited the students to bring to class 

newspaper articles dealing with this current event. Over 30 such articles 

were contributed and were read and discussed in the first five minutes of 

every class. 

In the meantime, Lisa asked each student to write down ten questions 

that s/he would be interested in asking her/his schoolmates. These questions 

were collected and duplicated and, working in pairs, the students were asked 

to categorize them. The categories that were generated were written on the 

board, and specific questions listed under each category, taking care to 

eliminate similar questions. In the class discussion that followed, consensus 

was reached as to which ten questions should be included in the school 

census questionnaire. The students then collaborated on re-writing each of 

these questions and their answers, looking once again at the U.S. Census 

forms to see how questions were phrased and answers structured in question

naires of this kind. 

The school census forms were distributed and completed by all the 

students in the school, during the morning homeroom period on the day 

after U.S. Census Day, 1990. Out of 557 students enrolled in the school, 

491 responded to the questionnaire. To involve each student directly in the 

analysis of this data, Lisa assigned each student a packet of completed census 

forms from a given homeroom. Each student thus became the "enumerator" 

for that homeroom, responsible for tabulating the responses of students in 

that homeroom, sharing those results with the rest of the class so that school

wide statistics could be created, and ultimately reporting the results back to 

the students in that homeroom. 

The tabulation of the school census questionnaire was carried out in 

class, both for logistical and pedagogical reasons. To this point, the students 

had not had any formal instruction in statistics. This had been a conscious 

decision on the part of the teacher; she hoped that in the process of trying to 

make sense of the data, the students themselves would develop a need for 
statistical concepts and techniques that could then be introduced in a 

meaningful and contextualized way. This, indeed, is what happened. 

For example, responses to the question "How many people live in your 
household?" (1, 2, ... 10) were not easy to tabulate, due to the range of 

possible answers, and thus led to the introduction of the notions of frequency 

and histograms by the teacher. The concepts of mean, median and mode, 
also useful to summarize responses to this type of items, were instead 
introduced through the in-class reading of a chapter from How to lie with 
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statistics (Huff, 1954 ). Unlike traditional textbooks, this text presents the 

concepts of mean, median and mode in a discursive way, weaving together 

technical explanations with significant examples from everyday life. To 

facilitate the comprehension of this technical text and help students make 

connections with their initial problem, Lisa asked the students to read the 

text silently a paragraph at a time, stopping each time to share their comments 

and questions with the rest of the class. 

The analysis of the data also raised more general questions about 

statistics and the potential shortcomings of data collected through ques

tionnaires. For example, newspaper articles on the problem of "counting 

the homeless" as part of the national census raised the question of how 

representative their school census data were, considering that a number of 

students in the school had not completed the questionnaire. This concern 

was addressed through the reading of yet another excerpt from How to lie 

with statistics, which dealt with the problem of sampling. 

Another important aspect of the unit was the awareness that, in the 

end, each student was responsible for reporting back to the students in their 

assigned homeroom. To provide some support for this culminating activity, 

Lisa required each enumerator to prepare a poster summarizing what s/he 
thought were the most interesting results of the census taken in his/her 

homeroom, and then to use that poster as a guide for an oral presentation. 

Lisa herself prepared a poster summarizing the results of the school-wide 

census, and discussed it with the class. While the teacher's poster provided 

a demonstration of how to construct a poster, each student was left to decide 

the questions to focus on in his/her poster, what statistics to use so as to 

report specific results effectively, what modes of representation to employ 

(summary statements, tables, graphs, etc.), as well as how to organize the 

information to be both·understandable and attractive. The variety of posters 

students produced showed how they took advantage of the open-ended nature 

of this task, as well as their understanding of the statistical techniques they 

had learned and the information generated by the school census. 

IMPLICATIONS FOR INTEGRATING READING AND WRITING 

IN MATHEMATICS INSTRUCTION 

The experience described above provides evidence of how mathematics 

instruction as a whole is transformed in an inquiry classroom. It also illus
trates some key characteristics of such a classroom, such as: the fundamental 
role played by sustained inquiry around a topic of interest to the students; 
the students' involvment in defining the directions of such inquiry; the sup
portive and instrumental (rather than dominant) role played by the learning 
of specific mathematical content and techniques; the collaborative nature 
of the students' activity; the motivating role played by errors and in con-
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sistencies. Reading and writing can play a number of complementary roles 

in this kind of instructional context. This section explores three issues in 

more depth: (a) the kinds of reading and writing activities mathematics 

students can productively engage in; (b) the roles of these activities in a 
specific mathematical inquiry; and (c) the ways these activities can help to 
establish a learning environment supportive of inquiry. 

For this analysis, we will draw mainly on the existing literature on 
"writing to learn mathematics" (e.g., Connolly & Vilardi, 1989; Countryman, 

1992; Gere, 1985) as well as on the findings of the previously mentioned 

RLM project. The Census Unit described in the previous section will often 

be used to illustrate our points. 

What kinds of reading and writing activities could support 

mathematics instruction when approached in a spirit of inquiry? 

Possible texts 

The variety of texts used in the Census Unit may have been surprising, 

especially when compared with the limited range of texts traditionally 
employed in school mathematics. Mathematics students can indeed benefit 
from reading and/or writing essays, newspaper articles, stories, reports, 
tables, graphs, questionnaires, journal entries, and even lists of ideas and/or 

questions generated in class discussions-just to name a few. (See Borasi & 

Brown, 1985; Borasi & Siegel, 1990; and Rose, 1989, for further sugges
tions.) Moreover, these texts may deal with a great variety of content, 
including technical mathematics, real-life applications of mathematics, issues 

in the history and philosophy of the discipline, aspects of classroom dynamics 
and instruction, feelings and experiences about mathematics, and even topics 
that have little to do with mathematics directly (as in the case of several of 
the articles about the U.S. Census read by Lisa's students). 

Significant dimensions of writing 

It was not only what the students read or wrote, but also how they did 

so, that differentiates the Census Unit from traditional mathematics instruc

tion. The writing was never done just for the teacher nor just for evaluation 

purposes; rather, students always had a very specific purpose and audience, 
which determined the content, format, and style of their written product. 
One sees, for example, how the construction of specific questions for the 
school census questionnaire was informed by the students' desire to collect 
certain information in a form suitable for statistical analysis. In an inquiry 
classroom, writing is not only purposeful but generative in that it helps the 
author further organize and enhance his/her thinking. Hence, revising one's 
written work is seen as both necessary and valuable, since it provides a 
means to reflect on and refine one's thinking. Similarly, sharing one's writing 

41 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

with others is encouraged since it can provide valuable feedback as well 
as contribute a different perspective. Unless the author is at the stage of 
"publishing" his/her work, this feedback and the subsequent revisions it 

may inspire should focus on the content rather than surface features of the 

text. 

Significant dimensions of reading 

The ways students used reading in the Census Unit may also seem 

quite unusual. Except for the readings from How to lie with statistics, the 
students did not read primarily to "learn the content" of the text. Students 

also read specific texts so as to have a model for their own product (as in the 

case of the U.S. Census forms); to find possible connections with their 

specific project (as with most of the reading material about the U.S. Census); 

to extract relevant data (as they did when they read their schoolmates' 

responses to their questionnaire); or to revise their product (as when editing 

questions for the school census questionnaire and their posters). These 

multiple purposes shift the focus of reading from "recovering the author's 

message" to generative meaning-making. The text then becomes a "spring

board" for generating ideas, formulating questions, making connections, 

identifying limitations of one's work, as well as gathering relevant infor

mation. 

In order to support this process, reading can no longer be done by in

dividual students in isolation, nor reduced to "decoding" the text. Rather, 
as they read, students should be encouraged to construct and share with 

others their interpretations, hypotheses, and connections. Various "transac
tional reading strategies", offering concrete ways for students to interact, 
have been developed by reading researchers (e.g., Harste, Short, & Burke, 

1988; Siegel, 1984) and adapted in our RLM experiences in the context of 

mathematics instruction (Borasi & Siegel, 1990, in preparation). The way 

Lisa's students read the excerpts from How to lie with statistics-i.e., in 

class, stopping at intervals to talk to each other about what they have read, 

raising questions about specific points in the text and making connections 
to the inquiry in progress-provides an example of this kind of strategy. 

What roles can reading and writing play 

within the process of inquiry itself? 

As suggested by the Census Unit as well as other RLM experiences, 
reading and writing can play some important and differentiated roles at 
various points in the process of inquiry. In what follows, we have tried to 
identify and briefly discuss some of these roles: 
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• As the students begin their inquiry, they can increase their under

standing of the domain being explored through appropriate readings 

(a role played by the various materials on the U.S. Census read by 

Lisa's students); writing about their initial understanding of the 

domain also helps make explicit what each student already knows 

and identifies issues and questions that can make the reading more 
productive with respect to the inquiry to be undertaken. 

• Formulating specific questions to guide inquiry can be supported by 

a generative reading of the previously mentioned texts, by looking 

at examples of existing questions and problems, and by examining 

and expanding upon the initial efforts of individual students to ar

ticulate their questions in writing. 

• Brainstorming about ways to explore the question(s) thus identified 

can be aided by some preliminary writing in which each student 

articulates his/her own ideas; creating a written record of the ideas 

generated during the discussion is also helpful. 

• Mathematical concepts and techniques, as well as other information 

necessary to conduct the inquiry, can be learned with the support of 

appropriate "reading and writing to learn activities" (e.g. Borasi & 

Siegel, 1990; Rose, 1989)-as Lisa's students did when they learned 

the concepts of mean, median and mode. 

• Whenever the inquiry involves the collection and analysis of data, 

reading and writing are employed in specialized ways in order to 

extract such data, make sense of it, and report its elaboration (as 

illustrated in the Census Unit when the students tabulated and 

analysed the responses to their school census). 

• Preliminary results can be better organized, reflected upon, and 

shared with peers when they are put in writing; successive revisions 

of this writing can contribute to the students' elaboration of these 
findings. 

• As the inquiry proceeds, it is important to encourage students to 

reflect on the process as well as the product of their activity; in 

addition to class discussions, journal writing can be a valuable vehicle 

to promote such reflections and provide a natural outlet through 
which students can voice their concerns. 

• Writing becomes especially important when students decide to 
communicate the results of their inquiry to outside audiences; in 
this case, the main goal becomes organizing one's results in a clear 
and convincing way, though it is likely that this process will also 
further clarify the author's thinking (as certainly happened when 
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Lisa's students prepared their posters); editing is important at this 

stage and requires a specialized reading of one's own text, aimed at 

finalizing the clarity and coherence of the argument and refining the 

language and style. 

• Finally, the generative reading of the students' final products and/ 

or other texts connected with the topic investigated can provide new 

ideas and help set directions for future inquiry. 

How can reading and writing contribute to the creation 

of a learning environment that supports student inquiry 

in the mathematics classroom? 

As argued earlier, inviting students to engage in mathematical inquiry 

is not just another instructional strategy to be added on to current classroom 

practices; rather, teachers will need to create a learning environment where 
students can come to value the new assumptions and social norms associated 

with making inquiry. This process will require explicit attention especially 

in the first weeks of the course, though reflections and explicit discussions 

about the new approach should continue as the students engage in inquiry. 

Whether at the beginning of the year, or throughout the process, reading 

and writing activities can contribute in complementary ways. 

Supporting the articulation and discussion of students' beliefs 

Years of traditional mathematics instruction have led most students to 

develop beliefs about mathematics, learning, and teaching that reflect a 

transmission worldview (Schoenfeld, 1989; Borasi, 1990); hence, students 
may be inclined to reject inquiry as a legitimate way of learning mathematics, 
especially if their beliefs are not explicitly addressed. Writing can provide 

a valuable way to help students articulate and discuss their beliefs with 
others. Writing assignments, such as journals, autobiographical essays, 

letters, asking students to report their feelings and experiences about 

mathematics (Borasi & Rose, 1989; Buerk, 1981; Tobias, 1989) can provide 

a valuable starting point since they reveal some of the students implicit 
beliefs and expectations about school mathematics. Making explicit students' 
conceptions of mathematics as a discipline, however, may require more 
structured tasks-such as questionnaires addressing specific issues regarding 
the nature of mathematics, or writing and sharing metaphors that capture 
one's image of mathematics (Buerk, 1981). The power of these activities 
can be further enhanced when they are combined with the generative reading 
of texts that highlight "humanistic" aspects of mathematics usually neglected 
in school-such as its historical development, or applications that show the 
role played by context and culture as well as connections with everyday 
life. 
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Supporting the explicit discussion of social norms 

The new social norms implicit in an inquiry model of instruction cannot 

be simply imposed by the teacher, but rather need to be negotiated with the 

whole class. For many students, however, this kind of discussion may at 
first feel strange and intimidating since their input on these issues has never 

been invited in school. Writing down feelings and opinions prior to sharing 
them publicly can encourage students to participate more actively in these 

discussions. Recording the results of these discussions on newsprint, so that 
they are available for future reference, also helps validate the students' voice. 

Implicitly establishing new patterns of classroom discourse 

There are also more indirect, and yet even more powerful, ways in 

which reading and writing practices can contribute to the development of 

social norms compatible with an inquiry model in the mathematics classroom. 

Whenever students write and share that writing not only with the teacher 

but also with peers, new channels of communication are automatically 

opened, thus breaking the traditional pattern of classroom discourse in which 

communication is channeled through, and therefore controlled, by the teacher 

(Cazden, 1986; Mehan, 1979). Students' voices can also be heard and valued 

more when reading is approached as a social and generative activity, where 
students are encouraged to bring to bear their own experiences, background 

knowledge, and interests, to the task and their intepretations of the text are 

considered as important as the original message that the author may have 

intended to communicate. 

CONCLUSION 

Throughout this paper we have argued that language and communi
cation have a central role in the production of knowledge when inquiry is 

understood as socially constructed. Indeed, our classroom research has shown 

that reading and writing often become such an integral part of student inquiry 

that it is hard to imagine one could conduct meaningful mathematical inquiry 
without them. Consequently, reading and writing may appear more trans

parent and thus invisible in a mathematics classroom grounded in an inquiry 

model, while at the same time assuming a much more fundamental role in 
the learning of mathematics. 

NOTE 

The research reported in this paper was made possible in part by a 
grant from the U.S. National Science Foundation (award# MDR-8850548); 
the opinions reported here, however, are solely the authors'. 
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TEACHERS USING VIDEOTAPES AS 

REFERENCE POINTS TO ASSESS THEIR STUDENTS 

John L. Clark 

Toronto Board of Education, Canada 

Teachers in the Toronto Board of Education, Ontario, Canada, are using 

videotapes as a resource to assess the progress of their students in math

ematics and language. The Board comprises 113 elementary and 41 secondary 

schools with approximately 72 000 regular day-school students, over half 

of whom speak a language other than English in their homes. The videotapes 

are part of a curriculum resource known as Benchmarks. 

For almost thirty years, up until the development of the Benchmarks, 

the Board did not have any formal system-wide testing. There were general 

guidelines for principals and teachers to use in assessing students and re

porting to parents. The guidelines stressed daily observation of students as 

a vital source of information about student progress. Generally, each local 

school, in cooperation with its community of parents, was responsible for 

its own assessment and reporting procedures. In May of 1987, however, the 

Board mandated the development of standards of student achievement in 

mathematics and language at the end of Grades 3, 6, and 8 (ages 8, 11, and 

13) to be used by teachers for assessment and reporting. The resulting stand

ards are known as Benchmarks. The Board intends to develop Benchmarks 

for its secondary schools. 

DEVELOPMENT OF BENCHMARKS 

Staff from the Board's Curriculum Department worked with practising 

teachers to develop assessment tasks. They believed that traditional evalu

ation schemes were inadequate because they emphasized products of learning 

over processes, and therefore did not reflect the emphasis in existing curricula 

of active learning and problem solving. They believed that traditional testing 
programs did not acknowledge sufficiently the professional knowledge which 
teachers have about their students, and were skeptical that student achieve
ment can be adequately captured in a number or test score. Also, given the 
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highly multicultural composition of the Board's current student population 
brought about by recent immigration, they felt that traditional testing 
programs placed many students at a disadvantage. Thus the committees aimed 
to develop an alternative approach to assessment which was more attuned 
to existing priorities for student learning. 

The assessment tasks that were developed were based on the official 
curriculum prescribed by the Ontario Ministry of Education. They covered 
most of the curriculum in arithmetic, geometry, and measurement, and prob
lem solving was integrated throughout. About one-quarter of the tasks were 
traditional paper and pencil type questions, but in most tasks, students esti
mated, measured, formulated and solved problems, gave oral explanations, 
and worked with a wide variety of manipulative materials. 

A ten-percent representative sample (about 350 students) was randomly 
selected at each of the three grades, 3, 6 and 8. Recently retired teachers 
were hired and trained to administer the assessment tasks. They interviewed 
each student on the average for about four hours, videotaping about half of 
each performance. After the data had been collected, the videotaped 
performances were scored holistically by teams of teachers, and the paper 
and pencil work was scored in the usual manner. 

The results of the assessment were organized into three Benchmark 
libraries in mathematics, one for each grade. Each library contains videotapes 
and printed information; for example, the Grade 6 library contains twelve 
videotape and fifteen print Benchmarks. The libraries provide a rich resource 
of information about student learning which teachers of all grades are to use 
as reference points when assessing their students. 

Each video Benchmark consists of printed information about the task 
as well as the videotape itself. The printed information contains a statement 
of the objectives of the task, a description of the task, holistic scoring criteria 
for each of five levels of performance, and the percentage of students 
attaining each level. On the videotape, a narrator provides a summary of the 
printed information and, depending on the time taken to perform the task, 
there are from one to three sample student performances at each of the top 
three levels. The videotape ends with an unrated student performance that 
the viewer is invited to rate using the holistic scoring criteria and the 
performances viewed previously. 

A SAMPLE VIDEO BENCHMARK 

The videotape entitled Tell a Story from the Grade 6 library lasting 
12 minutes was demonstrated in the ICME lecture. In this task, students 
were asked to choose one of three pictures, create a mathematical problem 
based on the picture, and state the problem orally. The three pictures were 
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of winter Olympic events, six dogs, and a child holding a basin. Following 

is a transcription of the problems stated orally by students on the video at 

the top three levels (numbered five, four, and three). Also following, for 

each level, are the holistic scoring criteria developed by teams of teachers 
from an analysis of problems given by all students in the Grade 6 sample. 
Student performances rated at levels two and one are not demonstrated on 
Benchmark videos, but holistic criteria and percentages are, and are provided 
below for this Benchmark. Finally, the unrated problem for this task is 

presented below which the viewer (reader) is invited to rate. 

Level Five 

14% of all students produced level-five problems. 

Student A chooses a picture of a child holding a basin and says: The 

boy has a bowl. He wanted to find out how long it was around the outside so 
he measured the diameter and did the diameter times tr equals the circumfer
ence. What is ... the diameter is 30 em and tr is ... What is the circumference? 

Student B chooses a picture of winter Olympics and says: Hyman 

Zerbreggan won 5 medals at the Olympics-3 gold medals, 1 silver medal, 
and 1 bronze medal. The silver was worth $50, the bronze was worth $20, 

and the gold was worth $100. How much were the medals worth altogether? 

Holistic scoring criteria 

The student tells a multi-step story problem that involves more than 
one mathematical operation. The story problem is logical, creative, realisti
cally relates to the picture and allows a numerical solution. If units (e.g. 

dollars) are worked into the story, they are appropriately chosen and used. 
The student sees the task as a challenge and shows a high level of interest 
and commitment. 

Level Four 

29% of all students produced level-four problems. 

Student C chooses a picture of six dogs with the caption "Is it 5:00 

yet?" and says: It is 4:15 right now and they want to know if it is 5:00. How 
long do they have to wait? 

Student D chooses the picture of the winter Olympics and says: If 
John had 15 friends and t of them went to the Olympics, how many friends 
went to the Olympics? 
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Holistic scoring criteria 

The student may tell a multi-step story problem with one-digit num

bers or a one-step story problem with multi-digit numbers. The student 

understands the task and relates the story to the picture. Elements of the 

picture may be used in original ways. The student is interested and commit

ted and requires little coaching. 

Level Three 

28% of all students produced level-three problems. 

Student E chooses the poster of six dogs, acts out the characters, and 

says: "Is it 5:00 yet? I think so Randolph. Good, she should be home soon. 

I am home, puppies-time for supper. " They give out one plate of dog food. 

Out of al l these six dogs, how would you split the dog food-one plate-for 

these six doggies? 

Student F chooses the picture of winter Olympics and says: If there 

are 22 heads in this picture, and you take away the heads of the athletes, 

how many heads would be left? 

Holistic scoring criteria 

The student tells a one-step story problem which can be solved easily. 

One-digit numbers are probably used. The student understands the task but 

may present the information and various elements of the story problem 

without properly stating a mathematical problem. The student may require 

some coaching. 

Level Two 

16% of students produced level-two problems. There are no demon

strations of these on the video. 

Holistic scoring criteria 

The student tells a very simple story with an attempt to incorporate a 

mathematical problem, or tells a story problem similar to one modelled by 
the evaluator. The story may be garbled, units may be confused, and numbers 

may be incorporated illogically. The student seeks hints and approval from 

the evaluator. Much coaching is required. 

Level One 

13% of students produced level-one problems. There are no demon

strations of these on the video. 
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Holistic scoring criteria 

Very limited response or no response at all. 

Unrated student 

The viewer (reader) is invited to rate the following problem. Student 

G chooses the picture of the six dogs and says: There were 150 puppies in 

the pound and a customer came and bought 126, how many were left? 

IMPLEMENTATION OF THE BENCHMARKS 

The plan for implementing Benchmarks in schools is long-term and 
school-based. Because of the magnitude of what teachers have been asked 

to do, it is understood that the complete process will take several years. 

During the introductory years, teachers familiarized themselves with the 

problem libraries, experimented with the use of Benchmarks in classrooms, 
and worked towards their integration into daily practices. The imple

mentation model is intended to be collaborative; teachers in each school are 
expected to work together and share their experiences. To support the 

implementation process, principals, teachers and consultants were given 
intensive in-service instruction not only on Benchmarks, but also on 
strategies for working collaboratively within a school. 

There are major differences between Benchmarks and traditional 
testing programs. First, the Benchmarks are not tests. They provide infor

mation about student achievement in the kinds of activities which many 
teachers now use in their classrooms for teaching purposes. The Benchmarks, 

therefore, combine teaching with assessment so that as students engage in 

daily learning activities, teachers can make more informed judgments about 
the quality of their students' work, using the Benchmarks as reference points. 

Second, unlike most traditiona) testing programs, the teachers and 
principal of each school are in control of the assessment of their own students 
and of how information about students will be reported to parents. Teachers 

are expected to work on developing ways in which Benchmarks will assist 

them in the assessment of their students. Principals, teachers, and parents 
are expected to work together to develop procedures for reporting how well 
children are doing according to the Benchmarks criteria. To support the 
development of reporting procedures in the local school, a central committee 
is developing guidelines, and possible models, for report cards and teacher
parent-student interviews. 

The approach taken to assessment by the Board has predictably met 
with difficulties at the implementation stage. One difficulty is teacher 
resistance to change. Teachers who value an active approach to learning 
and daily observation of students as an important source of assessment 
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information have welcomed Benchmarks as an affirmation of their beliefs 

and support for their practices. But, obviously, teachers whose instruction 

consists mainly of textbook exercises and skill-based tests tend to resist the 

general philosophy and approach of Benchmarks. These teachers view the 

program as an additional responsibility, not one which can be integrated 

with what they are presently doing. 

A second difficulty with implementation occurs in schools where 

teachers have been accustomed to working in isolation, mostly behind closed 

classroom doors. If there has been no tradition in the school of working 

collaboratively, discussing children's learning, and attempting to improve 

teaching and assessment practices, then the program challenges established 

patterns of communication in the school and the principal's leadership. 

A third difficulty results from the fact that all of the videotaped per

formances are in teacher-student interviews and teachers have classes of 

many students who often work in groups. It is expected, however, that teach

ers will make the transition from Benchmark tasks to their classrooms 

because many teachers already make individual assessments of students who 

do most of their work in groups. Teachers, especially of younger children, 

know how to extract information about individual students from whole class 

situations through careful observation so that they can tell parents about the 

progress of their children. The fact that teachers are able to do this indicates 

just what a complex art teaching really is. 

Lastly, the overall non-prescriptive and decentralized approach which 

the Board has taken to assessment through Benchmarks has engendered some 

criticism from parents and teachers who believe in traditional assessment 

practices, especially standardized tests, and desire more uniformity across 

the school system. Assessment practices are controversial; underlying them 

are strongly-held beliefs about the goals of education, and how and what 

children should learn in schools. 

STRENGTHS OF BENCHMARKS 

Although Benchmarks have encountered some difficulties, they have 

also demonstrated many important strengths compared with traditional forms 
of assessment. First is the enhancement of teachers' assessment skills. 
Because traditional forms of assessment are usually developed and admin
istered by people outside classrooms, they have had the effect of "deskilling" 
teachers. When assessment is done on behalf of teachers, they tend to sep
arate assessment from teaching. With Benchmarks, however, teachers are 
expected to evaluate and refine their assessment practices and are provided 
with the resources to do this. For most teachers, the use of holistic scoring 
to assess student achievement in any subject is new, certainly in mathematics. 
But teachers have learned that it is a powerful method which can assess 
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simultaneously many elements of students' work: knowledge of mathe

matical content and problem-solving processes, ability to reason and 
communicate, and disposition towards mathematics. The advantage of 

videotaped student performances is that the viewer can actually observe 
how individual students solve problems and apply their knowledge. Holistic 

scoring has also been used extensively in the language Benchmarks, and 
since most elementary school teachers teach both mathematics and language, 

they are learning a skill which can be used to assess students' oral and written 
work in mathematics and in language, and in other subjects as well. 

There is research (Ministry of Education of Ontario, 1980) which in

dicates that the method which elementary school teachers use most frequently 
to evaluate their students is observation; teachers observe their students 

constantly as they engage in daily classroom activities. Holistic scoring fits 

perfectly with observation. As teachers watch students performing tasks on 
videotapes, and discuss holistic scoring criteria with colleagues, they sharpen 
their observation skills with the result that the judgments that they make of 
their own students performing similar tasks become more informed and 
systematic. For example, having viewed and discussed the videotape, Tell a 

Story, when teachers have their own students generate mathematical prob

lems, they are better able to judge the quality of the attempts. 

Working with Benchmarks has led teachers to examine other aspects 
of their assessment practices. One critical aspect which is not very often 

examined is the records which teachers keep to document a student's 

progress. In traditional assessment, where tests are the primary source of 

information, records frequently consist of what some teachers call "mark 
books" in which there is one line per student with a row of marks which 

may be averaged or converted to a letter grade. Because of the emphasis in 

Benchmarks on observation of processes, teachers are revising their record

keeping methods so that they can retain more comprehensive information 
about each student. Teachers are finding that they need at least a full page 

per student, and with the emphasis on student writing, they need ways to 

retain samples of students' written work, so they are also experimenting 

with the use of folders in mathematics in ways that they have used in 

connection with the teaching of language and art. 

A second strength demonstrated by Benchmarks is that teachers are 
led to evaluate their own classroom instruction. On the videotapes teachers 
see exemplary classroom tasks: students estimating the cost of a restaurant 
bill, measuring and pouring water, and solving problems with a calculator. 
Teachers may then consider that perhaps they should do more work with 
estimation, actually have their students pour and measure water, or let their 
students solve problems with a calculator. In this sense, Benchmarks are 
not only a resource for assessing student achievement, but also for evaluating 
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teachers' instructional methods. This is the result of Benchmark tasks having 
been designed so that they reflect as much as possible good classroom 
activities based on Ministry of Education curriculum guidelines. Benchmarks 

have operationalized curriculum guidelines so that what is expected of the 
students is actually demonstrated and made explicit to both teachers and 

parents. Benchmarks have aligned assessment with learning. 

Another situation in which Benchmarks facilitate instructional eval

uation is when teachers from different grades work together with videotapes. 
They will almost certainly discuss a task from the point of view of how the 

content or the thinking involved in the task might develop from one grade 

to the next. For example, a Grade 1 teacher watching Grade 3 students esti

mate and measure lengths might consider what younger children should be 

learning about the concept of length. Also, in any class, students are at dif

ferent levels of progress so that a Grade 2 teacher, for example, will likely 

have students who perform an activity at as high a level as many Grade 3 

students. In this way, all teachers are led to think about the implications of 

a Benchmark for their own curriculum and students. 

A third major strength of Benchmarks is the emphasis on teachers 

working collaboratively. The approach taken by the Board to implementation 
is school-based where it is the responsibility of the principal to initiate and 
support teachers working together with Benchmark libraries. Principals have 

reported that they have observed some teachers in their schools for the first 

time discussing what they do in their classrooms with colleagues. Collab
orative work takes different forms. One of the most effective is "self

reflective cycles"; teachers plan learning activities as a group, experiment 

with the plan in their classrooms, and then evaluate their shared experiences. 
Such a cycle of planning, experimenting, and evaluating frequently leads to 

a new cycle with different Benchmark activities. In this way, teachers engage 

in authentic ongoing research into their professional practices. 

A fourth strength of Benchmarks is that they provide a vehicle for 

teachers and principals to communicate to parents what schools are doing 

for their children in mathematics. Parents do not often get good information 
about the goals of the mathematics curriculum. Schools are showing the 
videotapes to parents, often getting them to try the same activities the students 
did. Parents are learning that solving good problems in mathematics using 
manipulative materials is not just play. Parents observe some students on 
videotapes doing well and others having difficulty, and they have a better 
appreciation of how well their own children might do on similar tasks. They 
realize that children are at different stages in their intellectual development 
and can be helped to move ahead from any level. Parents understand that 
teachers can assess their children by observing them in daily classroom 
activities. 
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Another benefit of Benchmarks, which is only now emerging, is that 

better information about children's progress can be reported to parents. 

Schools have been working with the program for two years now and are just 

beginning to deal with this most important phase. The primary concern of 

parents that initiated the Benchmarks experiment was that there were no 

system-wide standards with which their children's progress could be 
compared. Teachers were employing their own benchmarks, which in some 

cases embodied standards that were either too high or too low. Principals 

and teachers are now exploring how they can report their students' progress 

using Benchmarks as reference points. What is emerging is the realization 

that traditional report cards are inadequate to convey the richness of 

information that teachers are gaining about their students. Schools are 

exploring more creative ways to use parent interviews: for example, having 

students not only attend interviews, but also contribute their self-evaluations. 

Also, when a teacher now reports on the progress of a student, this judgment 

can be substantiated by a broader base of qualitative and quantitative 

evidence, and by reference to a set of standards representing achievement 

across all schools. Teachers use the descriptive language of the holistic 

scoring criteria to report students' progress both in parent interviews and in 

writing anecdotal reports. 

Finally, Benchmarks facilitate a more equitable form of assessment. 
Many people in our diverse community are critical of the inequity produced 

by traditional assessment practices that stress exclusively paper and pencil 

tests. They believe that many students who have difficulty answering 

questions on such tests could solve problems in real situations or by using 
manipulative materials. A strength of Benchmarks is that they have led 

teachers to use expanded modes of assessment that allow students to show 

what they know through practical demonstrations and discussion in problem 
solving situations. The alignment of assessment with teaching and learning 

has created greater opportunities for students to demonstrate their abilities. 

As teachers explore the use of holistic scoring and foster more active learning 

in their classrooms, they are emphasizing in their assessments a broader 
range of cognitive and affective components, and therefore utilizing a more 

equitable form of assessment. 

CONCLUSION 

The approach taken to assessment by the Toronto Board of Education 
through Benchmarks respects the commitment and professionalism of its 
teachers and principals. The Board believes that in the long run, this is the 
way to improve the standard of education which it offers to its community. 
It believes that educational change is not a matter of paper, but of people. 
The overall effectiveness of Benchmarks will not be in the problem librar
ies-they are simply materials in boxes-but in their potential to be used by 
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teachers, principals, parents, and students for the improvement of student 

learning. The strengths of Benchmarks lie in the integration of student as

sessment with human dimensions of education; student learning, teacher 

professional development, collaborative communities, and equitable assess

ment. 

NOTE 

Further information can be obtained by writing to: The Benchmark 

Program, The Toronto Board of Education, 155 College St., Toronto, ON, 

Canada, M5T 1P6. 
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THE TRANSITION TO 

SECONDARY SCHOOL MATHEMATICS 

David Clarke 

Australian Catholic University, Australia 

For most Australian children, schooling consists of 7 years of primary 

school, followed by 6 years at high school. In the state of Victoria, grade 6 
is the last year of primary school, and grade 7 is the first year of secondary 

school (high school). Grade 6 classes are taught predominantly by a single 

teacher, while grade 7 classes have many different teachers, who each spe

cialize in the various academic subjects. The transition from primary school 

to high school has been recognized for some time as a particularly significant 

point in a student's educational career. This was certainly true for Cathy 

and Darren: their experience of the transition from primary school to second
ary school illustrates the major factors operating at this crucial time. 

Cathy and Darren were pupils in different grade 6 classes, in neigh

boring primary schools. In grade 7, Cathy and Darren began high school as 

members of the same grade 7 class. When Cathy was in grade 6 she was 

asked, "How good are you at mathematics?" She replied, "Average." In 

response to the same question, Darren said that he was "the best" in his 

class. Both Darren's and Cathy's grade 6 teachers agreed with their stu

dents' estimation of their own competence. 

After one year in high school, Cathy and Darren were again asked, 

"How good are you at mathematics?" Cathy replied, "I understand every
thing," while Darren said, "I'm not smart at maths." The grade 7 mathematics 
teacher thought that Cathy had "high ability" at mathematics, while Darren's 
mathematics competence was "very poor." These opinions were shared by 
Darren and Cathy's grade 7 classmates. By the end of grade 8 everyone, in
cluding Cathy and Darren, thought that Darren was poor at mathematics 
and that Cathy was very talented. 
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This dramatic change in the perceived mathematical competence of 
Cathy and Darren might be explained by the relative competence of the two 

grade 6 classes from which Cathy and Darren had graduated. Indeed, test 

performances of the two classes suggest that the pupils in Cathy's grade 6 

class were far more mathematically able than those in Darren's grade 6 

class. As members of the same grade 7 class, perceptions of the mathematical 

competence of Cathy and Darren could be compared in relation to the same 

academic environment. However, differences in classroom context do not 

explain the fact that throughout grades 6, 7 and 8 Darren's and Cathy's 

scores on a test of "mathematical ability" and on a test of "mathematical 

knowledge" were effectively identical (See Table 1). 

Table 1. Mathematics test scores for Cathy and Darren. 

Grade Grade Grade 

6 7 8 

Ability Cathy 53.5 54 55 

Test Darren 51 52 54 

Knowledge Cathy 32 34 33 

Test Darren 28 32 33 

Given the known errors associated with testing, it is clear that the dif

ferences in the relative perceived competence of Cathy and Darren cannot 

be justified by measurable differences in competence. Further, pupils were 

not told their scores on either of the tests reported in Table 1. Student per

ceptions of their own and their classmates' mathematical competence were 

based upon student participation in class and performance on teacher

designed class tests. It appeared that in grade 7 minor differences in 

classroom and test performance were exaggerated in the process of typifi

cation (See Clarke, 1986) which led to the establishment of a classroom 
consensus regarding the relative mathematical competence of Cathy and 
Darren. Table 2 compares the differences in perceived competence with a 
class ranking compiled from the final three tests undertaken by the pupils in 
grade 7. Perceived rankings were obtained two months prior to the final 
testing and illustrate the exaggerated difference in perceived rank already 

evident, and suggest the typification process which endorsed Cathy's 
competence and so challenged Darren's academic self-concept with regard 
to mathematics. 
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Table 2. Grade 7 class rankings in mathematical competence: 

Cathy and Darren. 

Grade 7 Cathy Darren 

Perceived Rank (self) 10 13 

Perceived Rank (class) 4 19 

"Actual" Rank 7 12 

(from Ability, Knowledge, and 

Class Tests - mean rank) 

Central to the change in Darren's perception of his own mathematical 
competence was the significance attached to the final class Number Skills 

Test. In this test, pupils scoring less than 80% were assigned to special 

classes in grade 8 designed to correct perceived mathematical inadequacies. 
Pupils scoring more than 80% joined more advanced grade 8 algebra classes. 
On the Number Skills Test, Cathy scored 81% and Darren scored 76%. 

Although Darren's perceptions of his grade 7 rank were obtained prior to 
the administration of this Number Skills Test, it appeared from subsequent 

interview data, that the final test result confirmed for Darren his revised 

estimate of his own competence. 

From the intensive study of Cathy, Darren and eight other pupils 

(Alison, Andrea, Annette, Bernie, Brian, Cameron, Chris, and Davie) four 

factors emerged as central to any consideration of student mathematical 
behavior during the transition from primary to secondary school. The ten 

pupils studied came from four different primary schools, but all ten pupils 

commenced high school as members of the same grade 7 mathematics class. 

For each student studied, the challenge represented by secondary school 
mathematics can be most usefully described in terms of: 

• conceptions of mathematical competence; 

• the mathematics classroom as social context; 

• the individuality of mathematical behavior; and, 

• the experience of transition as discontinuity. 

Each of these factors is discussed briefly below. 
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SECONDARY SCHOOL MATHEMATICS: FOUR FACTORS 

Conceptions of mathematical competence 

The findings of this study suggest the existence within mathematics 

classrooms of a consensus conception of competence to which all partici
pants, teacher and pupils, subscribe. This conception of competence is 

embodied in the construct "good at math", one application of which is in the 

generation of a hierarchy of competence. Such is the degree of consensus 

about what behaviors constitute competence that pupils are located in rank 
order within the resulting hierarchy with a high degree of consistency across 

all participants. Clarke (1986) reported results from both this study and 

from related studies, and examined the implications of such a consensus 

conception of competence for learning and teaching in mathematics class

rooms. 

In grade 7 Darren was asked, "Would you like people to think you 
were smart at mathematics?" His reply illustrated the interdependence of 

ability, self-concept and classroom conceptions of competence. 

Well, I'm not smart at maths. So it doesn't matter. I know most of the stuff, 
but people don't think I'm smart at it. 

Perhaps the most important feature of Darren's reply is his recogni
tion that it is not sufficient to "know your stuff' if your competence does 

not receive the sanction of class and teacher. The significance of the math
ematics classroom as a social context in which such information is exchanged 

was a recurrent feature of the study. 

The mathematics classroom as social context 

Classroom learning is an inherently social process and the meanings 

which participants construct from their mathematical activities and their 
interaction with teacher and peers are social constructions, the result of 

their immersion in the social context that is the mathematics classroom, 
embedded, as it is, in enfolding institutional, societal and cultural di

mensions. Clarke (1987b) reported the impact of social factors on the 
mathematical behavior of the children in this study. 

Bernie demonstrated the significance of the mathematics classroom 
as social context when he attempted to distance himself in class from his 
less academically-inclined friends. While Bernie succeeded in improving 
his test performances, the quality of his classroom participation, and the 
understanding of mathematics displayed in interview tasks, his classmates 
continued to describe him as a disruptive underachiever. Unlike Darren, 
Bernie progressively overcame the persistence of a typification based on 
his behavior at the commencement of high school. Darren, by contrast, 
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acquiesced to a typification process which labelled him as both disruptive 

and academically unsuccessful. For both pupils the commencement of sec

ondary school mathematics offered a severe challenge to the positive self

concepts with which they left primary school. 

For other pupils, such as Cathy and Andrea, acquiescence to the class

room typification involved improved self-esteem and a consequent increase 

in the quality of their classroom participation. Despite her heightened self

esteem and her feelings of success in overcoming the challenge of secondary 

school mathematics, Andrea did not display the level of mathematical 

competence shown by either Darren or Bernie, either in tests or in interviews. 

Clarke (1987b) drew some specific conclusions regarding the social 

dynamics of the mathematics classroom: 

• A student's success at mathematics can be constrained by the social 

demands of the classroom. 

• A teacher's conception of effective instruction must acknowledge 

the need of some pupils for regular personal recognition of their 

efforts. 

• Mathematics instruction serves to communicate social values and 

beliefs which may colour the pupil's conceptions of the goals of 

that instruction and contribute to a more or less productive rationale 

for learning. 

• Despite the teacher's pedagogical aspirations, her efforts must be 

filtered through the perceptions and expectations of individual 

students, whose interpretations of her motives and requirements may 

mistakenly reinforce non-productive classroom practices. 

• A student wishing to change the nature of his or her classroom 

practices may have difficulty if social interactions with the peer group 
are predicated on a persistent typification derived from earlier 

practice. 

• The teacher's capacity to promote academic effort through value

modelling will vary with her status as a "significant other" to each 

individual student. 

It was suggested (Clarke, 1987b) that teacher awareness of the impact 
of students' social concerns on their mathematics learning might be best 

maintained through a procedure like the IMPACT program (Clarke, 1987a). 

The IMPACT procedure was extensively field-tested in 1984 with 750 
grade 7 students in 3 7 classrooms in 19 schools across Victoria. The 
procedure consisted of the completion by students, every two weeks, of a 
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brief questionnaire intended to serve both to stimulate student reflection on 
their mathematics learning and as a mechanism whereby each student could 

communicate confidentially (but not anonymously) with the teacher con

cerning the learning of mathematics and the experience of the secondary 
mathematics classroom. As a result of the 1984 field-testing, the IMPACT 

instrument was refined and a revised version included in Clarke (1989b). 

This revised version is reproduced as Figure 1. 
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Name: 

Class: 

Teacher: 

Date: 

• What was the best thing to have happened in Maths in the last 

two weeks? 

• Write down one new problem which you can now do. 

• What would you most like more help with? 

• How do you feel in Maths classes at the moment? (Circle the 
words that apply to you). 

a) Interested b) Relaxed c) Worried 
d) Successful e) Confused f) Clever 
g) Happy h) Bored i) Rushed 
j) Write down one word of your own .......... .. 

• What is the biggest worry affecting your work in Maths at the 
moment? 

• How could we improve Maths classes? 

Figure 1. The IMP ACT instrument. 
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Samples of student responses can be found in Clarke (1987a, 1989b ). 

Student responses to questions such as "What is the greatest worry affecting 

your work in mathematics at the moment?" were as likely to refer to social 

context as they were to academic content. 

The individuality of mathematical behavior 

Anomalous personal constructions and idiosyncratic conceptions were 
documented for all ten students in this study. All students experienced the 
same grade 7 mathematics classroom-the same teacher, the same basic 

activities. The observed individuality of behavior, despite these common 

environmental features, provides a compelling argument for the significance 

of the individual's beliefs, values, conceptions, perceptions, goals and 
perspectives. 

Every classroom exchange is a consequence of both cognitive and 
social factors. The cognitive aspect of student behavior can be described in 
terms of mini-procedures, and inferences can be drawn concerning specific 
student constructions, such as the meaning Bernie attributed to his diagrams 
of fractions. For instance, Bernie consistently employed two mini-procedures 

to compare fractions. First, the size of the denominator was invoked through 
the rule: "The larger the denominator, the smaller the fraction." Second, the 
meaning of a fraction diagram depended on how many it was seen to be "out 
of." The decision as to how many parts the circle was implicitly sub-divided 

into was an arbitrary one in which the size of the denominator gave an 
indication of the approximate magnitude of the number of subdivisions, but 
did little more than set a lower bound. In practice, this meant that a particular 
fraction could be represented by one or more distinct circular diagrams. For 
example, thirty-five thirty-sixths might be represented as either greater than 

or less than one-half. Interestingly, every diagram was subdivided into 
quarters. And these quarters remained inviolate. Other fractions were drawn 
in terms of their perceived size relative to multiples of a quarter. 

There is an urgent need for explanatory frameworks which do simulta
neous justice to both the cognitive and the social aspects of mathematical 
behavior. It is necessary to conceptualize "mathematical behavior" as a 

structured web of behaviors. Figure 2 sets out the structure employed in this 
study. This structure was successful in locating, integrating and explaining 
data. Particular student behaviors were successfully located within the 
descriptive framework. Relationships between behavior samples were 
rendered more apparent, since the data, which might have been a collection 
of unconnected observations, interview excerpts and test performances, could 
be viewed as an array of behavioral elements, whose structure suggested 
likely links between data sets. Explanations for behavioral changes could 
then be sought in both the data and the emergent relationships. 
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Cognitive Mathematical Mathematical (Mathematical 
Abilities Understanding Skills and 

Procedures) 

• Inclinations • Replication 
• Cognitive • Association 

strategies • Explanation 

Mathematical 

Performance Individual 

Student Practices of 

• Task completion Classroom the Learning 

- achievement Practices Environment 

- competence 

Mathematical Conceptions of 

Self-concept Mathematics 

• self-perceptions • nature of 

of ability mathematical (Values 

Affective • attributions activity and Beliefs) 

• gender • conceptions of 

• ethnicity competence 

• attitudes 

Personal Environmental 

Figure 2. The structure of student mathematical behavior. 

Certain sub-categories of each element (cell) emerged as distinctive. 

Mathematical Abilities were identified with inclinations to specific math
ematical behaviors, with cognitive strategies, and with the capacity to 
function metacognitively, and Understanding of Mathematics was taken to 
encompass the successful replication of terms and procedures, the degree 
and diversity of association between related mathematical (and non
mathematical) entities by which a concept or procedure acquires meaning, 
and the quality of explanation or demonstration which a student might 
provide for a concept or procedure. Self-concept would encompass gender 

and ethnicity, as well as self-perceptions of ability, and attributions of success 
and failure. Mathematical Performance was identified specifically with task 

completion, either as a single demonstration (achievement) or through 
reliable and consistent success (competence). Conceptions of Mathematics 
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involves student perceptions of the nature of mathematical activity, con

ceptions of competence, and aspects of attitudes to mathematics. Figure 2 

also incorporates the use of Cognitive and Affective, and Personal and 

Environmental as meaningful delimiters on the two-dimensional array within 

which the elements of mathematical behavior are located. The inclusion of 
both Individual Student Classroom Practices and Practices of the Learning 

Environment within a student's mathematical behavior represents a recog

nition that student behaviors (both thoughts and actions) are shaped, 

constrained, mediated and expressed by those social and mathematical 

practices sanctioned within the classroom. This point is elaborated below. 

It appears common for research in education to focus on one or two 

isolated aspects of behavior without making any explicit statement regarding 

the theoretical basis for doing so. Relatively complex behavior conglomerates 

such as verbal behavior, mathematical behavior, scientific or religious 

practices, aesthetic appreciation, the behaviors of social transactions, 

instructional practices, and so on, require that the validity of their inde

pendent study be explicitly justified. For more narrowly defined behavior 

categories, such as reading comprehension, spatial reasoning, faith, aggres

sion, or praise, this obligation becomes a methodological imperative. 

If the differences in students' mathematical behaviors are to be 

explained, such explanations must involve the realization of the essential 

individuality of the learning process and recognition of the complexity of 

the web of behaviors being studied. A model of individual behavior must 

refer to more than just the actions, thoughts and beliefs of a single student, 

since those actions may only derive their meaning from their contribution 

to the realisation of the group's goals; the thoughts lose significance if 

considered in isolation from the thoughts, motives and expectations of others; 

and the beliefs lose coherence once considered outside the societal context 

which gave them shape. But the boundaries between individual mathematical 

behavior, other types of behavior and the behaviors of other individuals 

must be clear if the structure is to have integrity. The descriptive framework 

of mathematical behavior employed in this study is an example of a minimal 

behavior web and of the lowest level of complexity which can justifiably 

form the focus of legitimate learning research. Further details of this 

argument can be found in Clarke (1992). 

Transition as discontinuity 

Discontinuity emerged as a crucial element in a general theory of 
transition which is detailed in the remainder of this paper. The significance 
of transition as discontinuity was graphically illustrated in the case studies 

of Cathy and Darren. (See Clarke, 1985, for more detail.) While both Cathy 
and Darren were members of the same grade 7 mathematics class, their 
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initiation into secondary mathematics was dramatically different. This 
difference arose from the personal nature of each student's experience of 

the discontinuity inherent in the transition to secondary school. What is a 

challenge and a promise of independence to some students may appear 

threatening and coercive to others. 

You're not allowed to be a child here. 
(Grade 7 girl, mid-year.) 

One inference which might be drawn from the use of "discontinuity" 
as the dominant characteristic of the commencement of secondary school 

mathematics is that high school and primary school should be perceived by 

students to be very different. Use of a semantic differential questionnaire 

enabled the location of these two constructs in a multi-dimensional seman
tic space, together with other constructs, including the construct "Home." 

Home was included both as a reference point and because discussions of the 

transition from primary to secondary school frequently make use of meta

phors associated with home. Students are described as leaving the security 
of primary school where they are known, for the anonymity of high school. 

Differences in student perceptions of primary school and high school 

and the associated and consequent differences in their responses to the 
environmental change of transition can be seen in greatest detail by 
contrasting the detailed perceptions of individual students. The semantic 

differential offered one means of categorizing the perceptions of all ten 
children. This instrument as much as any other demonstrated the idiosyncratic 

nature of those student perceptions which influence the choice of behavior 

models among adults and peers, and enabled comparisons to be made between 

the environments of high school, primary school and home. For instance, 
among the ten students central to this research, by December of grade 7 (the 

conclusion of the first year of secondary schooling in Victoria), three distinct 

perceptions were evident: 

a. Alison and Cameron identified both primary and high school as possessing 
similar characteristics and as being distinct from home. 

b. Brian, Cathy, Chris and Darren perceived primary school and home in very 
similar terms, distinct from high school. 

c. Bernie, Annette, Andrea and Davy associated high school more closely 
with home. 

It is inappropriate to identify a particular perception as being most 
desirable. Andrea's very close association of home, high school, my friends 
and myself could certainly indicate a successful adjustment to high school. 
And Cathy's very similar perceptions of primary school, home and mother 
could be construed as relating characteristics associated with secure, caring 
environments. However, Cathy clearly identified the commencement of sec
ondary schooling with independence and a "coming of age", and attached a 
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high level of personal significance to her successful negotiation of the chal

lenge represented by secondary school. It would be inappropriate, therefore, 

to depict Cathy as longing for the lost security of primary school. It was 

possible, however, to identify the key elements which characterized the 

challenge of secondary school and secondary mathematics for each student. 

Each of the case studies became a stepping stone to more general state

ments and ultimately to the development of a general theory of transition. 

An individual student's experience of the challenge of secondary mathe

matics can then be seen as a consequence of the individual's response to 

transition as manifest within each element of the student's mathematical 

behavior. That is, the phenomenon of transition is played out in each aspect 

of a student's mathematical behavior. In the remainder of this paper, the 

elements of this general theory are set out and illustrated through reference 

to the individual students. 

A GENERAL THEORY OF TRANSITION 

Any theory of transition must confront those phenomena most fre

quently associated with the transition experience. The theory proposed here 

takes its structure from three key aspects of the transition process, each of 

which is embodied in a single word. These are Discontinuity, Challenge, 

and Adjustment. In the following discussion, the significance of each term 

is outlined and the nature of its contribution to a theory of transition made 

clear. Figure 3 is a schematic representation of the proposed theory of tran

sition in which each key aspect is located in relation to other contributing or 

consequent factors. It was the identification of this structure within the case 

study data which provided the 'grounded key' from which the subsequent 

theory emerged. While the theory is dealt with in more elaborate detail in 

Clarke (1989a), the following discussion relates structural elements to spe

cific recommendations. 

It is suggested that discontinuity is an inevitable (and defining) 

characteristic of transition and the commencement of secondary school math

ematics, and that the personal discontinuity is experienced by each individual 

as a challenge to established roles and behaviors. The consequent (and essen

tial) process of adjustment may be realized through either acquiescence by 

the individual to the expectations and judgements of others, or through a 
process of self-realization in which individuals accept responsibility for 
their own learning behavior and assert that responsibility through conscious 
choice. Institutional and societal pressures encourage acquiescence, with 
regression a common result. Case study data demonstrated, however, that 
the transition experience can lead to growth through self-realization, and 
recommendations are made by which this outcome might be facilitated. 
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The Experience 
A two-fold 

DISCONTINUITY 

Child-Adolescent 
(Personal) 

Primary-Secondary 
(Environmental) 

experienced as a 

CHALLENGE 

to established 

Roles and Behaviors 

which may be expressed as either 

Opportunity or Threat 

necessitating a process of 

The Response 

ADJUSTMENT 

which may be realized through 

Self-realization 
(internal control) 

GROWTH 

or 

and lead to 

or 

Acquiescence 
(external control) 

REGRESSION 

Figure 3. A schematic representation of the theory of transition. 
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The key elements: Discontinuity, Challenge and Adjustment, which 

characterize the theory of transition set out in Figure 3, can be related in 

detail to the experiences of the ten students who provided the focus for this 

study. Evidence for the process whereby student behavior adjusted in 
response to the challenge of commencing secondary mathematics could be 

found in every facet of a student's mathematical behavior (Figure 2). 
However, while the commencement of secondary mathematics could be 

characterized as a response to discontinuity with the general structure 

displayed in Figure 3, the particular adjustments to an individual's math
ematical behavior were highly idiosyncratic. It was not just that each student 

responded differently to a common grade 7 experience. Each student 

construed the social and academic contexts differently, and the observed 

changes in student behavior were a consequence of the dynamic between 
the individual's evolving mathematical behavior and the individual's 

classroom reality. This study has specific practical implications for teachers 

responsible for initiating students into secondary mathematics. Discontinuity, 

Challenge and Adjustment provide a structure for the discussion of these 

practical implications. 

Discontinuity 

It is inappropriate and unrealistic to recommend uniformity of primary 
mathematics curricula as a means to minimize the discontinuity experienced 
by students during transition. 

Any such proposed uniformity ignores the responsibility of schools to 

devise programs to meet the perceived needs of the community in which the 
school is embedded. Consideration of cultural, socio-economic and language 

factors and the documented differences between school policy and the 

classroom implementation of mathematics programs make it clear that such 

prescription would be unrealistic. Other factors such.as school size, commu
nity aspirations, and peer group values, standards, behaviors and proficiency 
act to ensure that some experience of discontinuity is an inevitable component 
of the transition to secondary school. 

Primary and secondary school teachers must become better informed about 
each others' beliefs and practices, so that each can implement an optimally 
effective mathematics program, with informed consideration of the others' 
practices. 

The inevitable differences in educational orientation and practice 
between the generalist and the specialist require specific acknowledgement 
in the teaching practices of both. The nature of the discontinuity was a 
function of each individual's educational and personal history, but two 
aspects of secondary school mathematics could be identified specifically 
with the experience of transition as discontinuity: language and pace. 
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Secondary mathematics teachers, by virtue of their specialist expertise, 

have a far greater fluency in the use of formal mathematical language than 

their primary counterparts. Teacher explanations of previously met content 

using unfamiliar and abstract terms, and textbooks which employ exclusively 

technical language with levels of redundancy much lower than that of normal 

conversation can serve to render mystical that which was once familiar. 

Assessment techniques are required which are sensitive to more than 

the recall of a fact or the replication of a procedure. If the abstract struc

tures of which secondary mathematics largely consists are to be founded on 

a meaningful understanding of basic concepts and skills, teachers must 

monitor student construction of these abstract structures with a greater sen

sitivity than has previously been the case. This need is receiving increasing 

recognition (Clarke, 1989b). 

Secondary teachers of mathematics must be sensitive to the destruc

tive possibilities of excessive pace of instruction. Equally, more able students 

reported finding progress too slow. It may be that other classroom struc

tures are required: interactive within-class grouping, for instance (See 

Yackel, Cobb, Wood, Wheatley, & Merkel, 1990) or that new instructional 

practices will better enable teachers to cater to the competency-range (See 

Sullivan & Clarke, 1991a, b). 

The individuality of each student's experience of the mathematics classroom 
makes it essential that a mechanism be established whereby the teacher can 
both monitor and respond to the changing needs of each student. 

Such a mechanism has been trialled with some success (Clarke, 1987a). 

Challenge 

The commencement of secondary school unquestionably represents a 

significant challenge to established behaviors and roles. Several of the study 
students interpreted this challenge socially and measured the success of their 

first year of secondary school in social terms. The first year of secondary 

mathematics presented students with few new academic challenges, though 
possibly with reminders of earlier defeats. Even though the algebra met 
during grade 7 amounted to no more than generalized arithmetic, it appeared 
to provide some students with positive learning experiences. This may have 
been due to its novelty, the lack of preconceptions as to its difficulty, or the 
extent to which its relative sophistication represented a mathematical coming 
of age. 
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The challenge offered by secondary mathematics had an impact on all 

aspects of student mathematical behavior. Whether the challenge was 
successfully met appeared to depend as much on the social resources 

available to the student as it did on individual cognitive capabilities. The 
frequent reference to social concerns in students' accounts of their experience 
of the secondary mathematics classroom makes it clear that secondary 

schools must view the social adjustment of beginning students as an essential 
correlate to their academic progress. 

Adjustment 

By mid-year 8, all ten study students had indicated their contentment 
with the high school environment. All had established a role for themselves 

within the secondary school community. The significance of this achievement 
was recognized by the study children and represented as such. Not all the 
children developed roles conducive to academic success. The differences in 

the nature of each student's adjustment call into question the findings of 
studies which draw superficial conclusions of the form, "Most students ... 

quickly adjust ... The majority report that they prefer high school." (Power 
& Cotterell, 1981). This superficial satisfaction cannot usefully inform the 

actions of those educators concerned to ensure that a pupil's initial experi
ences of secondary school maximize the likelihood of that child's continued 

successful participation in all aspects of secondary schooling. 

While social adjustment dominated the children's accounts of the 
transition to secondary schooling, a study concerned with mathematical 
behavior must address the question of academic adjustment. Academic 
adjustment as a goal of the transition process should encompass the 
development of mathematical and other academic practices, attitudes and 

beliefs optimally likely to lead to continued academic success in the 
secondary environment. If "familiarity" was the key to social adjustment, 

then 'continuity' appeared to have a similar significance in the academic 

domain. The negative side of the adjustment process involves feelings of 

social dislocation and academic discontinuity. Both are inevitable compo

nents of the transition process, and the minimization of discontinuity has 
already been discussed. However, the challenge offered by new studies in a 
new environment can represent a beneficial discontinuity, and the consequent 
adjustment can be a process of personal growth for the student. Darren and 
Chris responded in very different ways to the loss of role experienced in 
year 7, and with very different consequences. While Chris found ways to 
establish within the new community something of the status he had held in 
the old, Darren acquiesced to a role, determined for him by the high school 
community, characterized by a passive approach to learning, a non-academic 
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class profile, and by disruptive classroom behavior. The implications for 

their continued successful participation in secondary mathematics were very 

different. 

Both social and academic behavior may be enhanced in a classroom 

environment which requires students to accept greater responsibility for their 

learning and their social interactions and which offers them strategies by 

which they might do so. 

CONCLUSIONS 

The transition from primary school to secondary school has arguably 

become a major 'status passage'. As the transition from home to school 

may be seen as co-incident with the transition from infancy to childhood, 

and the transition from school to work co-incident with the transition from 

adolescence to adulthood, so the transition from primary to secondary school 

is co-incident with the transition from childhood to adolescence. 

Schools are concerned, among other things, with cultural maintenance; 

however, the increasing multiculturalism of contemporary communities 

raises the question of "Whose culture?". This question takes on a very per

sonal dimension once it is recognized that mathematics (as one aspect of 

culture) is constructed by individuals both independent of formal schooling 

and coincident with formal schooling. Studies of the development of math

ematical knowledge have frequently adopted a product-oriented approach, 

where the concern was with the identification of competence levels within 

a population, or a clinical approach, where the concern was with the processes 

of individual cognition. Neither approach can adequately describe the process 

of learning mathematics; in particular, because both fail to give practical 

recognition to the social context in which personal mathematics is con

structed and mathematical competence attained and displayed. This social 

context takes in the school as the purveyor of the commodity "school 

mathematics"; the home as the embodiment of certain values and beliefs 

relating to education and the utility of mathematics; community, society 
and culture as enfolding environments; and the mathematics classroom as 
the location explicitly identified with the learning of mathematics. 

The same effort which secondary schools expend in developing familiarity as 
an aid to social adjustment must be exerted in presenting new mathematics 
content in ways familiar to the student, drawing on instructional techniques 
and cognitive strategies with which the student is already confident. 

This approach would involve changes in the nature of communication 
in the secondary mathematics classroom, calling for an increase in the op
portunity provided for students to express their mathematical understandings 
and articulate their strategies, and for constructive teacher-student dialogue 
about learning to be a regular part of the classroom routine. 
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Andrea's successful negotiation of the passage from childhood to ado

lescence encouraged an optimistic approach to the academic aspects of 

transition. Bernie had the courage to give the academic challenge priority 

over social alliances with evident success. The pathways by which students 

made their transition to secondary school were many, various, and highly 

idiosyncratic. It is clear that a theory of transition cannot prescribe an opti

mal pathway for any individual. However, this discussion has set out those 

factors which appeared to exert the most significant influence. Where pos

sible, recommendations have been made concerning practices by which the 

challenge of secondary mathematics might be more likely to result in a stu

dent's personal growth. 

The transition from primary to secondary mathematics appears to 

involve separate adjustments within the domain of each element of math

ematical behavior, and these may occur at entirely different times. The 

necessity to employ a model of mathematical behavior which provides a 

means of relating the environmental and personal with the affective and 

cognitive is clear. The most significant finding of this study and its most 

emphatic statement concerning the commencement of secondary school 

mathematics is that the social and academic adjustments required by 

transition are inextricably linked and, in many ways, mirror each other. 

Attempts to facilitate student development must acknowledge this. 
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MATHEMATICIANS AND 

MATHEMATICAL EDUCATION 

IN ANCIENT MAYA SOCIETY 
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The Classic Period of the ancient Maya is usually assigned to the 

centuries from A.D. 300 to A.D. 900. After this period, the Maya civilization 

continued in existence until the Spanish conquest in the 1540's. Perhaps the 

most brilliant achievement of the Maya was the development of a system of 

writing that accurately reflected the sounds of human speech. It consisted 

of large numbers of intricate logographic and syllabic signs commonly 

referred to as hieroglyphs, or more briefly glyphs. The last independent 

Maya kingdom, still using the ancient writing system, was not reduced until 

1696. 

Diego de Landa, who had joined the Franciscan Order in Toledo in 

1540, first came to Yucatan in 1549. In 1564 he returned to Spain to take 

part in an inquiry concerning charges about his behavior towards the natives. 

Around 1566, while in Spain, he wrote an account of the history and traditions 

of the Maya people (Tozzer, 1941). This work includes practically every 

phase of the social anthropology of the ancient Maya, much of it supplied 

by learned native informants. In particular, it contains the first accurate 

information (in a European language) on the principal Maya calendars and 

writing system and provides us with some information concerning Maya 

education. By 1573, Landa, having been exonerated by the inquiry, returned 

again to the New World where he took office as the second Bishop of 
Yucatan. 

Today we have access to large numbers of pre-Columbian Maya texts. 
The inventory includes four screen-fold books called codices, thousands of 
carved stone monuments, and thousands of ceramic vessels. The ability to 

read such texts was lost within a few hundred years of the conquest. However, 
through the painstaking labor of a relatively small number of scholars over 
the last century, we are now able to read, in part, the script. Impressive 
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advances in decipherment have been made in the last few decades. Although 

many questions remain, there is widespread agreement on the linguistic 

interpretation of numerous glyphs. 

Texts relating to Maya numeration, chronology, calendars, and astron

omy were among the first to be understood. These texts show that the ancient 

Maya employed positional notation and a zero. They also performed sophis

ticated calendrical and chronological calculations using tables of multiples 

and a form of residue arithmetic. Their mathematical virtuosity is best 

indicated by their astronomical achievements. A record of a commensuration 

of the natural cycle of Venus with their 260- and 365-day calendars has 

survived in the Dresden Codex in the form of a five-page Venus table. This 

table maintained its astronomical integrity over several hundreds of years 

by employing calculation factors embedded within a preface to the table. 

A second multi-page table in the Dresden Codex commensurates solar and 

lunar eclipses with the 260-day calendar. This table enabled the Maya to 

predict potential solar and lunar eclipses, both of which were regarded with 

an apocalyptic fear. Again, there are mechanisms in the table that allowed it 

to be serviceable over several hundreds of years. 

The common notation for numbers in Maya writing consisted of bars 

having value 5 and dots having value 1. Combinations of bars and dots were 

used to represent numbers from 1 to 19. There were also special symbols 

for zero and twenty. In the surviving Maya texts, these numbers were almost 

always used for recording chronological counts and calendar dates. 

Chronological counts were expressed in two fashions. One method 

was to attach numerical prefixes to glyphs representing the chronological 

periods involved: k'ins (days), winals (periods of twenty days), tuns (periods 

of 360 days), and vigesimal multiples of the tun, most commonly the k'atun 

(= 20 tuns) and the baktun (= 400 tuns). The second method employed a 

system of positional notation in which the lowest position was reserved for 

the k'in count, the next higher position was reserved for the winal count, 

and successively higher positions were used for the place values of the 

vigesimal tun count. The zero signs were used in both types of represen

tations. 

THE ANCIENT MAYA CURRICULUM 

Landa's manuscript provides some details on the subjects studied by 

the ancient scribes during the last few centuries before the conquest. The 

archaeological and epigraphic evidence suggest that this information can 
be extrapolated back to the Classic Period with considerable consistency. 
Landa (Tozzer, 1941: 27-28) describes the scribal curriculum in the following 
words. "The sciences which they taught were the computation of the years, 
months and days, the festivals and ceremonies, the administration of the 
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sacraments, the fateful days and seasons, their methods of divination and 

their prophecies, events and the cures for diseases, and their antiquities and 

how to read and write with the letters and characters, with which they wrote, 

and drawings which illustrate the meanings of the writings." 

The computation of the years, months, and days refers to chronologi

cal reckoning, that is to the count of tuns, winals, and k'ins. It is perhaps the 

most common application of Maya mathematical skills found in the ancient 

inscriptions. A second reference to this type of computation is made else

where, when Landa (Tozzer, 1941: 168) writes that" ... this computation of 

katuns ... was the science to which they gave the most credit, and that which 

they valued most and not all the priests knew how to describe it." The last 

comment is of great import since it tells us that not all scribes were compe

tent in areas requiring some degree of mathematical specialization. Moreover, 
those who had such competence also acquired a higher prestige. 

Drawing on our knowledge of the content of the ancient Maya writings 

and on Landa's remarks, it is possible to offer a summary of the ancient 
Maya school curriculum. The subjects should be divided into two categories, 

according as some mathematical specialization is required for the subject 

matter or is not. I would describe the curriculum as follows. 

Arts and Letters: agriculture; disease and medicine; drawing and paint

ing; history; mythology; reading and writing with Maya glyphs; religious 

ceremonies; tribute and commerce. 

Mathematical Sciences: astronomy; chronology and calendrics; divi

nation and prophecy; genealogy. 

Evidence that there was a similar division in the curriculum during 

the Classic Period comes from two sources. One of these relates to the de
pictions of Maya mathematicians as adistinctive subgroup of scribes, of 

which more will be said later. The other is a Classic Maya vessel from around 
A.D. 750 showing back-to-back classroom scenes (Figure 1). 

Figure 1. Rollout of a Classic Maya vase depicting back to back classroom scenes 
(Kerr, 1989: 67). 
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Both of the scenes illustrate a patron deity of scribes, Pauahtun, 

instructing two students. Pauahtun can be recognized by his aged face and 

net headdress. In each case, the first student is the same individual. He is 

named in a glyphic caption above his neck and back. The second student is 

clearly different in the two scenes. 

In the first case, a speech scroll issues from Pauahtun's mouth and 

leads to an initial glyph that can be analyzed phonetically as ta-ta-bi, for 

tatab or tatabil, inflections of a verb pertaining to written works or sermons. 

In the second scene, Pauahtun is sitting before a folded codex and holds a 

paintbrush in his left hand. A speech scroll issues from his mouth leading to 

a sequence of bar and dot numerals: 11, 13, 12, 9, 8, 7. 

The vessel portrays two different aspects of the scribal curriculum in 

a straightforward manner. The first scene pertains to written works (the 

literary arts) whereas the second pertains to mathematics. It confirms the 

notion that mathematics was regarded as a specialization in scribal studies. 

THE EDUCATIONAL ESTABLISHMENT 

Landa (Tozzer, 1941: 27) also writes of the organization and function 

of scribe teachers in Maya society . 

. . . they had a high priest whom they called Ah Kin Mai and by another name 
Ahau Can Mai, which means the priest Mai, or the high-priest Mai. He was 
very much respected by the lords and had no repartimiento of Indians, but 
besides the offerings, the lords made him presents and all the priests of the 
towns brought contributions to him, and his sons or his nearest relatives 
succeeded him in his office. In him was the key of their learning and it was to 
these matters that they dedicated themselves mostly; and they gave advice to 
the lords and replies to their questions. He seldom dealt with matters pertaining 
to the sacrifices except at the time of the principal feasts or in very important 
matters of business. They provided priests for the towns when they were 
needed, examining them in the sciences and ceremonies, and committed to 
them the duties of their office, and the good example to people and provided 
them with books and sent them forth. And they employed themselves in the 
duties of the temples and in teaching their sciences as well as in writing books 
about them. 

They taught the sons of the other priests and the second sons of the lords who 
brought them for this purpose from their infancy, if they saw that they had an 
inclination for this profession. 

Landa begins his account, by mentioning the sage who presided at the 
top of the educational pyramid. His specific reference is to a priest (Ah 
K'in) or high-priest (Ahau Can) with the surname Mai. However, the second 

title includes the term ahau "lord" and informs us that the person in question 
is a Maya noble. This reality is apparent from his relationship to other lords 

(who "made him presents" and by whom he was "very much respected") 
and priests (who "brought contributions to him"). Moreover, it is implied 
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by the hereditary nature of the office he held. I will refer to the person 
occupying this high office as a scribe lord. 

The scribe lord, and the master scribes under him (for Landa lapses 
into the plural), rarely dealt with religious matters. They were primarily 
educators who "provided priests for the towns when they were needed, 
examining them in the sciences and ceremonies". They assigned to the priests 
"the duties of their office" and "provided them with books and sent them 
forth". Above all, they were engaged "in teaching their sciences as well as 
in writing books about them". 

Figure 2. A Classic Maya polychrome plate in which the central 
image is a scribe lord seated on a throne (Coe, 1977: 
Fig. 7, pp. 336-337; drawing by Diane G. Peck). 

This late pre-conquest model of scribal organization can also be 
extended back to the Classic Period. Indeed, I would argue that the central 
figure on a Classic Maya polychrome plate, previously described by Michael 
Coe (1977: 336-337), is a frontal portrait of a scribe lord seated on a stone 
throne (Figure 2). Coe has suggested that this figure is a young god with 
waterlily headdress and a vertical row of death spots on the cheek. I interpret 
these spots as personalized scars. In his right hand is a conch-shell ink pot; 
in his left hand is a feather pen. Placed above his ear is a deer ear with an 
infixed glyphic element often found on scribal figures. Around the sloping 
inner wall of the plate are eight figures arranged in four pairs. Dividing two 
of the pairs from the other two are jaguar-skin bundles (one seems to be a 
throne) with conch-shell ink pots on top. The pair immediately above the 
central scene consists of two individuals with deer-like extra ears having 
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the same glyphic infix noted above, and with monkey-like features super
imposed on human forms. Coe refers to these as monkey-men. They gesture 
towards what may be a codex. Two of the other pairs are engaged in painting 
masks. One member of each pair is a monkey-man, the other being a Fox 
God. Both members of each pair wear the extra deer ear with infixed glyphic 
element and the net headdresses characteristic of Pauahtun, a patron of 
scribes. The scenes around the edge of the plate represent supernaturals 
engaged in scribal activities of painting and writing over which the scribe 
lord has charge. 

A second depiction of the same scribe lord appears on another Classic 

polychrome vessel also described by Coe (1977: 332, 336). I would identify 

the theme of the vase painting as a classroom scene set in a palace (Figure 3). 
On one side, the scribe lord is seated upon the same throne as before but 

now in a profile view. He has the same vertical line of spots on the cheek, 
the same waterlily headdress, and is likely wearing the same pectoral 

ornament. An apprentice scribe is seated on a dais in front of him, and is 
shown painting a mask. Seated on the floor, with his back to the scribe lord, 
is a Vulture God (?) holding a pen above a closed codex upon which rests a 
conch-shell ink pot. I suggest that the scene represents an apprentice scribe 
practising his painting skills under the watchful gaze of a scribe lord. The 
student may be the son of a ruler since he is shown seated on a dais. The 
codex with ink pot and pen are in the care of a supernatural servant of the 
scribe lord, probably until the apprentice is ready to begin another stage of 
his studies. 
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Figure 3. Rollout of a Classic Maya vase showing a scribe lord and student 
(Kerr, 1989: 39). 
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MATHEMATICS IN MAYA ICONOGRAPHY 

Mathematics, as a discipline, had sufficient presence and concreteness 

in Maya thought that it is incorporated as an element in the iconography of 
Maya artists and in the paleography of Maya scribes. An excellent example 

of this has already been seen in the pottery scene of the mathematics lecture 

(Figure 1). Other examples are found in the Madrid Codex, a pre-Columbian 

Maya book dating from around A.D. 1325. The three section almanac on 

pages 22d-23d of this codex is a case in point (Figure 4). In the first section, 

the Maya god Itsamna, to whom was attributed the invention of writing, is 

seated and holds a vessel of black paint in one hand and a brush for painting 

or writing in the other. His name glyph and an augural glyph occur above 

the scene. The middle section illustrates the death god. His name and an 

augury of death appears in the associated glyphic text. The last section 
portrays the seated rain god Chak holding a brush and ink pot. The generic 

term for "god" and an augural glyph is recorded above the scene. 

Figure 4. The almanac on pages 22d-23d of the Madrid Codex. 

The brush and ink pot shown in the first and last sections are the tools 

of scribes and painters. They are intended to indicate the activities of the 

deities wielding them. Of special interest in the last section is a scroll with 

bar and dot numerals, coming out of the mouth of Chak. In this instance the 

iconography tells us that the rain god is not only engaged in writing but is 

doing some specialized writing involving mathematics. 

A related almanac on page 23c of the Madrid Codex is also divided 
into three sections. The first and the last sections each show a god, Itsamna 
and a generic deity respectively, seated in front of a temple and, as in the 
above example, holding a paint brush and an ink pot. The middle section 
does not have a picture but the glyphic text names the death god as the 
protagonist. Interestingly, the initial glyph in the passage, the verb of the 
sentence, describes the action that would be represented if there had been a 
picture below. Jim Fox (cited in Justeson, 1984: 344) has read this glyph as 
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u ts 'ib, "his writing, painting." That reading has since been fully substanti

ated by David Stuart (1987: 1-11 ). Thus there is linguistic justification for 
the belief that scenes in which figures are holding a paint brush and ink pot 

do indicate that the figure is writing or painting. 

The almanac on page 73b of the Madrid Codex also depicts the rain 

god Chak with a number scroll coming out of his mouth (Figure 5). Once 

again he is holding a paint brush and ink pot, suggesting that he is getting 

ready to do some mathematical writing or calculation. Such scenes emphasize 

that Maya scribes distinguished between ordinary and mathematical writing. 

Figure 5. The almanac on page 73b of the Madrid Codex. 

That the distinction also existed in the Classic Period is shown by a 

polychrome vessel illustrated and discussed by Coe (1978: 106-110). Among 
the various deities represented are a pair who are clearly connected with 
writing (Figure 6). The deity on the right has the facial features of a monkey 
and carries a codex with effigy head in his right hand. The deity on the left 
holds one hand to the back of the former figure and carries a conch-shell 
paint pot in the other. Of special interest is a vegetative scroll, containing 

bar and dot numerals, which emanates from his armpit. There is also a curl, 
with single digits, running down from his cheek. Coe describes this pair of 
seated deities as supernatural patrons of mathematics and writing. The 
existence of such a pair, one with number scrolls and one with a codex, 
underlines the distinction which has been made between mathematics and 
writing in Maya iconography. 
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Figure 6. Gods of mathematics and writing portrayed on a 
Classic Maya vase (Coe, 1978: 109-110) . 

. MATHEMATICIANS 

CLOSS 

The divine patron of mathematics described above is not the only scribe 

figure having a number scroll emanating from his armpit. The same feature 

is also found on a number of human scribes portrayed on Maya ceramics 

(Stuart, 1987: Fig. 12; Schele & Miller, 1986: Pl. 47; Robicsek & Hales, 

1981: Vessel 62). This iconographic convention surely marks these scribes 

as mathematical specialists. 

One Classic Maya vase portrays two seated scribes writing in opened 

codices bound in jaguar skin (Figure 7). It may be noted that only the second 

scribe has a number scroll emanating from the armpit. This indicates that 

while both scribes have been trained in the art of writing, it is only the 
second who is a mathematician. The differentiation in the portraits of the 

two scribes supports the notion that the mathematical specialists used the 

number scroll as a rank symbol to distinguish themselves from other scribes. 

This is exactly the type of differentiation implied by Landa's comment that 

not all scribes understood the "computation of the katuns" and that those 

who did so acquired additional prestige. 

Figure 7. Rollout of a Classic Maya vase showing two seated 
scribes (Robicsek & Hales, 1981: Vessel 71). 
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Another Classic Maya vase of special interest shows two young scribes, 

with distinct facial characteristics, writing in opened codices bound in jag

uar skin (Figure 8). They have large vegetal scrolls emanating from their 

armpits with bar and dot numbers upon them. In the first case, the number 

13 is clearly rendered, while in the second case, only remnants of the num

bers, effaced by erosion, remain. A sky band containing astronomical symbols 

in rectangular cartouches runs around the upper edge of the vase. The por

tion of the sky band above the first scribe begins with a cartouche containing 
the symbol for Venus and the portion above the second scribe begins with a 

cartouche containing the symbol for Sun. This indicates that the scribes are 

indeed engaged in an activity for which mathematical specialization is re

quired. They are working on astronomical texts. Since the vase lacks a 

glyphic inscription, the content of the image must be interpreted through 
the iconography alone. This underscores the importance of the sky band and 

affirms the hypothesis that the number scrolls are emblematic of mathemat

ical specialists. 

Figure 8. The vase of the Maya astronomers (Robicsek & Hales 1981: 
Vessel 61; drawing by Michael Closs). 

A third Classic Maya vase of unusual importance in the present context 

exhibits a complex palace scene and lengthy, but for the most part opaque, 
glyphic text (Figure 9). The central figure is an anthropomorphic supernatural 
with deer ears and hooves seated on a dais. He is apparently being tickled 
by a woman standing behind him and is busy vomiting into a bowl held in 
one hand by an elderly woman who filters the vomit with her other hand. 
Two other women are seated further back on the dais, one of whom is gazing 
into a mirror. Facing the central figure is a kneeling scribe mathematician. 
In this case the scroll emanating from the armpit contains the sequence 13, 

1, 2, 3, 4, 5, 6, 7, 8, 9. 

In the vignette at the upper right of the illustration is the small picture 
of a seated scribe. It comes at the end of the glyphic text and appears to be 
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added as a final comment. This strongly suggests that it is a self-portrait of 

the scribe who painted the scene and text on the vessel. The artifact provides 

good evidence that some, if not most, of the Maya vessels with scribe scenes 

portray contemporaneous individuals and not supernatural entities. 

Figure 9. A Classic Maya vase showing vomit scene and 
scribe mathematicians (Clarkson, 1978: Fig. 5). 

Persis Clarkson (1978) has described the scribe in the vignette as a 

woman. She is depicted with a number scroll emanating from her armpit, 
writing in a codex. The scroll identifies her as a mathematical specialist. 

The last glyph in the associated text is a title read asAh Ts'ib, "The Scribe" 

(Stuart, 1987: 2). Given the likely syntax of the text, the name of the scribe 
should precede the title. If this is the case, then we have both the name and 

the portrait of a mathematician. It is remarkable that the first mathematician 
to be identified in this way among the ancient Maya is a woman! 

The existence of female scribes among the Maya is attested by yet 

another ceramic vessel that has been examined by the author (Closs, 1992). 
The glyphic text on this artifact includes a parentage statement in which the 

mother is a noble woman called "Lady Scribe Sky, Lady Jaguar Lord, the 

scribe" (Figure 10). Not only does she carry the scribe title at the end of her 

name phrase but she incorporates it into one of her proper names, an 

indication of the importance she herself placed on that reality. 

Figure 10. Lady Scribe Sky, Lady Jaguar Lord, the scribe 
(drawing by Michael Closs). 
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LES MATHEMATIQUES 
COMME REFLET D'UNE CULTURE 

Jean Dhombres 

Universite de Nantes, France 

Culture : quoique peu sou vent prononce, voila bien un mot qui pourrait 

servir de banniere sous laquelle rassembler Ia plupart des questions soulevees 
a l'occasion du septieme Congres international sur l'enseignement des matbe

matiques. C'est precisement parce que les matbematiques constituent une 
composante fondamentale de Ia culture, dans ses modes d'expression, dans 

ses representations comme dans ses ressorts caches, que leur enseignement 

souleve tant d'interet, tant de passion, mais aussi tant de difficulte. Culture 

et non technique puisque, tout comme Ia musique, Ia mathematique n'est 

pas reductible a un solfege. 

Or elle fait partie du savoir etementaire de ceux qui ont suivi une 

scolarite, et meme s'il faut sans cesse rappeler que dans le monde d'aujour

d'hui encore bien des hommes et des femmes n'ont pas eu cette opportunite, 

!'installation des mathematiques a Ia base de toute formation est un fait 

majeur de civilisation. Par contraste, soulignons que dans les colleges 
fran�ais d'il y a un peu plus de deux siecles, Ia mathematique se presentait 

toujours comme optionnelle. Ni Robespierre ni Talleyrand n'en frequenterent 

les banes. A Ia meme epoque, aux Tripos de Cambridge, resoudre une equa

tion du second degre relevait de Ia performance ! 

Parce que les angles d'attaque sont tres nombreux - Ia vitalite de Ia 
didactique des mathematiques en temoigne lors de ce congres tenu a 
Quebec- mon propos ne saurait etre une analyse des conditions de )'inte
gration culturelle des mathematiques dans Ia societe d'aujourd'hui, quand 
bien meme je me resoudrais a adopter une perspective historique, laquelle 
m'obligerait tout aussitot a parler de societes au pluriel. C'est dans une direc
tion tout autre que je vous con vie a porter le regard, comme un retournement 
meme de Ia problematique habituelle. 
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Retournement sur le fond, car au lieu de chercher !'expression des 
mathematiques dans la culture generale, c'est dans leur creur meme que je 
vous propose de lire les modes culturels d'une epoque. 

Retournement dans le temps, car c'est dans le monde baroque des XVIe 
et XVIIe siecles que je vous invite a un voyage, un monde reduit a l'Europe 

pour ne pas faire trop long. 

Mais deux mots encore avant le depart, en guise de precaution. En 
associant mathematique et baroque, en visant une epoque bien determinee 

de l'histoire, un siecle et demi entre le sac de Rome par les lansquenets de 

Charles Quint en 1527 et la fondation des grandes academies scientifi

ques vers 1660, je vise aussi et simultanement une science. Et j'associe cette 

science a l'histoire d'une fa<;on particuliere puisque, l'adjectif baroque l'an

non<;ant, je vais evoquer un style. Dans rna ligne de mire, il y done une 
forme. 

MATHEMATIQUES ET HISTOIRE : UN COUPLE ANTAGONISTE 

C'est grace a cette forme-ou aces formes-qu'une epoque -l'ere 
baroque -put exprimer des faits, des resultats, des raisonnements, decrire 

des objets, faire du nouveau ou refaire de l'ancien dans l'ordre mathematique. 
Je n'ai alors besoin d'aucune precaution oratoire pour me defier de l'analogie, 

causalite ou correlation, des mathematiques a l'art ou de l'art aux mathema
tiques, puisque j'ai etabli mes barrieres a l'interieur d'un seul champ, celui 

de la mathematique. 

Certes, la forme, le regard qu'on lui porte, le discours qui la decrit, 
c'est ce qui appartient tres certainement au critique d'art, au commentateur, 
j'allais dire plus simplement au consommateur. Et je brule d'envie de vous 
rendre consommateur de la mathematique des annees 1600 et suivantes. Ma 
subjectivite se servira d'outils artistiques, de critique artistique dois-je aus
sitot corriger, pour viser, pour rendre compte de ces mathematiques, ou 

plutot de certaines de ces mathematiques seulement (car vous vous doutez 

qu'il y a un choix). Je ne requiers done nulle anteriorite de la science sur 
l'art. On peut tour a tour les valoriser en certaines occasions; hie et nunc, je 
ne soutiens pas l'une par l'autre. 

Autre versant, trop classique, forme et contenu. Il est clair, au moins 
pour moi, que si je traite l'reuvre de science comme une reuvre d'art, comme 
une construction manifestant un style, une architecture par laquelle s'engage 
un homme seul - l'auteur -ce n'est nullement pour refouler le contenu. 
Ma demarche releve d'une quete epistemologique sur les procedures et les 
imaginations par lesquelles fut, une fois, pose puis approprie ce qui est 
devenu un patrimoine scientifique, patrimoine necessairement banalise et 
reduit par la pratique scolaire. 
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De la geometrie algebrique dont il va etre question, en un sens bien 
different de celui aujourd'hui adopte, j'entends faire une unite stylistique, 
c'est-a-dire que je me refuse a la reduire a ses deux composantes, geometrie 
et algebre, car un ou des hommes incarnes dans l'histoire la penserent de 
cette fa�on unitaire. 

Le « comment » de l'origine de cette geometrie algebrique n'est done 
nullement la geometrie algebrique toute prete, telle qu'on l'enseigne et la 
pratique aujourd'hui. Ce « comment »est l'atteinte d'une conscience initiate 
qui fut en meme temps une intuition d'essence et determina un horizon. 
Deux faits irreductibles sont en presence : le projet et !'effectuation de la 
geometrie algebrique se deroulerent dans la conscience subjective de ou 
des inventeurs, dans leur univers spirituel d'une part. D'autre part, la geo
metrie algebrique n'est pas dans la seule existence psychique : elle n'est pas 
existence de quelque chose de personnel dans la sphere de la conscience ; 
elle est desormais existence d'un etre-la, objectivement, pour tout le monde. 

Voila deux extremes qui doivent encadrer notre voyage, all the way. 

MARQUES EXTERIEURES DU BAROQUE 
ET DU CLASSICISME EN MATHEMATIQUES 

Style, ai-je annonce. Qui, se penchant sur les annees 1630-1650, ne 
consentirait a reconnaitre au moins !'opposition entre une mathematique 
« grasse » ou « copieuse » et une mathematique « maigre » ? Comment ne 
pas soupeser en effet d'un cote les 1225 pages in-folio du P. Gregorii a 
S10 Vincentio Opus geometricum quadraturre circuli et sectionum coni decem 
libris comprehensuml, et de l'autre les quelques feuillets de La geometrie 
de Descartes ( ouvrage paru dix ans plus tot a Leyde2) ? D'ailleurs, le jugement 
du Fran�ais sur l'ouvrage de Gregoire de Saint-Vincent s'engage precisement 
dans le sens d'une condamnation de l'obesite : 

[ . . .  ] je n'ai encore rien rencontre dans tout ce gros livre, sin on des propositions 
si simples et si faciles que !'auteur me semble avoir merite plus de blame 
d'avoir employe son temps ales ecrire, que de gloire ales avoir inventees3• 

Tous les contemporains soulignent cette opposition : Mersenne, 
Huygens, Roberval, etc. Baroque contre classicisme ? Nous n'en sommes 
pas la ; j'ai prevenu d'entree de jeu que je ne m'arreterais pas a des formes 
exterieures, quoiqu'elles aident cependant a classer. 

2 

3 

Ouvrage paru chez I. et I. Meursios, a Anvers en 1647, et copieusement illustre. 

Le Discours de la methode occupe 78 pages. La Geometrie, qui est « un des 
Essais de cette methode >>, couvre 117 pages, sous un format reduit. 

Lettre du 9 avril1649 de Descartes a van Schooten, Correspondance, (£uvres de 
Descartes, A. Adam et P. Tannery ( ed. ), Paris, t. III. 
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Ne cedons pas non plus a Ia tentation de reduire Ia comparaison des 
deux ouvrages a une difference d'acuite intellectuelle qui serait manifestee 
aujourd'hui par Ia difference de renom : si elle est facile a constater, l'epais 
ouvrage du jesuite flamand n'en contient pas moins Ia premiere demonstration 
du comportement logarithmique des aires sous !'hyperbole (un resultat tout 
a fait remarquable sur le plan purement technique et de portee theorique 
notable), ainsi que Ia resolution du paradoxe de Zenon- celui d'Achille et 
de Ia tortue- par sommation de series geometriques infinies (une premiere 
mathematique indeniable, grosse d'une longue tradition philosophique). Le 
lourd in-folio d'Anvers comporte egalement un traitement des cubatures au 
moyen d'un procede nouveau, le ductus, procede propre a pre parer- ce qui 
ne veut pas dire inventer- le calcul integral, et en tout cas a familiariser 
les esprits avec Ia geometrie dans l'espace, deux domaines notablement 
absents du si petit et si remarquable traite de Rene Descartes. Tout cela etait 
apprecie des contemporains. 

Derechef, entrons dans !'explication de Ia resolution memorable du 
paradoxe de Zenon. Elle debute par une experience quasiment visuelle de 
geometrie. 

LA GEOMETRIE PREMIERE 

Le donne que Gregoire de Saint-Vincent donne a voir est un triangle 
OAB avec choix arbitraire d'un point C entre les points A et B, point deter
minant une secante OC. De C, on mene une parallele au cote OB coupant le 
cote OA en A2, puis une parallele a AB coup ant OC en C2, puis une parallele 
a OB, puis une parallele a AB, et ainsi de suite. Alternativement sur le cote 
OA et sur la secante OC, deux families de points sont ainsi etablies A, A2, 
A3, A4, A5, etc. ; C, C2, C3, C4, etc. De meme, en prolongeant les paralleles, 
intervient sur AB une famille A, C, D2, D3, D 4, etc., et sur OB une autre 
famille B, B2, B3, B4, etc. 

Tirant parti de Ia double famille de droites paralleles, une multiple 
application du theoreme, dit de Thales en France, fournit iterativement Ia 
stabilite du rapport4 

4 
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En reperant !'usage du theoreme de Thales par des triangles, on a en effet : 
AC OA · ) A2C2 = OA2 

(tnangles OAC et OA2C2 

- OC (triangles OAC et OA2C2) - oc2 

= g�� (triangles OA2C et OA3C2) 

= 
���� (triangles OA2C2 et OA3C3). 

OA2 OC2 . 
OA C ) L'iteration est acquise puisque OA3 = oc3 

(tnangles OA2C2 et 3 3 . 
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AC AzCz A3C3 
A2C2 = A3C3 = A4C4 = .... 

Par consequent, on obtient autant de progressions geometriques5 sur 
les droites OA, OB, OC ou AB. Qui plus est, la figure geometrique decom
pose le continu ou segment AB selon un empilage de segments visuellement 
distincts AC, A2C2 (= CD2), A3C3 (= D2D3), etc. II en est de meme pour le 
continu OB, decompose en A2C (= B2B), A3C2 (= B3B2), A4C3 (= B4B3), etc. 
Cet empilage est une somme- infinie. Des lors, a partir de ses deux seuls 
premiers termes, il n'est plus difficile d'evaluer en toute generalite Ia somme 
d'une progression geometrique que l'on ecrit aujourd'hui avec des points de 
suspension : 

AB=AC+C02 +0203 +0304 + .. . 

= AC+A2C2 +A3C3 +A4C4 + .. . 

0 

Figure 1 

En effet, Ia stabilite du rapport A��2 , puis celle du rapport6 A
A� , 

en se transmettant sur Ia droite AB, fournit l'egalite : 
2 2 

5 

6 

(1) 

Le calcul est iteratif: 

Proposition 70 du livre 2 de l'Opus geometricum. On a bien sur (en ecriture 
mod erne) An en= xn- I AC pour n ;;,: 2. 

Grace aux triangles OAB et OA2B2. 
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La proportion (1) se transforme en 

AB = AB-CB = AC 
CB CB-D2B CD2' (2) 

que l'on modifie a son tour en tenant compte du premier et du dernier rapport 
en 

AB-CB AC-CD2 
AB "' AC (3) 

Finalement, la somme AB de tous les termes d'une progression geo
metrique dont les deux premiers termes sont AC et CD2 s'obtient a partir 
d'une moyenne geometrique oil ne jouent que ces deux termes : 

AC AC-CDz 
AB"' AC (4) 

Gregoire de Saint-Vincent en once a la proposition 80 du livre 2 de son 
Opus geometricum : « la totalite est troisieme proportionnelle de la difference 
entre les deux premiers termes et du premier terme ». Telle est la rhetorique 
usuelle pour l'enonce d'un resultat qu'un moderne a plutot tendance a ecrire 
sous la forme 

AB· AC-CD2• (5) 

E n  vue d'une lecture geometrique, Gregoire de Saint-Vincent pose 
AD\= AC- CD2, c'est-a-dire construit le point D\ a !'intersection avec la 
droite AB de la parallele a OC menee par A2 • 

AC = �AB·ADi . 

Obnubiles par le seul resultat -la formule de sommation (5)- nous 
ne mesurons peut-etre plus aujourd'hui la force manifestee dans !'experience 
visuelle donnee par la seule figure 1, cet empilage iteratif de segments, et 
nous nous laissons prendre par les quelques calculs supplementaires. 
Torricelli utilise a son tour le meme dessin dans un manuscrit oil il traite de 
la serie geometrique7• Indeniablement, il y eut en ce debut du XVIIe siecle 
une presence sous forme repetitive de representations geometriques qui par
lerent a !'imagination du mathematicien. 

Ce pourrait done n'etre que banal-un jeu du temps- si Gregoire de 
Saint-Vincent n'entreprenait pas tout aussitot une demonstration entierement 
analytique de la relation (4), demonstration qui devrait avoir pour but de 
renier aussi bien le dessin que la geometrie qui le porte. Or, et c'est ce qui 
est particulierement significatif, il ne gomme pas le dessin, il ne le presente 

7 
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Opera di Evangelista Torricelli, G. Loria e G. Vassura (ed.), De dimensione 
parabola:, vol. 1, Faenza, 1919, pp. 147-148. 
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ni comme seulement preparatoire, ni comme artifice pedagogique. Une 
attitude didactique -!'indication d'un cheminement de !'intellect, du sensible 
figure a l'abstrait calcule - serait pourtant justifiee puisque Gregoire de 
Saint-Vincent est un enseignant : toute sa vie se deroule dans le cadre edu
catif mis en place par les J esuites, les colleges ou les maisons de formation 
de l'Ordre, que ce soit a Rome au College romain, a Anvers, a Prague, a 

Louvain, ou a Gand oil il se retira enfin. Si en toute conscience Gregoire 
donne simultanement et le dessin et la demarche analytique, c'est que cela 
convient a sa fac;on scientifique, et son discours explicatif doit se lire comme 
revelateur d'une attitude culturelle : la profusion -le melange des genres -
est la forme qu'il choisit pour annoncer ce qui sans doute aucun est un resultat 
original. 

Mais il ne s'agit nullement d'un desordre de la pensee chez l'auteur 
jesuite, pas plus que la cohabitation du droit et du rond, de l'arc et de sa 
troncature, ne defigure la fac;ade du Gesu de Rome dont l'effet de masse est 
garanti8• Car, a bon escient, le dessin de la figure 1 apparait presque isole et 
creant la surprise dans le livre 2 de !'Opus geometricum, un livre qui de fait 
est dedie a l'algebre. Non pas certes l'algebre polynomiale dont Descartes 
allait faire le pilier de sa methode, mais une algebre tres particuliere, celle 
que les siecles avaient degagee a partir du livre v des Elements d'Euclide, 
c'est-a-dire l'algebre des proportions9. Une des identites les plus familieres 
de cette algebre, aussi banale qu'aujourd'hui le 

a2- b2 = (a- b)(a +b) 

etait la sequence 

(6) 

Une sequence qui ne s'ecrivait pourtant pas, et se prononc;ait : « Si a 

est a b comme c est a d, alors a est a b comme la somme des antecedents a 
la somme des consequents. » Nous avons vu les effets de cette fac;on de 
proceder avec le passage des relations (1) a (2) et a (3). C'est souvent dans 
le cadre de cette seule algebre que d'autres auteurs inscrivent le resultat 
manifeste par ( 4). La formulation (5), qui est deja presente chez Viete10, est 
reprise comme chose desormais bien connue par Fermat dans un texte ecrit 
vers 1657 et dont il avait communique beaucoup plus tot les resultats a 
quelques amis sous la forme : 

8 

9 

Due a Giacomo della Porta en 1575, cette fa<;ade termine !'edifice construit par 
Vignola en 1568. 

J. Dhombres, Nombre, mesure et continu, epistemologie et histoire, Nathan, 
1978. 

10 F. Viete, Variorum de rebus mathematicis responsorum libri VIII, Turino, 1593 ; 
Opera mathematica, Leiden, pp. 347-435. 
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Etant donnee une progression geometrique dont les termes decroissent a l'infini, 
la difference de deux termes qui constituent cette progression est au plus petit 
terme, comme le plus grand des termes de la progression est a la somme de 
tous les autres a l'infinP1• 

En fix ant les deux premiers termes- alors que Fermat laisse la liberte 

de deux termes successifs - cette formulation indique 

AC-CD2 AC 
CD2 AB-AC' 

dont il etait immediat de deduire par les regles des proportions la formule 

(5), du moins: 

AC _AB 
AC-CD2

-
AC. 

C'est pourtant dans ce monde resolument « algebrique », oii les seules 

eventuelles figures sont des segments de droite alignes, qu'en un impromptu 

d'autant plus visible intervient le dessin iteratif de la figure 1 chez Gregoire 

de Saint-Vincent. L'effet est aussi saisissant que le trompe-l'reil du Bramante 
a San Satiro de Milan. 

L'ONTOLOGIE ANALYTIQUE 

L'effet ne vaut pas preuve, mais il la souligne. Porte par un habitus 
culture!, le melange opere par Gregoire de Saint-Vincent a un sens ou, autre

ment dit, l'effet figuratif ne fait sens que dans la mesure oii il est accompagne 
par la demarche analytique. Cette derniere procure un tbeoreme d'existence, 

et c'est ce qui est tout a fait exceptionnel dans la mathematique du XVIe et 

du debut xvne' une existence dont precisement la geometrie n'a pas a 

s'encombrer. Par contraste, tel est bien l'effet recherche qui favorise la prise 
de conscience d'un requis nouveau. La formulation quasiment scolastique 
du theoreme indique suffisamment !'importance philosophique attribuee a 

la premiere proposition analytique que nous traduisons : 

A 

Si l'on a une grandeur AB qui soit ala grandeur BK comme Ia grandeur BC a 
Ia grandeur CK, je dis que la proportion de AB a BC peut etre poursuivie en 
acte sans terme final a l'interieur de la grandeur AK, de telle maniere qu'elle 
ne parvienne jamais a K 12. 

B c D E F K 

Figure 2 

11 De a:quationum localium transmutatione et emendatione ad multimodam cur
vilineorum inter se vel cum rectilineis comparationem, cui annectitur proportionis 
geometrica: in quadrandis infinitis parabolis et hyperbolis usus, (Euvres de 
Fermat, P. Tannery, C. Henry, (ed.), Paris, Gauthier-Villars, t. I, pp. 255-288. 

12 Opus geometricum, livre 2, proposition 75, p. 95. 
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En somme, si nous revenons a la figure 1, il s'agit de demontrer que, 
sous la seule regulation iterative, les points A, A2, A3, ... ou les points C, C2, 
C3, ... n'atteignent pas le point K. En !'occurrence, et portee sur une seule 
ligne, la regulation est devenue 

Gregoire de Saint-Vincent, minutieusement, prouve1
3 

que si les quatre 
points A, B, C et K sont places sur une meme droite de sorte que 

AB BC 
BK = CK' 

(7) 

les points suivants D, E, F, etc., calculables pas a pas par la formule (Gd), 
sont tels que 

CD < CK, DE < DK, EF < EK, etc. 

Naturellement, cette insertion selon (Gd) de points situes avant K ne 
donne pas le point K lui-meme, point qui a d'ailleurs ete a priori construit 
par la relation (7). Pourtant, l'objectif de toute la demarche consiste a obtenir 
K a partir de (Gd) seulement car on « voit » comment les points successifs 
s'en approchent. De sorte qu'une operation nouvelle doit entrer en jeu, 
!'attribution d'un « terme » a une serie, une operation qui donnera un sens a 
l'ecriture interminee : 

AK=AB+BC+CD+···. (8) 

La definition est magistrate : « Le terme de Ia progression est la fin 
des series a laquelle s'il nous est permis de poursuivre a l'infini, aucune 
progression ne peut aboutir, mais a laquelle il est loisible d'acceder d'aussi 
pres que de n'importe quel intervalle donne »14• C'est, en latin, exactement 
le langage des e et des o qu'adoptera Weierstrass au XIX• siecle, et nous a 
sa suite. Pour que (8) so it justifiee, il suffit avec cette definition de montrer 
que Ia suite des longueurs BK, CK, DK, etc., tend vers 0, c'est-a-dire qu'elle 
peut etre rendue inferieure a tout segment donne. Gregoire de Saint-Vincent 
n'a aucun mal a fournir cette preuve. 

LES OPPOSITIONS BAROQUES 

II ne s'en contente pas, ou plutot jouant comme avec !'opposition prece
dente entre un des sin et un calcul, il use- procede veritablement baroque -
d'une nouvelle confrontation. Celle-ci prend comme antagonistes (Gd), que 

13 Pour une traduction et un commentaire de Ia preuve, voir J. Dhombres, Les pro
gressions de l'infini : roles du discret et du continu au XVII• siecle, Actes du 
colloque L 'infini en mathematiques, Brest, mai 1992, 57 p. 

14 Definition 3 du livre 2 de !'Opus geometricum. 
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je peux qualifier de regie discrete d'une part 15 et Ia regie (7) etendue so us 

une forme que je veux qualifier de regie continue : 

L'opposition est naturellement dans le fait que, selon (Gd), le point 

ultime K n'intervient pas : on construit « discretement »,pas a pas, les points 

successifs qui correspondent a des termes de calcul et en s'ajoutant donnent 

AB, AB + BC, AB + BC + CD, c'est-a-dire a, a + ax, a +ax + ax2, etc., avec 

notre notation algebrique contemporaine. Alors que, selon Ia formulation 

(G), le « terme » K apparait des le depart pour successivement detinir les 

points C, D, E, etc. De sorte que dans Ia definition (Gc) le continu AK est 

fondateur de la division AK, BK, CK, qui donne ensuite, mais seulement 

ensuite, AB + BC + CD + · · · . 

L'opposition est d'autant plus forte que (Gct) et (Gc) sont des regles 

logiquement equivalentes. La demonstration de cette identite n'est autre 

qu'une application de Ia loi operatoire (6) adaptee aussi bien sous forme 

soustractive. En effet, a partir de (Gc) il est facile de calculer 

so it 

AK-BK BK-CK CK-DK 

BK CK OK 

�=�i=g�=··· 
En echangeant les termes m<jzens dans la premiere proportion des 

egalites precedentes, on a �� = �K 
et Ia regie (6) a nouveau appliquee 

fournit 

AB AB+BK AK 

BC = BC + CK = BK . 

Par iteration, on deduit aussit6t (Gct), prouvant d'ailleurs que la raison 

de Ia progression croissante AB, BC, CD, etc., est la meme que celle de Ia 

progression decroissante AK, BK, CK, etc. Reciproquement, si l'on part de 

(Gct), et l'on prend soin de detinir K par la relation (7), alors on deduit 

facilement (Gc). Mais detinir K par (7), c'est aussi bien construire le « terme » 
de la serie (8), ou bien appliquer (4). En termes modernes, c'est user de la 
sommation ou n'interviennent que le premier terme et la raison de la 
progression : 

(G) 

n=oo 
_a_ = ""' axn 0 

1-x LJ 
n-0 

15 C'est ce qui justifie l'indice d dans (Gd). 
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Une lecture trop rapide de Gregoire de Saint-Vincent, notre lecture 
modernisante, consiste a rectuire16 tout son discours ala preuve de (G). Or 
le style meme adopte par le professeur jesuite consiste ajuxtaposer les equi
valences (Gc) et (Gd), en profitant de !'opposition entre ce qui est construit 
et ce qui est donne. Michel-Ange nous surprend de la meme fa<;on par ses 
freles demi-colonnes encastrees au rez-de-chaussee des arcades du palais 
des Conservateurs sur le Capitole a Rome : la surprise vient de ce qu'elles 
ne supportent rien, ce qui magnifie d'autant l'equilibre des masses par rapport 
au premier etage, et contraint l'reil a l'intelligence du batiment. lei, dans 
I'Opus geometricum, c'est la rencontre de deux horizons qui porte la compre
hension. Coexistent !'horizon du discret continue (c'est la relation (Gd)) : 
« J'appelle progression geometrique la succession d'un nombre quelconque 
de termes selon la meme raison» et !'horizon du continu morcele (c'est la 
relation (Gc)) : « J'appelle serie geometrique une quantite finie, divisee en 
succession ininterrompue, selon une raison donnee quelconque ». Nous 
sommes tellement habitues a la premiere definition que la seconde nous 
parait inutile ! 

Or, Gregoire ne presente pas un discret qui serait somme, mais un 
continu dont seul le decoupage est discret ; c'est tout le sens originel de la 
figure 1. II fait alors voir le discret continue et, en plus, il prouve un tbeo
reme d'existence : le « terme » de Ia somme. L'emphase est done nette : une 
somme infinie ne peut etre consideree comme simple extension du cas fini ; 
il y faut Ia determination d'un objet mathematique. Cependant, Gregoire ne 
fournit pas sa le<;on en une glose et c'est la juxtaposition de l'analytique 
contre la geometrie qui la fait ressortir. 

II ne tranche pas pour autant au profit de l'analytique. Chez Gregoire, 
continu et discret restent a parite. Doit-on vraiment clare ce qui doit passer 
pour une mise en perspective ? Dans le Mariage de la Vierge qui est presente 
a Ia Pinacotheque de Ia Brera a Milan, Raphael n'emprisonne pas le point de 
fuite du regard : au-dela du long dallage qui rythme !'elevation du regard, 
au rez-de-chaussee du temple dont les portiques sont inscrits dans un poly
gone apparait une porte a Ia fois ouverte et lumineuse. 

Par le jeu de ces contrastes, on per<;oit dans l'Opus geometricum toute 
une construction baroque dont les tensions contradictoires ne sont pas reso
lues ; mais il n'y a pas confusion et ce n'est pas kitsch. Si Ia regie (G) dit 
evidemment que tendent vers zero les restes successifs BK, CK, DK, etc., 
des sommes AB, AB + BC, AB + BC + CD, etc., la regularite meme de ces 
restes n'intervient pas pour Ia definition d'une limite nulle, pour Ia definition 

16 Nous avons vu par exemple que la raison n'est pas intervenue dans les formules 
fournies par Gregoire de Saint-Vincent. 
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d'un « terme ». Autrement dit, pour fonder un concept, Gregoire de Saint
Vincent sait eliminer l'anecdotique, que celui-ci releve d'une figure ou d'une 
formule : en l'occurrence, il neglige a juste titre le fait que les restes d'une 
serie geometrique forment aussi une progression geometrique. 

La preuve de cette pensee bien structuree est assenee par la resolution 
du paradoxe de Zenon, celui que depuis Aristote on decrit avec !'Achille 
courant desesperement derriere une tortue sans parvenir a Ia depasser. Cette 
resolution fait date. 

A 

Qu'on suppose qu'Achille le plus rap ide des coureurs, partant du point A veuille 
rattraper une tortue qui rampe sur le chemin BC en une course tres lente. 
Pendant le temps qu'Achille va de A a B Ia tortue s'est deplacee d'un certain 
espace et arrive a F. Done Achille n'a pas encore rattrape Ia tortue. Derechef, 
pendant le temps qu'Achille court a partir de B pour rattraper Ia tortue qui 
etait en F, Ia tortue s'est deplacee jusqu'au point H. Done Achille parvenu en 
F n'a pas encore rattrape Ia tortue, et cela echerra indefiniment17• 

B 

D 

Figure 3 

F 

E 
H C 
G I 

En choisissant d'attribuer a Achille une vitesse double de celle de la 
tortue, la solution proposee fonctionne a partir d'une longueur AC fixee qui 
sera lue sur deux niveaux, et de son milieu B. La tortue part de D, mais ce 
point qui coincide avec B est place en dessous (figure 3) et Achille quant a 
lui est place en arriere au point A et ses positions successives sont indiquees 
en dessus. Deux progressions geometriques entrent en jeu : le mouvement 
d'Achille qui, par la pensee, est decompose en segments successifs AB, BF, 
FH, etc., F etant le milieu de BC, H celui de FC, etc. ; et le mouvement 
idoine de la tortue DE, EG, Gl, etc., ou E est le milieu de DC, G le milieu de 
EC, etc.18. D'apres la forme (G), avec x =! , les deux « termes » de ces pro
gressions sont les memes : il s'agit du point C. Ce resultat s'obtient aussi 
bien avec la formulation ( 4) du xvne siecle : 

AB + BF + FH + . . · = AC 

DE+ EG+ ... =DC. 

17 Opus geometricum, livre 2, p. 101. 

18 . A I (G ) AB BF 2 t d A DE EG 2 Bten sur, se on d , BF 
= FH = . . · 

= e e me me EG 
= ill = . . · = . 
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Puisque AC _ BC = FC ="·=2 ou DC= EC = GC =···=2 
BC - FC HC EC GC IC . 
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Par consequent, Achille rencontre bien Ia tortue (en C) et ... Zenon n'a 
ete qu'un philosophe « captieux ». 

Le terme d'une serie tel que defini par Gregoire de Saint-Vincent n'est 
pas un terminus. Quoique le jesuite ne poursuive pas par ce que nous atten
dons de lui, a savoir une theorie des series. Mais c'est que son horizon est le 
continu, et les proprietes qui lui sont attachees. Le discret somme est a ses 
yeux un outil, rien de plus, et il ne le travaillera pas plus. Et pourquoi fau
drait-il que sous Ia forme des series l'analytique triomphe, quand il s'agit 
de le mettre au service de Ia geometrie qui gere le continu ? Ce sont les 
oppositions et les tensions qui doivent ressortir, non l'aneantissement d'un 
genre par I' autre. On constate ainsi qu'une fa15on culturelle ne porte pas neces
sairement le futur mathematique. 

Tout aussi dramatiquement mises en scene, bien d'autres oppositions 
scandent le lourd volume de Gregoire de Saint-Vincent. II n'hesite d'ailleurs 
pas a jouer de belles vignettes allegoriques - le jour et Ia nuit par une 
poule couvant de nuit ses reufs tandis que le coq annonce le jour- ou tout 
simplement adopte un rythme alterne de gauche a droite, et de droite a gauche 
pour le placement d'une branche d'hyperbole entre ses asymptotes. Un cas 
d'opposition savamment construit est particulierement significatif19• D'un 
cote, Gregoire de Saint-Vincent dispose d'une propriete reperee par les axes 
de coordonnees (dans Ia figure 4, si OB = ,/ OA · OC , les aires curvilignes 
sous !'hyperbole ABED et BCFE sont egales); dans l'autre cas20 Ia propriete 
para it tenir aux seuls diametres naturellement lies a Ia courbe (dans Ia fi
gure 5, si C est le milieu de Ia corde AB et D designe I' intersection de OC et 
de !'hyperbole, les triangles ou secteurs hyperboliques DFA et DEB possedent 
Ia me me aire ). Cependant, les deux proprietes apparemment opposees des 

E 

B C 

Figure 4 Figure 5 
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aires curvilignes (trapezes ou triangles) sont en fait equivalentes comme il 
n'est pas difficile de le voir par la simple geometrie de !'application des 
aires21. De sorte que, pour l'auteur de l'Opus geometricum, l'analytique des 
coordonnees (figure 4) est place au meme niveau d'interet que la geometrie 
intrinseque de la courbe (figure 5). 

Une fois de plus, le pere jesuite ne tranche pas : il juxtapose. Descartes, 
quant a lui, a tranche pour la seule analytique : c'est un classique ! 

UNE PAUSE DIDACTIQUE 

Dans l'ordre pectagogique, plusieurs reflexions peuvent decouler de la 
description historique a laquelle nous n'avons pourtant accorde qu'un court 
espace sans suivre l'ecriture usuelle de l'histoire des mathematiques, mais, 
je l'espere, sans denaturer une demarche inscrite dans le temps22• Je donnerai 
a ces remarques une redaction succincte, quasi telegraphique. La plus simple 
de ces reflexions concerne d'abord la demonstration originate et plaisante 
de la somme d'une progression geometrique qui peut faire l'objet d'une riche 
sequence didactique orientee sur la geometrie23 : les mathematiques du passe 
sont ainsi un grand reservoir de formes, de calculs, de presentation et tout 
comme le peintre se fait la main en recopiant les maitres du passe, de meme 
l'eleve- et pourquoi pas le professeur- peut s'exercer l'esprit en reprenant 
les textes d'autrefois. 

En adoptant de front plusieurs modes d'expression, Gregoire de Saint
Vincent invite a pratiquer une mathematique « circulaire », c'est-a-dire une 
mathematique qui ne soit pas une progression toujours tendue vers un plus 
lointain, mais au contraire ou est privilegie le jeu des equivalences, avec 
des retours en arriere. Nous avons bien vu qu'il ne s'agissait en rien d'une 
mathematique du cercle vicieux, mais bien plutot d'une mathematique que 

19 Opus geometricum, livre 6, proposition 108. 
20 Opus geometricum, livre 6, proposition 108. 
21 J. Dhombres, << Is one proof enough ; travels with a baroque mathematician>> , 

Studies in Math. Education, a paraitre, avril 1994. 
22 L'histoire des mathematiques est une discipline, avec ses regles d'ecriture, de 

citation, ses rites qui permettent aussi bien de discriminer les amateurs ; bref 
c'est un lieu professionnel qui n'a pas besoin de chercher en dehors de son champ 
propre une justification de ses objectifs ou de ses methodes. Je n'ai pas respecte 
toutes ces regles dans les pages qui precedent : je n'ai, par exemple, pas syste
matiquement cite le latin de Gregoire de Saint-Vincent, ni respecte ses notations, 
ni rendu compte lineairement de son Opus geometricum (puisque j'ai selection
ne une sequence particuliere). Je n'ai pas plus tente de faire Ia difference entre 
des manuscrits (dates a partir de 1617, done bien longtemps avant Ia parution de 
!'Opus geometricum) et l'ouvrage publie, ni de fait raconte, meme en bref, Ia vie 
de Gregoire - sa date de naissance a Bruges en 1584 ne figure pas dans man 
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l'on pourrait qualifier de ludique, encore que je prefererais parler d'une mise 
en scene a Ia Pirandello : de temps a autre, on redistribue et les roles et les 
cartes ! Cette scansion de l'apprentissage mathematique doit pouvoir exciter 
Ia curiosite de plus d'un eleve en evitant de donner cette impression 
desesperante d'un espace toujours plus grand entre ce qu'on sait faire, reduit 
a si peu, et tout ce qu'il va falloir apprendre a faire. 

Le jeu meme d'une opposition volontairement maintenue entre deux 
approches- analytique ou geometrique ; discret ou continu- opposition 
refletee aussi bien par le dessin que par le calcul et par les raisonnements, 
presente l'avantage de conserver Ia liberte de choisir24• Alors que, tres 
souvent, au cours des demonstrations scolaires qui ne sont pas de pure 
routine, on apprend a eliminer ce qui est annexe pour ne derouler qu'un seul 
fil. lei, deux fils au moins sont constamment en cause et disponibles. Le 
« stress » lie a Ia psychologie du choix peut done etre amoindri, une situation 
que certains psychopedagogues reconnaissent comme favorable25• 

Gregoire de Saint-Vincent ne separe pas l'algebre- une certaine alge
bre- de Ia geometrie : cette « geometrie algebrique », bien eloignee prati
quement de celle de Descartes (qui fait intervenir quant a lui le degre des 
courbes algebriques, Ia decomposition polynomiale, etc.) s'en rapproche 
cependant sur le plan des principes par Ia conjonction de deux domaines des 
mathematiques. Aupres des eleves, ne peut-on mieux faire saisir Ia force et 
l'efficacite de Ia fa�on cartesienne en examinant a nouveau, et avec un reil 
critique, Ia demarche gregorienne ? Chez certains enfants rebelles a l'alpha
betisation, des linguopedagogues ont bien experimente - en Californie -
}'utilisation prealable de caracteres chinois pour l'apprentissage de Ia lecture 
anglaise! 

23 

texte jusqu'a cette ligne. Cette fa<;on de presenter est voulue, car l'histoire des 
sciences entendue au sens strict n'est faite, du moins aujourd'hui, que pour Ies 
professionnels. De meme que Ies mathematiques ou Ia philosophie contempo
raine. Or, ii doit etre possible de donner de l'histoire des mathematiques, non 
pas une vision vulgarisee, mais en quelque sorte des applications au profit de 
l'enseignement. Si !'expression peut paraitre exasperante a l'historien - l'un 
d'entre eux a malgre tout commis en France une Lefon d'histoire pour une gau
che au pouvoir -, elle est toute nature lie au scientifique. En decrivant un bout 
de l'reuvre de Gregoire de Saint-Vincent, j'ai pense didactique. En focalisant sur 
Ia forme particuliere du style d'expression sur Iaquelle je me suis deja exprime, 
j'ai done realise une construction bien particuliere. Cela ne contredit nullement 
Ie choix d'une perspective historique. 

C'est en tout cas une fa<;on de justifier l'adjectif « geometrique » accole au mot 
serie. L'habitude des manuels est de sommer une progression geometrique en 
termes finis, puis de passer a Ia limite. Gregoire de Saint- Vincent fournit une 
alternative heureuse. Je dis alternative, et non seule maniere << historiquement » 

convenable ! 
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UN BAROQUE DESABUSE 

Pour evoquer jusqu'a present le monde baroque, j'ai choisi un auteur -
meme une demonstration particuliere de ce dernier- et tente a partir de ce 
decoupage de saisir des lignes de force qui me paraissent caracteriser une 
faC$on historique. Les esprits positifs refuseront sans doute !'utilisation du 
mot « baroque », quand bien meme ils adopteraient mon analyse. Mais a 
utiliser un autre mot, ne risquent-ils pas surtout de faire sortir du champ de 
l'histoire une demarche intellectuelle qui s'y inscrit pourtant. 

En tout cas, l'observatoire que j'ai adopte doit etre replace dans son 
contexte. Gregoire de Saint-Vincent est un des nreuds du reseau jesuite des 
colleges, reseau etabli largement dans l'Europe catholique du xvne siecle 
et auquel on doit aussi bien la culture baroque26. Cree en 1553 par Ignace de 
Loyola, le College romain, « reil du siege apostolique et du monde chre
tien27 >> selon l'ambition du fondateur, est le modele. Modele a la fac;on 
jesuite, qui pose comme principe la necessaire adaptation aux circonstances 
et aux lieux avec, autant que de besoin, la mise en parenthese des regles. 
Dans ce College, les mathematiques sont instituees comme un rite de passage 
incontournable et une indispensable formation : la chose est acquise avec 
Clavius, le mathematicien du College jusqu'en 1612, qui dirigea la reforme 
du calendrier adoptee par Gregoire XIV en 1582. Le College devint l'objet 
de toutes les bienveillances du Saint-Siege, au moins jusque vers 1620. 

Clavi us « engendre >> Gregoire de Saint-Vincent et bien d'autres mathema
ticiens, comme ce Matteo Ricci depeche en Chine et qui, a partir de la lecture 
donnee par Clavius, aide d'un converti, publie vers 1610 la traduction chi
noise des six premiers livres d'Euclide. Gregoire a son tour « engendre >> de 
Sarasa, Tacquet, Guldin, de la Faille, etc. 

C'est bien avant la « revolution scientifique >> que les Jesuites adoptent 
la mathematique ; avant en tout cas que Galilee et quelques autres ne fassent 
la preuve de son efficacite dans le decryptage du monde naturel. L'objectif 
des Jesuites n'est nullement de faire de leurs eleves des ingenieurs et encore 
moins des physiciens : les mathematiques sont conC$ues dans les colleges 
comme un moyen pour apprendre a penser juste. De fait, elles permettent 

24 R. Nimier, Mathematiques et affectivite, Paris, Le Seuil, 1972. 

25 C'est sans doute dans ce maintien simultane des contradictions que le baroque, 
tout en marquant une periodisation de l'histoire de l'art, s'inscrit constamment 
dans la pensee humaine. Eugenio d'Ors a ecrit a ce propos quelques tres belles 
pages auxquelles je reconnais volontiers rna dette (Lo Barroco; traduction fran
r;aise, Du baroque, Gallimard, 1933). 

26 Voir E. Male, L 'art religieux du XVI/e siecle, Paris, A. Colin, nouvelle edition, 
1984. 

27 Selon la constitution du College. 
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d'evacuer une autre discipline, consideree desormais comme obsolete, et 
c'est bien une Europe mathematique qui se constitua ainsi contre Ia logique 
aristotelicienne (ce qui n'exclut pas des courants logicistes). II suffira d'in
diquer que Ia mathematique devenait une materialisation, une concretisation 
de Ia logique a laquelle un contenu tangible etait ainsi trouve. 

L'intervention majeure des matbematiques dans les colleges jesuites 
ou dans les maisons des profes elles-memes n'est que l'un des versants de Ia 
culture ainsi propagee. L'autre versant est le peu d'interet porte aux resultats 
auxquels cette science conduit, ou peut conduire. Non seulement Ia demarche 
prime sur les objets qu'elle atteint, mais, en outre, le nombre de ces objets 
est reduit a ceux envisages par les matbematiques elementaires, grosso modo 
les matbematiques contenues dans les Elements d'Euclide. Aussi belle soit
elle, Ia mathematique est seulement scolaire : c'est un exercice volontai
rement depouille de ses applications. De sorte que dans cette culture, 
l'ambition n'est pas d'ouvrir de nouvelles pistes afin d'adopter de nouvelles 
theories : elle serait bien plutot Ia realisation du manuel parfait, resumant 
toute Ia science euclidienne dans l'ordre le plus necessaire. Une utopie 
semblable guette trop souvent les educateurs qui n'accordent a Ia science 
dont ils ont Ia charge que le statut d'un apprentissage. Voila bien une tension 
baroque dans l'ordre intellectuel : l'indeniable prise au serieux des matbe
matiques s'oppose a leur reduction a un exercice de formation28• 

Aussi inventif soit-il - les temoignages concordent a ce sujet -
Gregoire de Saint-Vincent n'echappe done pas a Ia limitation euclidienne, 
et il inscrit etonnamment son reuvre dans une quete que, presque a priori, 
ses propositions les plus marquantes contredisent. II veut Ia quadrature du 
cercle, c'est-a-dire Ia construction a Ia regie et au compas d'un carre d'aire 
egale a celle d'un cercle donne et partant Ia quadrature de toutes les coniques. 
Pourtant, son calcul des aires sous }'hyperbole - le comportement loga
rithmique indique par Ia proposition 108 du livre 6 ( cf. figure 4)- ne pouvait 
que le convaincre de ce que l'egalite des aires a l'infini ne les ramenait pas 
a un carre connu, ne permettait en rien Ia quadrature au sens classique. Elle 
ouvrait un autre monde, celui de }'integration. 

Qu'importait ! Malgre les quolibets, malgre meme plus de vingt ans 
d'interdiction de publier decretes par le general des Jesuites des 1624, 
Gregoire de Saint-Vincent en 1647 inscrivait cdinement «plus ultra qua
dratura circuli» dans Ia dedicace de son ouvrage a l'archiduc d'Autriche. 
Un tel entetement est fabuleux- mais il ruin era Ia reputation de Gregoire -
puisque des Ia parution de l'ouvrage, Descartes et bientot Huygens en 

28 Ce theme est developpe dans J. Dhombres, Une mathematique baroque en 
Europe : reseaux, ambitions et acteurs, Colloque Mythes et rea/ites de !'Europe 
mathematique, Paris, avril 1992. 
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signalerent, non sans denigrement, la faille algebrique au 10e et dernier livre. 
Mais on ne peut lui denier un courage baroque. 

Courage qui n'est nullement synonyme d'optimisme, de poursuite beate 

d'un reve. A plus d'une reprise, et sous la rhetorique d'un latin profus, perce 

le desarroi, cause par le trop grand ecart entre une ambition consideree 

comme naturelle et une realisation qui au terme de propositions savamment 

enchainees, de lemmes calculatoires elegants et originaux, n'atteint pas ses 

objectifs. Gregoire de Saint-Vincent ne peut que recourir au mode condi

tionnel : « Ce qui aurait reussi assurement si nous avions pu proposer et 

resoudre avec un bonheur egal... »29• Des la preface, d'ailleurs, le ton est 

donne puisque l'auteur oppose en les rassemblant ses tribulations- guerres 

et maladies- aux ordonnances harmonieuses et divines de la mathematique 

qui n'en sont pas moins trouvees et prouvees dans la tete d'un homme : 

Et voila, Lecteur bienveillant, ce qu'a rna maniere, c'est-a-dire tout franche
ment, j'avais en tete de vous communiquer. Dans ces conditions, si dans le 
cours de mon reuvre se trouve quelque chose de mains parfait, je desirerais 
que vous le missiez sur le compte d'une trop grande hate. Car, alors qu'a Prague 
les forces reprimees de rna maladie reprenaient a nouveau de Ia violence et 
semblaient parfois etouffer le vieillard que j'etais en lui enlevant toute energie, 
m'etant entoure de toutes parts de collaborateurs sur l'ordre de mes Superieurs 
doni je suis les desirs et non seulement les commandements, dirai-je que j'ai 
tire de moi cette reuvre que vous voyez ou que je l'ai composee avant qu'une 
mort subite, toujours mena�ante, ne fit avorter cet embryon ... Comme, en effet, 
nous ne nous appartenons pas a nous-memes, les produits de notre esprit ega
lement ne sont pas a nous et doivent encore mains etre revendiques comme 
notres - nous que notre profession a soumis entierement a une Regie. 
Si cependant vous trouvez ici quelque chose digne de louange, mon vreu est 
que vous le mettiez sur le compte de Dieu, a l'honneur et Ia gloire de qui j'ai 
travaille toute rna vie, non sans une immense admiration pour son art eternel, 
meme dans les petites choses. Car cette ordonnance, cette symetrie, cette 
proportion que nous avons montrees dans chacune des surfaces et des corps, 
ce n'est point nous qui, par notre industrie ou notre art les avons creees, mais 
nous les avons trouvees toutes faites et ainsi disposees par des lois eternelles, 
grace a une certaine heureuse disposition d'esprit, ou (ce qui m'est advenu, je 
le reconnais) grace a sa faveur qui dispose dans ses parties tout avec tant 
d'harmonie- et les ayant trouvees, nous les avons demontrees30• 

Les mathematiques d'une epoque s'inscrivent jusque dans les aventures 
d'un homme : certains peuvent regretter cette intrusion du contingent dans 
la science pure, d'autres s'en nourrir. 11 n'en reste pas moins la signature 
d'une sensibilite baroque. 

29 

30 
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Opus geometricum, suite du scholie venant apres Ia proposition 135 du livre 6. 
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IMAGERY AND REASONING IN 

MATHEMATICS AND MATHEMATICS EDUCATION 

Tommy Dreyfus 

Tel Aviv University, Israel 

Visual reasoning plays a far more important role in the work of today's 

mathematicians than is generally known. Increasingly, visual arguments are 

also becoming acceptable as proofs. Cognitive studies, even though identi

fying several specific dangers associated with visualization, point to the 

tremendous potential of visual approaches for meaningful learning. Comput

erized learning environments open an avenue to realizing this potential. It 

is therefore argued that the status of visualization in mathematics education 

can and should be upgraded from that of a helpful learning aid to that of a 

fully recognized tool for mathematical reasoning and proof. 

INTRODUCTION 

Visualization is generally considered helpful in supporting intuition 

and concept formation in mathematics learning. Fischbein (1987), for ex

ample, notes that "one of the characteristic properties of intuitive cognitions 

is immediacy. Visualization ... is very frequently involved ... " Similarly, 

Bishop (1989), in a recent review of research on visualization in mathe

matics education, concludes "that there is value in emphasizing visual 

representations in all aspects of the mathematics classroom". Two qualifi

cations should be added to these generally positive evaluations; one concerns 

difficulties with visualization, and the other concerns the status accorded to 

visualization in mathematics education, in other words its epistemological 
value. 

During the past few years, many student difficulties with visualization 
have been identified. These include students' inability to see a diagram 
different ways (Yerushalmi & Chazan, 1990), their difficulty in recognizing 
transformations implied in diagrams (Goldenberg, 1991), their incorrect or 
unconventional interpretation of variation and co-variation in graphs 
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(Clement, 1989), their lack of distinction between a geometrical figure and 

the drawing that represents this figure (Laborde, 1988) and, most importantly, 

their lack of connections between their visualizations and analytic thought 

(Presmeg, 1986). These difficulties are all related to what Fischbein called 

an "intervening conceptual structure". Diagrams and figures contain relevant 

mathematical information in a form that is determined by certain rules and 

conventions, which often are specific to a particular type of diagram. They 

are therefore not accessible to students who have not had the opportunity to 

get acquainted with these rules and conventions. 

The second qualification, and the one that will constitute the central 

concern of this paper, concerns the low status accorded to visual aspects of 

mathematics in the classroom. This is typified by the student who, after a 

detailed and lengthy presentation of a visual argument by the teacher, raises 

a hand to ask: "Can you also give a mathematical proof for this?" The reluc

tance of students to use visual reasoning has been documented widely in the 

literature. To cite one typical source: "Despite the calculus teacher's predi

lection for diagrams, our research indicates that students resist the use of 

geometric and spatial strategies in actually solving calculus problems." 

(Balomenos, Ferrini-Mundy, & Dick, 1988). More details on students' avoid

ance of visual considerations have been reported, for example, by Vinner 

(1989) and by Eisenberg and Dreyfus (1991). 

A significant piece of evidence on the status of visual argumentation 

is constituted by various classifications of proofs that have been established 

by mathematics educators. For example, Blum and Kirsch (1991) classify 

inhaltlich-anschauliche (content-visual) proofs as pre-formal. The message 

is that visualization may be a useful and efficient learning aid for many 

topics in high school and college mathematics; but nevertheless it is an aid, 

a crutch, a step, sometimes a necessary and important step, but only a step 

on the way to the real mathematics. Such an attitude on the part of mathe

matics educators and teachers, whether justified or not, is bound to influence 

students to avoid the use of visual arguments. 

This situation has unfortunate effects: it eliminates a versatile tool of 
mathematical reasoning for all students, and it may prevent some of the 

weaker ones from successful problem solving. In fact, Bondesan and Ferrari 
(1991) report that even poor problem-solvers adapt or invent new strate
gies in a geometric setting, but not in an algebraic one. And Presmeg (1986) 
has found that while children have little difficulty in generating visual images 

their imagery is predominantly concrete pictorial, with far less pattern 
imagery, and hardly any dynamic imagery. Since pattern and dynamic 
imagery are more apt to be coupled with rigorous analytical thought 
processes, this means that students are likely to generate visual images but 
they are unlikely to use them for analytical reasoning. In this paper, we 
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want to make the argument for precisely such visually-based analytical 

thought processes or, in short, for visual reasoning. 

To make the idea of visual reasoning more concrete, consider an 

example taken from a unit on geometric loci, designed specifically for 

developing visual reasoning patterns (Hershkowitz, Friedlander, & Dreyfus, 

1991). Suppose you have to deal with the following problem: Given two 

intersecting lines in the plane, find the geometric locus of all points the sum 

of whose distances from the two lines equals a given length. One (global) 

way of starting out is to argue that the locus must be contained in a bounded 

region of the plane because any point that is very far away must be far from 
at least one of the lines. A more local way of starting is to ask whether any 

points of the locus are going to lie on the given lines, and to start searching 

along these lines. This search may be approached dynamically by starting 

at the point of intersection and moving out along one of the two lines. 

s 

b 

As one does so, the distance from the other line grows from zero without 

bound, therefore one must at a certain stage pass a point which belongs to 

the locus. By symmetry reasons, this yields four points. The locus turns out 
to be the rectangle whose corners are these four points. Establishing this is 
not trivial but needs a detailed analytical argument, which may be based on 
appropriate ratios in suitably chosen similar triangles. Every part of the 
above argument will be considered to be visual reasoning because it makes 
essential use of visual information. Visual reasoning used in this kind of 

argument may be global or local, dynamic or static, but it is never purely 
perceptual. It includes valid analytical argumentation leading from step to 
step. The thesis of this paper is that such visual reasoning is very frequently 
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used and accorded increasing value in mathematics, and that it would 

behoove mathematics education to follow suit. 

VISUAL REASONING IN MATHEMATICS 

Many indicators point to the fact that most mathematicians rely very 

heavily on visual reasoning in their work. But with few exceptions, mainly 

in combinatorics and category theory, these same mathematicians do their 

utmost to hide this fact. Indeed, mathematicians tend to be secretive about 

their work; they tend to hide very carefully how they obtained their results. 

They present only the final, finished, formalized product. They do not let 

the reader see any of the processes. And many mathematicians behave the 

same way when they lecture about their work. 

There are a few instances where mathematicians explicitly describe 

how they obtained their results. One of these is contained in a publication 

by Van der Waerden (1954) on the topic of idea and reflection in mathemat

ics research. He used as illustration a discussion with two colleagues during 

which they found a proof of the following conjecture by Baudet: If the set 
of natural numbers is split into two disjoint subsets, then at least one of the 

subsets contains an arithmetic progression of length L (where L is arbi

trary). The report on their discussion takes up seven pages and contains 

eight figures with possible patterns for number sequences to be distributed 

into two (or more) subsets. The first of these figures is reproduced below. It 

is accompanied by the sentence "Wir zeichneten die Zahlen als kleine Quer

striche ... auf zwei waagrechten Linien, die die beiden Klassen darstellen 

sol/ten." (We drew the numbers as small crossbars ... on two horizontal 

lines which were supposed to represent the two subsets.) 

���� 
Ia 

The entire argument rests on the patterns given in these figures. As 
Van der Waerden states: "Der Beweis den ich im Nieuw Archie[ voor 
Wiskunde 15, 212 (1927) dargestellt habe, ist die genaue Ausfiihrung des 

hier anschaulich erliiuterten Gedankenganges." (The proof, which I have 
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presented in Nieuw Archief voor Wiskunde 15, 212 (1927), is the precise 

execution of the line of thought presented visually here.) The five-page paper 

in which he published this proof does not contain a single diagram. I doubt, 

however, whether many mathematicians are able to understand the proof in 

that paper without recreating van der Waerden 's diagrams (or other, similar 

ones). Diagrams are essential for mathematical thinking, but their use is 

hidden by mathematicians as best they can. 

Other reports on how mathematicians think also point to the 

overwhelming importance of visual aspects. A systematic attempt to dis

cuss mathematicians' research thoughts was undertaken and reported by 

Hadamard (1945). Although he insists on individual differences in the 

manner in which mathematicians' thoughts rely on mental images, Hadamard 

concludes that they, very generally, use images and that these images very 

often are of a geometric nature. He recounts that when thinking, practically 
all mathematicians avoid not only the use of words but also algebraic or 

other symbols; they use vague images. In particular, Einstein wrote to 

Hadamard: "Words and language, written or oral, seem not to play any role 

in my thinking. The psychological constructs which are the elements of 

thought are certain signs or pictures, more or less clear, which can be repro

duced and combined at liberty." (Hadamard, 1945, p. 82). 

Why, then, do mathematicians hide their visualizations and the argu

ments based on them? Several reasons come to mind. Some, like Einstein's 

vague images, may never have become sharp enough to be describable in 
word or picture. Others, like Van der Waerden's diagrams, have probably 
been judged unacceptable by the standards of mathematical publication 

common throughout most of the 19th and 20th centuries; these standards 
were strongly influenced by both logicism and formalism. History shows 

that the standards have not always been so inimical to visual argumentation 

(Berra, 1986); and there is some evidence that the situation may be rapidly 

changing again. 

In the past few years, many mathematicians have addressed the 

importance of visual reasoning not only in discovering but also in describing 

and in justifying mathematical results. Rival (1987), for example, has written 
an article with the subtitle "Mathematicians are rediscovering the power of 

pictorial reasoning". The Journal of Combinatorial Theory accepted a paper 
by Mayer (1972) whose complete text is "8(K16) = 3"; the remainder of the 
paper consists of three labelled planar graphs which prove that equation. 
The fact that these graphs, in and of themselves, constitute a proof of the 
equations is explicitly confirmed in the abstract of Mayer's paper in 
Mathematical Reviews. The usefulness, even necessity, of visual reasoning 
patterns in modern mathematical research has also been stressed by Devaney 
(1989) . He recounts how he and three students described certain dynamical 
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processes through sequences of transformations in the complex plane, 
represented them graphically by means of computer programs, and then 

filmed these sequences. According to Devaney, the results of these rather 

time-consuming experiments have always been mathematically stimulating 

and many new mathematical results have been proved as an outcome. 

Davis and Anderson (1979) go beyond stressing the power of visual 

reasoning for discovering new results in mathematics. They not only describe 

mathematics "done in actuality-as a series of nonverbal, analog, often 

kinesthetic or visual insights," but suggest that the "excessive emphasis on 

the abstract, analytic aspects of thought may have had deleterious effects 

on the profession." Among their examples is the Jordan Curve Theorem (a 

simple closed curve in the plane separates the plane into two regions, one 

bounded and one unbounded), which is visually obvious but whose analytic 

proof requires notions from algebraic topology and is therefore rarely 

presented at the undergraduate level. Finally, and most importantly, Davis 

and Anderson refer to the existence of "purely visual theorems and proofs," 

and encourage the production of such theorems. Many but not all of these 

theorems have been found by means of computer-graphical support. 

If, following Davis and Anderson, visual arguments are to be admitted 

as (parts of) mathematical proofs, the question naturally arises how (and 

even, whether) incorrect visual arguments can be avoided. How often have 

we seen children rely on particular features of a diagram in a geometry 

proof, and thus present an invalid or at least incomplete proof? And although 
one would not expect mathematicians to fall into the same trap as tenth 

graders learning Euclidean geometry, some mistakes in visual arguments 

are far more subtle (see e.g. Blum & Kirsch, 1989, for a beautiful example), 

and it is not known where the limits of such subtlety lie (if there are limits 

at all). Who is to judge the validity of a visual argument? 

Three replies to this question will be given: first, that in many proofs 
visual arguments are unavoidable; second, that judgment of the validity of 
non-visual arguments is not safe either; and, third, that criteria for better 
judgement of visual arguments should be developed. 
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In a paper of a philosophical nature, Stenius (1981) analyzes the epis

temic function of the figure in a Euclidean geometrical proof. This proof is 

a modification of Euclid's proof that, in a parallelogram, opposite sides are 

equal. Given a parallelogram ABCD, in which AB is parallel to CD and BC 

to AD, prove that AB =CD (and BC =AD). The proof proceeds by drawing 

the auxiliary line AC (a diagonal of ABCD), and showing that the triangles 

ABC and CDA are congruent, from which the result follows. Who could 

understand this proof, even if many more details were spelled out verbally, 

without imagining a parallelogram in the mind's eye? This already demon

strates that we use the figure in following the proof. But beyond this, Stenius 

asks, how do we know that BAC and DCA are alternate angles on parallel 

lines? Could not the point D lie inside the triangle ABC? 

Most teachers are well aware that they do use figures in proofs. But 

many will say, you are only allowed to use those features of the figure which 

are not particular to the figure; in our case, those which are true for all 

parallelograms, for which the particular drawn figure serves as a model. 

And who judges, asks Stenius, whether a figure can or cannot serve as such 

a model, and which features of the figure are generic? This has not been for
malized, and if it had, the formalization would be quite useless to the 

beginning student of Euclidean geometry. Therefore, the use of diagrams 

in teaching and learning Euclidean geometry must not be avoided, but quite 

the contrary, must be analyzed and dealt with explicitly. 

Some readers may remain unconvinced and fear that proofs relying on 

visual reasoning are dangerous, because they depend on a substantial measure 

of validity judgment by mathematicians and mathematics teachers. These 

readers should consider that the situation for sentential proofs is not different 

in essence, only in degree. In a wonderful dialogue between the ideal 
mathematician and an inquisitive student, in the book by Davis and Hersh 

(1981), the best definition of a mathematical proof (as opposed to a proof in 

formal logic) which the ideal mathematician comes up with is "A proof is 
an argument that convinces someone who knows the subject." In other words: 

the validity of the argument is judged by the expert-there is no machine 

algorithm to check a mathematical proof; and there is thus no a priori reason 

why some of the reasoning in a proof should not be diagrammatic or visual. 
Why, then, do mathematicians often object to visual arguments in proofs 

and why do they attempt to eliminate the visual reasoning before they publish 
a proof? This point is eloquently explained by Barwise and Etchemendy 
(1991). Although they agree that "we are all taught to look askance at proofs 
that make crucial use of diagrams, graphs, or other non-linguistic forms of 
representation, and we pass on this disdain to our students," they claim 
"that diagrams and other forms of visual representation can be essential and 
legitimate components in valid deductive reasoning." They point out that 
mathematicians' expertise in judging the validity of linguistic reasoning is 
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based on careful and lasting attention to this form of reasoning and that 

such a tradition and ensuing expertise for visual reasoning is lacking. Hence, 

they advocate and have begun a research program to devote similar attention 

to the judgment of the legitimacy of visual and mixed, heterogeneous 

reasoning patterns. 

We thus conclude that the reasons behind attempts to minimize visual 

reasoning in proofs are not based on a valid principle. Mathematicians, the 

experts who are supposed to judge the validity of the proofs, have neglected 

to develop their ability to carry out this judgment in the case of visual argu

ments. 

To summarize, a clearly identifiable if still unconventional movement 

is growing in the mathematics community, whose aim is to make visual 

reasoning an acceptable practice of mathematics, alongside and in combi

nation with algebraic reasoning. According to this movement, visual 

reasoning is not meant only to support the discovery of new results and of 

ways of proving them, but should be developed into a fully acceptable and 

accepted manner of reasoning, including proving mathematical theorems. 

The availability of powerful graphics computers has played a non-negligi

ble role in the emergence of this movement. 

INDICATIONS FROM COGNITIVE SCIENCE 

In a review of more than a decade of work on the use. of conceptual 
models for understanding, Mayer (1989) concludes that such "models will 
improve the ability of students to transfer what they have learned to creatively 
solve new problems"; the ability to creatively solve new problems is what 

Mayer terms understanding. There is little doubt that such understanding 
implies certain forms of reasoning, but this is not spelled out. Obviously, it 

is crucial for us to know what is meant by conceptual models. They are 

descriptions of systems from science, technology, programming, and 

mathematics which spell out the major parts, states, and actions in the system; 

in each case, the model includes a pictorial representation of the explanatory 
information, highlighting the key concepts and suggesting relationships 
between them. Although Mayer specifically includes text in his conceptual 
models, his findings show that "illustrations help students organize infor
mation into meaningful mental models" and these, in turn, are at the root of 
their successful problem solutions. Thus, Mayer has also avoided explicitly 
identifying the contribution of the visual component. Therefore the question 
may be asked, to what extent are the visual features of his conceptual models 
crucial? 

Recently, interest among cognitive scientists in investigations of vis
ual reasoning in general, and in the role of visual reasoning in problem 
solving in mathematics and science in particular, appears to have grown. 
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Studies which treat the effect of visual support on making inferences and 

solving problems show that appropriate visual support has positive effects 

on students' understanding and problem solving. The following seem par

ticularly relevant here. 

Chandrasekaran and Narayanan (1992) argue that there are many 

commonsense situations in which human reasoning is tightly coupled with 

perception, in particular with perceptually represented experiential knowl

edge. They use the term "perceptual reasoning" and explain such reasoning 

in terms of perceptual inference rules. Koedinger (1992) further points out 

the advantages of diagrammatic representations for reasoning and learning. 

However, specifically with science and mathematics problems, the situation 

is more complex: Larkin and Simon (1987) compare the accessibility of 

information needed to solve problems when they are presented in diagram

matic versus sentential form. The distinguishing feature is that diagrammatic 

representations explicitly preserve spatial relationships between components 

of the problem, whereas sentential representations do not. In diagrams, 

information is indexed by its location, thus giving the possibility of grouping 

all information about a single element together, and expressing logical 

relationships spatially. Thus, diagrams not only describe spatial arrange

ments: they have inherent interpretations and conventions without which 

they are unintelligible. Those who know these interpretations and conven

tions can develop visual reasoning patterns exploiting the advantages of the 

diagram. Larkin and Simon have thus given precise expression to Fischbein's 

"intervening conceptual structure" mentioned in the introduction. 

A further illustration of the usefulness of diagrams in scientific 

reasoning is provided by Qin and Simon (1992). They used Einstein's 1905 
paper on special relativity, which (like Van der Waerden's paper mentioned 
earlier) contains no diagrams to guide the reader. Qin and Simon's subjects 

had to reconstruct the reasoning in the first few paragraphs of Einstein's 

paper. They concluded that all subjects formed mental images during this 

process, even those who usually claimed not to be able to do so. The way 

the subjects derived the equations was closely related to their images. 
Subjects were able to "watch" these images evolving dynamically, and the 

images were essential in drawing qualitative conclusions. 

Finally, Dorfler (1991) has expanded Lakoff's idea of image schemas 
as a theoretical basis for generating meaning in mathematics learning. As 
he states, for very many mathematical concepts, an adequate image schema 
must include a figural component which has to be complemented by oper
ative, relational, and symbolic ones. The carrier for the figural component 
will often be a visual representation of the concept. The associated operative 
components facilitate visual reasoning with and about this concept. Dorfler's 
theoretical framework is thus not only compatible but fully resonant with 
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Hadamard's description of mathematicians' thinking patterns, and conse

quently with most of what has been said heretofore about visual reasoning. 

IMPLICATIONS FOR MATHEMATICS EDUCATION 

Theories and analyses from cognitive science clearly show the potential 

for an extremely powerful role for visual reasoning in learning many 

mathematical concepts and processes. A warning should, however, be 

associated with this promise: Visual reasoning is based on expertise-it 

will be unhelpful if not impossible for the uninitiated. The promise made by 

cognitive science appears to be borne out by mathematical research activity: 

experts make extensive use of visual reasoning during the creative process. 

In addition, there is an emerging movement to give legitimacy to visual 

arguments in the presentation of mathematical results. 

Mathematics educators seem to have recognized the potential power 

and promise of visual reasoning; but in spite of this, implementation is 

lagging: students tend to avoid visual reasoning. The slowness of educational 

change in general may be one reason for this. But two additional weighty 

reasons are suggested by the above description. Firstly, while visual 

reasoning enters curricula and is even presented by teachers in the classroom, 

it is often given the air of an introductory, accessory, or auxiliary argument, 

precisely because the experts, be they mathematicians, curriculum devel

opers, or teachers, do not assign full value and status to it. And from this 

attitude, students soon conclude that they do not really need to know and 

use visual arguments. Secondly, visual reasoning is difficult; it is achieved 

by hard reflective work. Unreflective, careless or too rapid introduction of 

visual representations are likely to result in failure and disappointment. 

In order to give our students the chance to profit from and to appreci
ate the power of visual reasoning we, as a profession, need to upgrade the 

status of visual reasoning in mathematics. In our own mathematical think

ing, we need to generate visual arguments, to learn how to examine their 

validity and to accord them the same weight which we accord to verbal and 

formal arguments. In order to overcome students' tendency to avoid visual 
reasoning we, as teachers, need to use it not only frequently and consistent
ly in searching for problem solutions but also at crucial junctures of our 
mathematical justifications with the aim of making evident both the full 
power of visual reasoning and the importance accorded to it. We need to 
give our students many opportunities not only to visually solve problems 
but also to discuss valid and invalid visual arguments. Finally, we need to 
give our students full credit for correct visual solutions. In order to be able 
to do all this, and to make it permeate teacher education we, as researchers, 
need to expand our understanding of the cognitive and mathematical proc
esses involved in visual reasoning. Detailed, content specific knowledge 
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about the mathematical and educational validity of visual representations 

and reasoning patterns needs to be obtained for many different mathemati

cal notions and processes. This includes the investigation of limitations, 

difficulties, obstacles and possible misinterpretations associated with the 
proposed visual representations. 

Visual reasoning obtains its clearest expression if no alternative is 

available: that is if some mathematics is presented in purely visual form. 

Several developments in this direction have been proposed recently, some 

have been carried out, and a few have been systematically implemented in 

classrooms. Two which are explicit in their reliance on visual reasoning 

will be briefly described here as exemplary. 

Artigue (1989) has developed and taught a university-level curricu

lum in which suitable computer software is used to help students develop a 

qualitative, geometric approach to the properties of solutions of differential 
equations. This qualitative study of differential equations is based on rea

soning with functions which are not given explicitly by a formula, but only 

by means of information about their derivative(s). One of the explicitly stated 
aims of the curriculum is to lead students to work with curves without the 

support of a formula: in other words, to infer graphical information about 

the curves from graphical information about their derivatives. In order for 

this aim to become realistic, a complete break with the usual, formula-based 

treatment of function at the high school level has to be made. Some of the 

phases in the curriculum are to get acquainted with basic notions such as 
slope field, isoclines, solution curves, and symmetries, to produce curves in 

a dialectic interplay between prediction and justification, and to learn about 
higher level graphical notions such as branching and flows, including the 

variation of the type of flow in equations depending on parameters. One of 

the conclusions of the experiment was that, once the break with the habitu
al, purely algebraic approach had been effected, students accessed the 

geometric framework with relative ease, due to the fact that the complexity 

of their tasks was reduced by the possibility of using appropriate software. 

Goldenberg (1989) evokes the vision of a radical restructuring of the 

pre-college mathematics curriculum centered on an introduction of fractal 

geometry in junior high school. He proposes to "adopt a visual and exper
imental type of mathematical inquiry and learning" in order to "foster the 
development and use of qualitative, visually-based reasoning styles"; among 
these, he specifically includes visual proofs. He illustrates how problem 
posing may originate at the visual level and shows that questions about 
trigonometric relationships, about limits, about series, and about iterated 
processes arise naturally out of the detailed investigation of the geometry 
of fractal curves, their perimeter, border, enclosed area, etc. The corre
sponding mathematical notions "are approached in visual, concrete, informal, 
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and intuitive fashions, with formal tools acquired as they are needed." In 

particular, a concept of function is apt to develop that is not only more 

general than the one usually developed at high school level, but also more 

robust and flexible. The entire approach is conditioned by appropriate 

software tools, that give the students freedom to explore the geometric objects 

under consideration by changing parameters and variables, including basic 

shapes and recursion rules. 

Other projects based on purely or predominantly visual reasoning have 

been designed, among others, on feedback systems (Janvier & Garan�on, 

1989), plane geometry (Yerushalmi & Chazan, 1990), geometric loci 

(Hershkowitz, Friedlander, & Dreyfus, 1991) and linear programming 
(Shama & Dreyfus, 1991). It is no accident that in all these projects, 

computerized learning environments play a major role. We will conclude 

this paper with some remarks on the potential and the problems arising in 

the use of computers for visual reasoning. 

COMPUTERS AND VISUAL REASONING 

Computers make it possible to represent visual mathematics with an 

amount of structure not offered by any other medium. Graphic computer 

screen representations of mathematical objects and relationships allow for 

direct visual action on these objects (rather, their representatives) and 

observation of the ensuing changes in the relationships. Moreover, the 

situation can be inverted: it is possible also to investigate which will lead to 

a given change in the relationships. The result of such actions can often be 

dynamically implemented. Actions can be repeated at liberty, with or without 

changing parameters of the action and conclusions can be drawn on the 

basis of the feedback given by the computer program. The power of the 

computer for learning visual reasoning in mathematics derives from these 

possibilities. 

Several projects have used the above considerations and exploited them 

in the development of software to achieve and investigate specific learning 
goals. To mention but a few examples: Tall (1991) reports using the computer 
to encourage visually based concept formation in calculus; specifically, local 

straightness rather than a limiting process is suggested as a basis for 
developing the notion of derivative. Tall stresses that the goal is not only to 
provide solid visual intuitive support, but to sow the seeds for understanding 
the formal subtleties that occur later. This implies that students learn to 
reason visually with the details of screen representations of concepts such 
as function, secant, tangent, gradient, gradient function, etc. Kaput (1989) 
has used concrete visual computer representations to build on natural actions 
in the students' world with the aim of supporting the learning and application 
of multiplicative reasoning, ratio, and proportion. In particular, he aims to 
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tie the visually concrete and enactive operations on objects on the screen 

with more formal and abstract representations of these operations. Thus 

students' visual operations are directly used in the learning process. 

Yerushalmy and Chazan (1990) have given students the opportunity to 

generate empirically visual information about geometrical constructions and 

to infer conjectures from such information. Again, this cannot be done 

without visually based action (to generate the geometric information) and 

visually based cognitive activity to infer a conjecture. Shama and Dreyfus 

(1991) have used computer-screen presentations of linear programming 

situations to allow students to develop their own solution strategies. For 

this purpose also, students need to analyze problems in terms of the visually 

presented information and thus to give a visual basis for their strategies. All 

of these projects thus aim for detailed analysis of the relationships contained 

in the visual screen presentation and for reasoning based on such analysis. 

In computerized learning environments it is possible to directly ad

dress and overcome some of the problems associated with visualization, 

mainly those related to lack of flexibility in the students' thinking. It is also 

possible to transfer a large measure of control over the mathematical actions 
to the student; but the potential of computers for visual mathematics does 

not by itself solve the more important problems that were mentioned in the 

introduction. In every case, visual representations need to be carefully 

constructed and their cognitive properties for the student need to be 

investigated in detail. The adaptation and correction of features of these 

visual representations on the basis of student reaction to them is an integral 

part of the development, and in some cases has been reported in the literature. 

Tall's choice of local straightness rather than a limiting process for the 

derivative is a case in point. Similarly, Kaput describes how he has found 

dissonances between students' visual experience and the semantic structure 

of the situation being modelled and has consequently designed a way to 

avoid such difficulties. These difficulties associated with visual repre
sentations can be overcome, but only if they are systematically searched 

for, analyzed and dealt with. In this endeavor, the design of student activities 

within the learning environment plays at least as important a part as the 

design of the computerized environment itself (Dreyfus, in press). 

Little has been said in this paper about two important topics: ver
balization and multiple-linked representations. Verbal argumentation in 
mathematics suffers, to a large extent, from similar problems as visual 
reasoning. My insistence on visual reasoning should by no means be 
construed as an argument against verbalization-quite the contrary. There 

are in fact some indications of positive interaction between the visual and 
the verbal (Bondesan & Ferrari, 1991). Moreover, many of the cited examples 
do link the visual representations to algebraic ones and thus open the 
possibility for integrated visual-algebraic reasoning. I have consciously 
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downplayed those aspects because the purpose of this paper was to make 
the point that visual representations and visual reasoning in mathematics 
must not be considered as a crutch for those who cannot otherwise make the 
step to "real mathematics." I have attempted to show that visual reasoning 
in mathematics is important in its own right and that therefore we need to 
develop and give full status to purely visual mathematical activities. 
Although I pressed one point of view, namely the visual one, the final goal 
is not to be one-sided: not on the algebraic side, not on the verbal side, not 
on the visual side. One goal is balance, as has been stressed already by 

Davis and Anderson (1979); and we should aim for more than balance: we 
should aim for the integration of visual, verbal, and algebraic thinking. 

Before one can aim for integration, however, one needs balance. And in 
order to achieve balance, visual reasoning needs to be given equal status to, 
and as much attention as, algebraic reasoning. 
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INTERWEAVING NUMBERS, SHAPES, STATISTICS, 

AND THE REAL WORLD IN PRIMARY SCHOOL AND 

PRIMARY TEACHER EDUCATION 

Andrejs Dunkels 

Lule/1 University, Sweden 

Statistics is viewed, by tradition, as an advanced subject whose study 
is a secondary school matter. Applications like statistics must wait until the 
basic mathematics has been learnt. However, if one examines the math
ematics of primary school, then one finds that much of it is statistics, that 
is, data handling and describing events, situations, phenomena of the real 
world with the aid of numbers and geometrical figures. 

It is important, I feel, that practicing and future teachers are made 
aware of this, so that they can explicitly take advantage of situations where 
one learns something about the real world, while at the same time new 
insights are gained into numbers and shapes. Most primary teachers I have 
met have not known how much statistics they have been dealing with all 
their professional lives. 

There is a growing interest in statistics at the primary level (Russel & 
Corvin, 1990; Rangecroft, 1991; Vere-Jones, 1991; Aberg-Bengtsson, 1991). 

This paper contains first a vision, or something that will happen, then 
an account of something that has happened in some student teacher class
rooms and in some primary school classrooms in Sweden. 

SUN AND CUSTOMERS 

In winter I get up at night 
And dress by yellow candle light. 
In summer, quite the other way, 
I have to go to bed by day. 

I have to go to bed and see 
The birds still hopping on the tree, 
Or hear the grown-up people's feet 
Still going past me in the street. 

And does it not seem hard to you, 
When all the sky is clear and blue, 
And I should like so much to play, 
To have to go to bed by day? 
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This poem, "Bed in summer" by R.L. Stevenson, is the real world for 
everybody, not least primary children, in Lulea on the east coast of northern 
Sweden. Is there data about this? 

0 6 12 18 24 

Figure 1. Diagram showing the times of sunrise and sunset on the 
22nd of each month in Lulea in northern Sweden, latitude 
65° 35'N, less than 1 o from the Arctic Circle. 

Each day the local newspapers in Lulea publish the times of sunrise 
and sunset. We could either make a long term project and mark these times 

each day or once each month, or do the whole year at once by consulting 
some calendar. 

Let us say that we choose the latter alternative, mark the hours along 

a horizontal scale and depict each day as a long strip (Figure 1). We could, 
rather than just drawing, choose to cut strips of paper and make the diagram 
more concrete, and perhaps more spectacular. 

After completing the diagram we would spend time describing to each 
other what the shapes of the various parts of the diagram tell us, relating to 
our experiences of day-lengths at various times of the year. We would also 
discuss daylight saving time. 

This example would give good practice and might trigger the interest 
in hours and minutes, telling the time, finding out the duration of events, 
and so would be useful when treating the concept of time. Working out the 
duration of the "day" would involve thinking and probably a portion of 
arithmetic. The sun-data may very well be combined with the study of the 
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time of the day that all the pupils in the class were born (Dunkels, 1992b). 
It may also be combined with writing or telling a story about long and short 

days. Or writing a letter to a friend further south-perhaps in Nanyuki in 

Kenya. What would their sun diagram look like? 

Days can also be visualized as in the interesting table in Figure 2. 
What is its purpose? What does it want to say? To whom is it saying this? 
Does it do it well? A caption alongside the table, not reproduced here, states 

that it is easier for the company to give good service at the beginning of the 

week. 

Although there is an indication about absolute numbers of customers 

in each time slot the intention is most likely not for the receiver actually to 

work out the numbers. Rather, he or she sqould get a visual impression

worth more than a thousand numbers. Had the dots been systematically 

grouped or ordered then some of the visual impact may have been lost. 

The table in Figure 2 is an excellent starting point for a discussion 

with student teachers as well as with children about numbers, shapes, and 

interpretation of real life situations. Being basically a table, all the time 

slots are the same width and height, although some represent a shorter time 
interval, some a longer. Thus we are misled and might get the impression 

that Thursday 18.00-19.00 is as crowded as Monday 12.00-14.00. 

En typisk vecka kan illustreras sll hlir: 

Mll Ti 

09.30 • • •  • • 

12.00 
•• • •• • 

• • • • 
• 

• 

• • 
14.00 

• • • • 
•• 

16.00 • •
• • 

• • • 
• • • • 

• •
• • 

• • 

18.00 
• • 

19.00 

On 

• • 
• • • 

• • 

• • 
•• 

• • 

• •
• 

• • 
• • 

•
• • • 

•
•

•
•

•
• 

To Fr 

• • 
•• ••• • • 

• • • .. 
•: 

• • • • •• 

• • • •••
•

•
•• • 

• • 
• 

• •
• • 

• •• • 

• • •
• • •• • • 

•
• • 

• • • •  

• . 
.

.
. : .. 

••
•• • ··: ... 

• 
•• • • • • • 

• ••• • 
• • • •••

•
•

•• 

• • 

• • 

• = 10 000 kunder 

Figure 2. A table on the last page of a price list from S ystembolaget, the 
state-owned company that has the monopol y of selling alcohol in 
Sweden. The text above the table reads, "A typical week may be 
illustrated thus." The wor d "kunder" means "customers", and the 
table heading has abbreviations for the five work d a ys of the week. 
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The table can easily be improved to account for such differences by 
adjusting the heights of the time slots accordingly. Note also that the time 
slots carry no indication about the number of cashiers on duty. 

This also gives rise to quite a few arithmetical questions for the chil

dren to pose and, above all, thoughts about the possible arrangement of 
dots. What would we have chosen if we really wanted to see the numbers of 
customers in each time-slot without difficulty? This leads to thinking about 

dice patterns, tallying, and numerals. I would take the opportunity of dis
cussing the tally-by-ten scheme of Figure 3 (Tukey, 1977; Dunkels, 1991) 

and suggest that the pupils investigate how tallying is done in different coun

tries or cultures (Dunkels, 1992a ). 

4 i s  
• • 

• • 

8 i s  D 10 i s  k3J 

Figure 3. Tallying by tens uses four dots, placed in the corners of a square, 
then the four sides are filled in, and lastly the diagonals of the square, 
making the final character for 10, which, by the way, resembles the 
Roman numeral for 10 which is no disadvantage. The order in which 
the four dots are placed is unimportant, as is the order of the four 
sides and the diagonals. However, no side may be filled in before 
all dots have been entered, and all four sides must be there before a 
diagonal is drawn. Some counts thus have more than one tally 
pattern, some have just one. This is in itself worth exploring. 

The table for Figure 2 has a connection to real life that might be useful 
as an introduction to the social joys and problems with alcohol, matters that 
are extremely hard to address, particularly in primary school. Nevertheless 
they have to be dealt with sooner or later, and so if mathematics, or statistics, 
can provide a gateway to this part of the real world then we should seize the 
opportunity. 

HALVING 

Some countries use A4-size paper. Sweden is one of them. This 
particular size offers rich experiences in geometry. 

In a student teacher's class we cut out a paper rectangle with dimensions 
of each one's own choice. We folded it in half with the fold parallel to the 
shorter side. These three were among the questions that arose: 
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2) Are there other ways of folding a rectangle in half? 
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Question 1 was addressed in class, the rest was left as homework. 

Question 1 was not very interesting, the shapes are different, that is 

all. What if we took a rectangle that really belongs to the real world for all 

Swedes, the A4-rectangle (Figure 4a)? 

(a) (b) 

Figure 4. a) An A4-rectangle and half of an A4-rectangle side by side. 
b) The A4-rectangle and half of it put on top, both equipped with 

a diagonal fold. 

We compared the original A4-rectangle with half of it by folding both 

along their diagonals. We put them on top of each other and found that the 

diagonals then matched exactly (Figure 4b). We tried the same procedure 
with the rectangles we had used in the previous investigation and found that 

the diagonals did not match. The conclusion was that the shapes of A4 and 

half of A4 are the same, or, using the proper technical term, are similar. 
This is in fact the very idea behind the A-size. 

Figure 5. The A4-rectangle is halved 5 times and the successive halves put 
on top each other. Here is one way of arranging the rectangles, 
they all have the same relative positions and one common vertex. 

Many students knew that on some copying machines one can diminish 
the size of an A4-document to A5, which is what half of A4 is called. But 
then the setting of the machine has to be 71%. Why this is so they did not 
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know. Somebody knew that doubling is possible too with the setting 141%. 

The students said that they had, at times, wondered about these, as it seems, 

strange settings. 

First of all we had to clarify what we mean by "halving" and "dou

bling". We could clearly see that the shorter side of A5 is not half of that of 

A4, and so "halving" could not refer to the linear measurements of the fig

ures. We agreed it refers to area. 

When the AS-rectangle is put on top of an A4 as in Figure 4b, then the 

smaller rectangle is of course still half the larger. Yet the students and I felt 

that the part outside the smaller rectangle seemed bigger. Tangrams are 

another source of similar experiences (Dunkels, 1990). 

Measuring sides and calculating we found the ratio of corresponding 

sides of A5 to those of A4 to be 0.7, or taking the larger first, 1.4. The 

students were now motivated to do exact calculations, finding the ratios to 

be � "'0.71 and -fi.,. 1.41, respectively. The mystery of the settings was 

resolved. 

The students agreed that they had heard the phrase "the area ratio is 

the square of the linear ratio," but it had never had any real meaning to 

them. 

We then continued along two different paths. 

One was halving the A5 rectangle successively until we had 6 similar 

rectangles, using yellow and blue paper. Then we arranged the rectangles as 

in Figure 5 with rectangles in alternate colors. This in turn led to activities 

along the lines of Gibbs (1990) and Taylor et al. (1991), related to art and 

culture. 

The other was to see how this is reflected in diagrams of real life, for 

example, Figure 6. The impression one gets there is that Gorbachev's 

popularity has decreased more than the numerals indicate, since the visual 

impression is much stronger than the numbers. 

It happens all too often in diagrams in newspapers and journals that 
linear measurements are doubled vertically as well as horizontally and the 

resulting figure is thought to be doubled. The visual impression of such a 
doubling is definitely not just a doubling. What one sees is the magnification 
of the area by a factor 4. Therefore I find it important that the future primary 
teachers are made aware of such dangers and given a proper platform for 
educating the young. 

Later we had a methodological follow-up of these two paths of activ
ity. Among other things we discussed the use of geoboards to confront the 
children with these ideas at an early stage. Starting with the smallest square 
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with just one rubber band one can double the lengths in just one direction 

and note how this affects the size of the square, then double all sides in both 

directions and note the result. These are rich geometry activities for prima

ry pupils with relevance to real life. 

Alit fiirre hiller pa Gorbatjov 

Under senaste &ret har Gorbatjovs popularttet 
minskat i Sovjetunionen. S& hilr m&nga, i procent. 
sympatiserar rned Gorbaljovs pol�ik. 

Uiagram: lennart Lindgren 

Figure 6. Diagram from Dagens Nyheter (Daily News), December 9, 1991. 
The heading reads, "Fewer and fewer favour Gorbachev". The area 
of the smallest picture corresponds to only 9% if the biggest 
corresponds to 52%. Thus the diagram gives the impression that 
Gorbachev's popularity has decreased much more than it actually 
has. An additional difficulty in this particular case is that this 
newspaper, issued in Stockholm, has a narrower paper size in the 
north, due to the fact that it is electronically sent and printed in a 
city in the north, where the width of the Stockholm edition could 
not be handled. So all the linear measurements are decreased 
horizontally whereas they are maintained vertically. 

The discussion also led to a realization that all this has ties to the 

much celebrated region model, sometimes also called "area model," for 
multiplication. If one doubles one of the factors, how will the region be 
affected? If one doubles both factors? 

Some 3-dimensional considerations were made. The students played a 
little with building blocks, predicted.and investigated how volume is affected 
when the linear measurements are doubled in all three directions. 

Here a discussion of a generalization of the concept of dimension to 
fractional dimensions is appropriate for student teachers who specialize in 
mathematics and natural sciences. This leads to studying something as 
modern as fractals (Peterson, 1988, in particular pp. 116-120). 
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STEM-AND-LEAF DISPLAYS 

Let me confess at the outset that I am very fond of the stem-and-leaf 
display-love at first sight (Tukey, 1977)-this ingenious, simple, and ver

satile mixture of table and diagram. The splitting of numbers into two parts 

has a particularly strong appeal to me, and my joy was complete when I 

realized that the splitting can in fact be done physically and used with learners 

of place value. This was in 1984, late in Grade 1, with 7 and 8 year olds. 

The purpose was to review and strengthen ideas about place value through 

data from the real world that the pupils cared for. We worked with parents' 

ages, and wrote them down on rectangular cardboard cards. Then the cards 

were cut in two halves, the tens digit on one of the pieces and the units digit 

on the other. And with these half cards we eventually made a physical stem

and-leaf display of the mothers' ages. (For further details see Dunkels, 1986.) 

I wish to point out one important feature of the stem-and-leaf display: 
The display develops from left to right and from above downwards. This 

means that it follows the directions of writing and reading of Swedish and 

many other European languages. This I find most important, and it makes 

the stem-and-leaf display useful with young children. 

An important ingredient in primary education is estimation, for exam

ple estimating the duration of a minute, the length of a stick, the weight of 
a stone. Stem-and-leaf displays enter at the recording phase (Dunkels, 1988; 

Pereira-Mendoza & Dunkels, 1989; Vannman & Dunkels, 1984). 

The steam-and-leaf display also gives good insights into the cardinal 

and ordinal aspects of counting numbers, and so serves several purposes in 
primary teacher education (Dunkels, 1991, 1992b). 

Since 1984 I have introduced stem-and-leaf displays to different pri

mary classes, as well as in inservice courses, in various ways, often seizing 

opportunities that have arisen unexpectedly out of pupils' queries or com

ments (Dunkels, 1987, 1988, 1991). 

Here I will describe one such unexpected situation. I visited a Grade 3 
class (9-10 year olds) to work with multiplication. On entering the classroom 
one of the pupils asked about my age. I knew very well that children are 
interested in ages and that grownups in Sweden often react in strange ways 
to questions about their age, and often children do not get answers to such 
questions. 

What was I to do? Should I just tell the pupil? Or should I have him 
guess? Or should I invite the whole class to guess? If so, how should I 
collect the data? Ask one of the pupils? Or collect everybody's guesses? 

I knew that this particular class had not done any stem-and-leaf 
displays. I decided to change my plans and do some age estimation instead. 
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I invited everybody to guess my age, to write the guess down without 

revealing it to their neighbors. 

Then on the chalk board I wrote, without explaining, 3, 4, and 5 in a 
column, the stem, and a vertical line segment immediately to the right (Fig
ure 7a). 

I asked the pupils one by one to read, aloud, their guesses, while I 

recorded on the chalkboard. The first guess was 38, and I entered the 8 in 
the 3-row. 

The next guess was 55, and so a 5 was entered in the 5-row, the next 

was 52, and so a 2 was entered in that same row. We now had three leaves 

in our display (Figure 7b ). Before we were through I had had to add two 
rows to the display, so my prediction of the range had not been correct. 

When all the guesses were recorded the situation was as portrayed in Fig
ure 7c. For a discussion of numerals having a 0 in one of the places see 

Dunkels (1986, 1992b). 

3 3 8 

4 4 

5 5 52 

(a) (b) 

2 9 

3 829 

4 498 

5 52480 

6 0 

(c) 

2 9 

3 289 

4 489 

5 02458 

6 0 

(d) 

tens I units 

2 9 (1) 
3 289 (3) 
4 489 (3) 
5 02458 (5) 
6 0 (1) 

(13) 

(e) 

Figure 7. Successive steps when introducing stem-and-leaf displays to a primary 
class. The pupils had guessed my age. (a) gives the tens digits of the 
guesses that I expected the pupils to give. (b) shows the situation 
when 3 pupils have given their guesses: 38, 55, and 50. (c) contains 
all the guesses, and I have had to add two more tens digits, 2 and 6. In 
(d) the units digits have been ordered within each row. In (e) frequen
cies of all rows and column headings have been entered . 

There were immediate suggestions that we should order the units digits, 
or, using the terminology of Tukey (1977), the leaves, by size leading to 
Figure 7d. 

The time had come for me to tell my age, and I was faced with a prob
lem. My birthday was just 16 days later, and so I considered myself 49, but 
was in fact 48. I decided to postpone a discussion about accuracy, and claimed 
that I was 49. The following week I was forced to admit that I had been 
lying, for of course the inevitable question about my birthday was asked. 

131 



ICME-7 SELECTED LECTUREs I CHOIX DE coNFERENCES o'ICME-7 

This led to a worthwhile discussion about difficulties of deciding what is "a 
correct answer" in surveys (Dunkels, 1992b ). 

After having entered the frequency of each row (Figure 7e) we talked 
about the display, looked at the smallest and the largest guesses, found the 
middle guess to be the "correct" 49, and reflected about the nice features of 
the place value system. 

I knew that some of the pupils in this class in relation to mental addition 
and subtraction needed practice and encouragement in splitting numbers 
into their components, practice and encouragement in viewing the tens' digits 
as counting multi-units and at the same time seeing them as tens, practice 
and encouragement in moving units around from one number to the other in 
mental addition and subtraction with two-digit numbers. 

I took this opportunity to enhance the merits of place value, for example 
the fact that we compute in exactly the same way with the tens digits as we 
do with the units' digits. 

We also played around with our stem-and-leaf displays. We noted that 
the rows look like bars or strips when viewed from a distance. We emphasized 
this visual impression by covering the ones' digits (Figure 8), thereby relating 
the new display to earlier experiences. 

2 9 2 

3 829 3 

4 498 4 

5 52480 5 52480 5 

6 0 60 6 

(a) (b) (c) 

Figure 8. Connecting the stem-and-leaf display to earlier experiences of strip 
graphs. (a) is the display of Figure 7. In (b) two of the rows have been 
changed into strips with chalk on the board or crayon in the notebook. 
In (c) all have been changed. What are the advantages of each kind? 

"Here we see how the number of people is translated into centimetres," 
I said. This triggered several pupils' memories, "It is like the spaghetti 
display," they said referring to something we had done before based on an 
idea in Kamratposten, a journal for school children. 

The idea was to measure the size of helpings of spaghetti in centimetres 
by tying ribbons around 1, 2, 3, 4, etc. helpings which then could be displayed 
as a strip graph with those same ribbons. A standard helping was estimated 
to 70 g. 
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Anything, said one of the pupils, can be a strip, the weight of spaghetti, 
the time I spend watching TV, the height of people, the measurements around 

our heads, and the number of people. 

All people are interested in their body measurements, for example 
heights. With Grade 1 pupils, before the whole class has covered numbers 

greater than 10 0, one can measure the excess over 1m of each child's height 
(Dunkels, 1991). 

The heights, expressed as the excess in em over 1 m, of our 
MOTHERS FATHERS 

tens I units tens I units 

5 78999 (5) 5 

6 003333334 (9) 6 

6 5678 (4) 6 88 {2) 
7 0 (5) 7 00 (4) 
7 (1) 7 577889999 (9) 
8 8 0024 (4) 
8 8 99 (2) 

(19) (19) 

Figure 9. The excess over 1 m of the heights of the parents of a Grade 2 class in 
northern Sweden. The children themselves initiated the investigation. 
The rows have been split into two, since they would otherwise have 
been too long. 

YEAR 

tens I units 

193 7 ( 1) 
194 

194 

195 3 ( 1) 
195 7 ( 1) 
196 

196 6888999 ( 7) 
197 0002223333344 (13) 
197 55556666666677777777788999 {26) 
198 000233344 ( 9) 
198 555677 ( 6) 

(64) 

Figure 10. The year of birth of siblings of pupils in a school in a rural area in 
1988. The pupils themselves initiated this investigation. 
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CONCLUDING REMARKS 

In order to develop number sense a child needs a rich variety of 

experiences to build upon. Handling real world data is one source-if it 

then is called statistics or mathematics is not so important. What matters is 

that the child gets many opportunities of digging many holes, each hole 

having its merits, joys, surprises, and limitations. I will end the way I started, 

with a poem by R.L. Stevenson, "At the seaside". 

When I was down beside the sea 
A wooden spade they gave to me 

To dig the sandy shore. 
My holes were empty like a cup, 

In every hole the sea came up 
Till it could come no more. 
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TEACHING MATHEMATICS AND 

PROBLEM SOLVING TO DEAF AND 

HARD-OF-HEARING STUDENTS 

Harvey Goodstein1 

Gallaudet University, United States 

I was born deaf to deaf parents, and thus the American Sign Language 

(ASL) was my first language, and English my second language. After 

attending residential schools for the deaf in New York, I attended Gallaudet 

College (later, University), where I now teach, and obtained my bachelor's 
degree in mathematics. Gallaudet University is the world's only liberal arts 

college for deaf and hard-of-hearing students, attracting students not only 

nationally but internationally as well. For my doctoral dissertation I studied 

the mathematical preparation of pre-college teachers of deaf students and I 
have subsequently been involved in organizing and conducting summer 

institutes for pre-college teachers of deaf students. 

For the purpose of this paper, deaf and hard-of-hearing students will 

simply be referred to as deaf students. It should be noted that some deaf 

students are doing exceptionally well academically in their schools or 

programs. However, the examples presented in this paper relate to the large 

majority of deaf students who for the most part have endured restrictive 
communication environments during their formative years which have 

adversely affected their language and cognitive development. 

There are four parts to this paper. First, I give a few examples of prob
lems in mathematics and problem solving encountered by deaf students based 

on my observations in schools and "mainstreamed" programs serving deaf 
students in the United States. Second, I explain some of the difficulties in 
teaching and learning mathematics and in problem solving, relative to deaf 
students. Then, after a few brief historical remarks, I outline the desired 

Professor Goodstein delivered his paper in American Sign Language (ASL), 
which was translated into spoken English by an interpreter. 

137 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

bilingual/bicultural (or multilingual/multicultural) learning environment 
involving American Sign Language (ASL) and English. Some suggested 

teaching strategies appropriate for deaf students are highlighted. Such 

learning environment and teaching strategies have their parallels in bilingual/ 
bicultural programs designed for other learners of English as a second lan

guage. 

EXAMPLES OF THE MATHEMATICAL DIFFICULTIES 

OF DEAF STUDENTS 

138 

1. Standing in front of a class of 9-11-year-old deaf students, holding 

a one-foot ruler in my hands for them to see, I asked the class to 

estimate my height. Impulsively, irrational answers were given, 

ranging from 10 feet to 50 feet. After the class went through the 

motions, measuring and learning that my height was between five 

and six feet tall, I then asked a student (about four feet tall) to 

stand by me, and challenged the class to estimate her height. Again, 
quickly (and happily), they answered, 10 feet, 25 feet, etc. (with 

all of the answers larger than six feet). 

2. A class of 10-12-year-old deaf students was assigned to compute 

the areas of rectangles, given figures with the lengths of the sides 

shown. The students had no difficulty computing the areas using 
the formula A = bh, yielding answers like 15 for a 3 x 5 rectangle, 

etc. So, I asked one student, "15 what?" Puzzled, the student re

plied, "Huh?" I repeated, "15 what? 15 shoes? 15 cows, 15 what?" 
Bewildered, the student said, "15, that's all." 

3. In a class of 7-9-year-old deaf students, given four nickels on the 
table, one was able to count aloud by fives, and ended up with 20 
cents as the result. However, the same student was not able to 
compute mentally (by fives) the answer to a written "4 x 5 =

" 

problem, nor to understand that "4 x 5" is a symbolic representation 
of four groups of fives. 

4. In most classes, deaf students of practically all ages face particular 
problems with the concepts of percentages, decimals, and fractions. 
Incorrect responses are made to questions involving fractions; for 
example, they will offer statements like " i + t = f ", "t is larger 
than t ", and others. 

5. A group of deaf students, ages 17 through 19, volunteered to par
ticipate in a research project (in progress at the time of the lecture). 
Individually, and one at a time, the students were given a story 
problem such as: 
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"Jack has 245 videotapes and wants to put them equally in 4 boxes. 
How many extra videotapes would there be?" 

The students were asked to read the problem, and to sign aloud 
while reading. Nearly all of them could sign at least 80 percent of 
the words, fingerspelling the rest (i.e., words they could not com
prehend). Then the students were asked to solve the problem, 
writing everything on paper. Some subtracted 4 from 245; others 
added or multiplied the two given numbers, or involved some oth
er unrelated, irrational processes or operations. When asked to give 
a mental picture of the given story problem, as if watching a movie 
in their heads, nearly all said, "There was none" or, "Blank in head," 
and some even challenged the question: "What for?" or, "No need 
for that picture." 

At first glance, these examples may not appear different from the sorts 
of experiences that teachers of hearing students can report, nevertheless a 
large proportion of deaf students tend to make these errors. Further, al
though the second and fourth examples can be readily matched among hearing 
students, the first and fifth examples show a striking failure to coordinate 
perceptions in the "real" and "mathematical" worlds. The student in the 
third example makes no connection between a simple counting situation 
and related symbolic statements. 

The examples are just anecdotes, of course, and do not prove anything 
conclusively about the mathematical difficulties that deaf students are likely 
to have simply because they are deaf. To get closer to that question we need 
to take account of the fact that deafness is not solely a physiological 
condition, which provides difficulty enough, but a constellation of associated 
factors which affect the upbringing and education of deaf students. 

SOME TEACHING AND LEARNING DIFFICULTIES 

OF DEAF STUDENTS 

Considering the home environment first, it is important to note that 
nearly 90% of deaf students are born to hearing parents, most of whom have 
had no previous exposure to deafness. Many parents, dismayed and even 
crushed by their child's condition, are often not able to reconcile themselves 
to it for a long while. They tend, in the beginning at least, to adopt the 
pathological view of deafness that they find expressed in the attitudes of 
doctors, audiologists, speech therapists, etc., who are in most cases the people 
they first consult for advice and help before they have had the chance to 
encounter the diametrically opposed viewpoint, held by the Deaf2 community 

2 The capitalized word "Deaf" is used in the literature whenever the distinctive 
cultural aspects of deaf people are being emphasized. 
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and professional staff at schools for the deaf, that Deaf people constitute an 

authentic linguistic minority. The standard medical view places an over

whelming emphasis on the "hearingization" of a deaf child. In this climate 

many deaf children grow up with low self-esteem and develop emotional 

and social problems stemming from their certainty that they can never hope 

to keep up with their hearing peers. 

The majority of deaf students enter school with poor or non-existent 

skills in ASL and English, not because of their deafness per se, but because 
of the restrictive communication available in their early environment. Not 

many teachers of the deaf are fluent in ASL, so the communication environ

ment remains impoverished even in schools and programs intended to serve 
deaf students. Studies show that the average deaf student leaves high school 

with a fourth grade reading level and an eighth grade mathematics ( compu

tational) level. 

Most pre-service training programs for teachers of the deaf at the 

master's level do not make competence in ASL a graduation requirement. 

ASL competence is not currently required for teacher certification either. 

Teachers of the deaf who cannot sign fluently are unable to engage in natural 

and spontaneous communication with the students in their classrooms. 
Studies show that deaf students of deaf parents perform at significantly higher 

academic levels than deaf students of hearing parents. Nevertheless, even 

those students favored with an early exposure to ASL at home are often 
unable to use that advantage to the fullest when they enter school because 

their teachers cannot use ASL well enough to work with them. 

One of the reasons for the lack of deaf teachers is that many of them, 
although intelligent and possessing average English skills, are not able to 

pass the National Teacher Examination (NTE) exam which is mandatory in 

many states. A few states have waived the NTE requirement for deaf 
applicants pending further study on the test and the claim that it is culturally 

biased. There is therefore a small percentage of deaf teachers in schools for 

the deaf, but virtually none in the "mainstreamed" programs in regular 
schools. The scarcity of appropriate role models for deaf students in the 
classroom contributes to their further disadvantaging. 

The great majority of teachers of deaf students at elementary through 
secondary levels have weak backgrounds in mathematics, poor problem 
solving skills, high anxiety, and poor attitudes towards mathematics. As a 
group they find it most convenient to teach with an emphasis on rote memory 
and computation, avoiding story (word) problems as much as possible; they 
generally do not teach for understanding or concept mastery. Moreover, 
because of the wide range of backgrounds and cognitive skills in each class 
and the low level of sign communication between teacher and students, most 
teachers organize their classrooms for individual drill and do not attempt to 
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encourage group discussion or cooperative learning. Because of the critical 
shortage of qualified interpreters, deaf students placed in classes of hearing 
students are for the most part unable to participate in the discussion of 
mathematical topics or any other interactive situations in the classroom. 

I can summarize the situation of mathematics in most schools and pro
grams serving deaf students through the following items of current folklore. 
(1) The dominant emphasis in the curriculum is on language (English) 
development, often at the expense of other subject areas such as mathematics, 
science, and social studies. The "English is intelligence" mentality is all
pervasive. (2) There is a common belief that deaf students "do well" in 
mathematics, but this is because educators tend to identify mathematics with 
purposeless computation. Mathematics as problem solving, or as the study 
of patterns and relationships, is ignored. (3) Story problems are skipped or 
deferred because teachers have low expectations about the students' capacity 
to handle the necessary language demands of the tasks. Where they are 
covered, instruction focuses on looking for cues, not on understanding the 
nature of the problems. 

In the next section I deal briefly with one of the arguments that has 
dogged deaf education until now. Then in the final section I consider what 
steps should be taken to improve the generally unsatisfactory state of 
mathematics in deaf education. 

THE GREAT SIGN CONTROVERSY 

ASL has its roots in France where, in the 1760s, a methodical sign 
language system began to be developed by the Abbe de l'Epee from the 
natural sign language used by Deaf children and Deaf staff members at his 
school. By 1791 the school had become the Paris Institute for Deaf-Mutes. 
In 1816 Thomas Gallaudet, accompanied by Laurent Clerc, who was born 
deaf and had been first a student and later a teacher at the Institute, brought 
the language of signs to Hartford, Connecticut. Over time, and shaken free 
of the inflections that had related it to French grammar, this language grad
ually became the ASL that is now used by a half a million people in the 
United States of America and Canada. 

From the beginning, there has been an ideological struggle between 
the proponents of oral and sign instruction for the deaf. Behind the well
intentioned concerns of some of those who have argued for oral instruction
that deaf people should be helped to learn the ways of the dominant majority 
and not forced to become ghettoized, as well as genuine worry about the 
linguistic shortcomings of sign language-there have often lurked the 
irrational fears of people faced with behavior they did not understand, and 
perhaps did not wish to understand. It is not only the simple and uneducated 
who have associated severe deafness with severe mental limitations. (How 
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significant that being "dumb" is still carelessly and commonly used to mean 

unintelligent!) Those on the other hand who favored sign instruction, even 

those who shared doubts about the linguistic adequacy of sign language, 

knew that signing "unlocked" the intelligence of deaf people and showed 

them to be as educable as anyone else. 

For a hundred years or so the victory went to oralism. The Second 

World Congress to Improve the Welfare of the Deaf and the Blind, now 

usually known as the International Congress on Education of the Deaf, in 

Milan in 1880, pronounced the dangerous inadequacy of signing as an 

instructional medium and proposed to ban it, and almost all institutions in 

almost all countries accepted a recommendation from a meeting of exclu

sively hearing people, few of whom could use a sign language. In the United 

States of America, for example, ASL was the instructional medium in all 26 

institutions for educating deaf children in 1867, but by 1907 ASL was not 

permitted in a single one of the 139 schools then operating. 

As far back as 1827, Jean-Marc-Gaspard Itard (better known perhaps 

as the would-be teacher of the Wild Boy of Aveyron) had carefully studied 
two deaf-mute students and showed that the student taught through signs 

was superior. Comparative tests on matched pairs of congenitally deaf 

students in the 1970s showed that the signing students were significantly 

better in reading, writing, psychological adjustment, oral speech, graduation 

from high school, and college entrance. The future of the exclusively oral 

approach, though, may be even more affected by post-Chomskian studies 

which have been able to show that sign language is in fact an adequate 

instructional language, and by the greatly increased politicization of the 

issue of deaf education, which must in today's climate be regarded as too 
important a matter to be left entirely to the determination of hearing people, 

however well-intentioned. 

THE DESIRED TEACHING/LEARNING ENVIRONMENT 

AND STRATEGIES FOR ACHIEVING IT 

Recommendations 
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1. Bilingual/bicultural programs, involving ASL and English, and the 
Deaf and American cultures, should be employed as far as possible. 
Bi/bi programs are currently in operation, officially or otherwise, 
in only a few schools/programs serving deaf students in the United 
States of America. Nevertheless, the concept of such a program 
has gained a strong level of interest among an increasing number 
of teachers and administrators as evidenced by the large number of 
workshops and task forces on this topic in recent years. It is 
anticipated that such heightened interest will ultimately lead to the 
wider acceptance of bi/bi programs nationally. In these programs 
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ASL (which includes a variation with some English elements) is 

used as the language of instruction via visual communication, while 

English is used primarily for reading and writing. 

2. Before most deaf students can begin to communicate and reason 

mathematically in a precise or formal fashion (in English), they 

have first to overcome three primary obstacles during the forma

tive years, sequentially if not concurrently: (1) learning how to 

communicate naturally and visually via ASL; (2) learning and un

derstanding the mathematics concepts and properties involved 

through visual communication, acting out, use of manipulatives 

and experimentation; and (3) reading and writing about these con

cepts and properties while learning English as a second language. 

3. Educators of deaf students need to realize that there is more to 

education than precision in English. Some have even challenged 

the proposition: What is wrong with telegraphic English as long as 

one gets the message across? Workshops for elementary school 

teachers can give them a third grade story problem in Russian, 

which most of them will not be able to solve until nearly 45 percent 

of the words are translated into English. They can also be given 

another problem in simple English, which they can readily under
stand (say, involving a ball dropped from the top of the Washington 

Monument), but are not able to solve because they do not have the 

necessary calculus and science background. The teachers will be 

quick to agree that students should not be denied opportunities to 

solve story problems because of their limited English skills. Further, 

the teachers will quickly acknowledge the importance of having 

sufficient hands-on experience involving relational thinking, 

number sense, measurement sense, concept of fractions, etc., in 

the development of students' cognitive schemas. 

4. At the very least, litigation, legislative, and advocacy efforts should 

be conducted to ensure that teachers of deaf students do not create 

communication barriers in the classroom. In other words, teachers 

of deaf students should at least be competent in ASL. Measures 

should also be taken so that equity in testing of deaf teachers is 
assured, especially in national and state examinations. 

5. Additional in-service courses and workshops in mathematics 
content and pedagogy are needed to enhance the mathematics back
ground and preparation of teachers. The teachers must also be 
trained to teach for mathematical understanding, with emphases 

on problem solving, communication, reasoning, and making con
nections, as recommended in the National Council of Teachers of 
Mathematics Curriculum and Evaluation Standards. 
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6. The sooner the deaf child and the parents of the deaf child accept 
the deafness, the better. The condition may not be ameliorable, but 
the stigma associated with it is. The late Frederick C. Schreiber, 
former National Association of the Deaf Executive Director, liked 
to say, "It's what is between the ears that counts." The Deaf com
munity has existed for many generations, using ASL as its primary 
language, and transmitting Deaf culture from generation to gener
ation. For that reason, Deaf people as a group often prefer to be 
viewed as a linguistic minority, like Hispanics and other ethnic 
groups, than as disabled. 

7. Due to communication barriers deaf students have endured at home 
and school during the formative years, they may have difficulties 
in understanding story problems in English. It is recommended that 
in such instances teachers work through a problem with the stu
dents using visual communication, acting out, and so on, until the 
students understand the problem and the required concepts and 
processes. Cooperative problem solving should be encouraged. 
Adaptive materials can also be used-like simplified descriptions, 
smaller numbers-as long as the students ultimately return to the 
original problem, however wordy or difficult. Other helpful teach
ing strategies include: posing problems without numbers to force 
students to focus on the processes involved; asking students to cre
ate questions and problems to fit a given statement or set of facts; 
solving each other's made-up problems, etc. 

8. Writing journals or "learning logs" can be helpful in encouraging 
students to express their mental images of certain mathematical 
concepts or relations. In the beginning, because of their low level 
of confidence in their English skills, students will write very little, 
maybe only a sentence or two. Gradually, with practice, they begin 
to feel less hesitant about writing, particularly if given positive 
feedback together with guidance for further refinements. Mistakes 
in English should not be emphasized, however, or their discour
agement will negate the value of the task. 

FINAL REMARKS 

Teaching deaf students through bilingual/bicultural programs, as is 
recommended here, draws deaf education into the more general orbit of 
teaching English as a second language, with the advantage that the more 
mainstream experience and techniques that have been accumulated in the 
practice of ASL can be drawn upon. But there are significant differences 
that should not be forgotten. Hearing students have considerable aural 
exposure to English words through radio, TV, interaction with first-language 
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English speakers, and so on, before they enter school; deaf students do not. 

Hearing students who have acquired a spoken language, even when that 

language is not English, have experienced the coordination of mouth and 

ear in the production of utterances and, in particular, know how to monitor 

what they utter by listening to it; deaf students lack this capability. 

Deaf students learn mainly through their eyes. ASL, the language of 

signs used in the Deaf community in America, through the natural process

es of use, disuse, and refinement, has evolved in its own right into a 

sophisticated language most appropriate for visual communication. On the 

other hand, the English-based methodical sign systems, commonly classi

fied as Manually Coded English (MCE), which were artificially constructed 

as "manual codes" for spoken English, have over the past twenty years proved 

to be ineffective. 

I have talked exclusively about ASL because it is the sign system I 

know and use. In other countries, of course, deaf educators would do well to 

adopt the language of signs that is current in their own Deaf community in 

order to comunicate with deaf students about the world, including the world 

of mathematics, and to teach the spoken and written language of that country 

as a second language. 
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THE ORIGIN AND EVOLUTION 

OF MATHEMATICAL THEORIES 

IMPLICATIONS FOR MATHEMATICAL EDUCATION 
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In this paper I am concerned to consider the right way to introduce 

young people to mathematics research. How should they be introduced to 

mathematical content and to mathematical theories? What is the attitude we 

should try to foster in them? What do those who are most successful in 

preparing young mathematicians actually do? 

The questions need to be answered quite concretely for it must be 

admitted that the way to prepare researchers is not a matter of general agree

ment in the profession, it is not always carried out well, and too many details 

are often left to chance. 

Of course there are many ways to involve students personally and 

actively in their learning of any mathematical topic, especially by motivating 

them with problems. For example: 

• Here is a problem. Don't read anything, just plunge in and try to 

solve it straight away. 

• Read these several passages from these books carefully, then come 

and get a problem from me. 

• Read this recent paper and then work on the problems it leaves open. 

• I will be giving you suggestions for problems to solve throughout 

the course. Choose the ones that you think will be most productive, 

that most interest you, that you believe you have a chance of solving. 

I strongly believe that the crucial insights in research in a particular 

field tend to come from a deep knowledge of the origins and evolution of 
the theory one is working with, and a familiarity with the style of thought in 
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that area. This is acquired by learning its motivations, the circumstances of 

its origins (historical, social, personal), the right ways of asking questions, 

and so on. 

I shall try to give substance to this claim by looking first of all at what 

a knowledge of the history of mathematics in general, and of the specific 

subject in particular, can offer us that is relevant to the context we are 

exploring here, and by briefly examining afterwards the lessons that can be 

derived from the knowledge of the evolution of a field in which I was 

personally involved some years ago. 

WHAT KNOWLEDGE ABOUT THE HISTORY OF MATHEMATICS 

AND ABOUT A PARTICULAR SUBJECT CAN OFFER THE STUDENT 

They offer a vision of science and mathematics as human activities. 

We see that the truths, methods, and techniques of mathematics do not 

come out of the blue. They are not impersonal facts and skills without a 

history, but are the results of the efforts of passionate and deeply motivated 

people. 

We see that, in spite of its many wonders, mathematics is not really a 

"godlike" or perfect science. Because it is an artefact of human beings it is 

also incomplete and fallible. Its history gives us many great discoveries and 

great discoverers to admire, but it also shows us that much of what we now 

take to be established and obvious truth was only arrived at after many 

errors and much controversy. 

They offer a frame within which to organize the elements of our mathematical 

knowledge. 

We see better how to relate events that took place centuries apart, how 
to appreciate the temporal contexts in which mathematical discoveries were 

made. 

We see how people invested their efforts in the pursuit of certain 

questions, how "fashions" arose, and how the fashions of the past can alert 

us to those of the present. 

We get a sense of how the various threads in the fabric of the subject 
we are working on were woven together over time. 

They offer a dynamic vision of the evolution of mathematics. 

We understand the driving forces at work developing the basic ideas 
and methods of mathematics. We get closer to the springs of creativity that 
generated particular subjects, consequently gaining a sense of their genesis 
and progress and a better appreciation of their true nature. 
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We get a flavor of the thrill and adventure of working in mathematics. 

We are immersed creatively in the past and better able to understand 

our own problems. 

There is the possiblity of extrapolating towards the future. 

We realize the tortuous paths of creativity, the ambiguities, obscurities, 

and partial illuminations that accompany the first attempts to shape the field. 

We see how we can inject some dynamic, some life, into our educational 

tasks. 

They offer an appreciation of the intertwining of mathematical thought and culture 

in human society: of the importance of mathematics as a part of human culture. 

We see the influence of historical trends and developments on mathe

matics and, conversely, the impacts of mathematics on human culture, its 

sciences and philosophies, its arts and technologies. 

They offer a more profound technical comprehension. 

The more simple a theory is in the beginning the easier it is to unders

tand and work with. Technical complications coming along later can begin 

to obscure the theory unless one grasps their motivations. 

The lines of development of a theory point towards the future and 

provide guidelines for research. 

They offer an awareness of the special life of any mathematical theory. 

Each theory has its own peculiar character, molded by the special cir

cumstances that gave rise to it. It was born at a particular moment, the result 

of particular concerns. It was motivated by curiosity about some phenome

non, the wish to apply some known results, to expand some collection of 

techniques, to complete some existing theory, and so on. 

Each theory developed according to its particular style, its expectations 

and disappointments, its correct intuitions and its false starts. 

Each theory inhabits its own "local" atmosphere generated by the 

personal and social forces that surrounded it. 

It seems to me that one can conclude that: Familiarity with the origin 

and evolution of a mathematical theory has profound lessons to offer to 

anyone trying to be inducted into the field. 
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A CASE STUDY: THE DIFFERENTIATION OF INTEGRALS 

By following the lines of development of a specific theme in math
ematical analysis from this century-Lebesgue differentiation and its 
extensions-! shall now try to show some of the lessons which can be 
extracted from this study that could be of use to those seeking to do research 
in this area. If I am fortunate, the example will have some lessons for people 
working in other fields too. 

Some of the ideas and methods stimulated by this theory during this 
century have proved very useful in other areas of mathematical analysis, 
particularly in Fourier analysis and in some aspects of geometrical measure 
theory. I will present a non-technical description of the main highlights of 
the theory, taking into account that we are not interested in its technicalities 
here but rather in the educational implications for those wanting to be 
introduced to the subject. For the sake of brevity I will trace the main points 
of the theory from its origins in 1904 to the time its progress was interrupted 
by the Second World War. 

The beginning: the Lebesgue differentiation theorem 

Towards the completion of an interesting theory. 

The Lebesgue differentiation theorem, the equivalent of the funda
mental theorem of calculus, was the culminating point of his measure theory. 
He first proved it for R1 (1904): If f E L(R1) then at almost every point x 

lim 2
1
h 
Jh f(x + t)dt = f(x) 

h-0 -h 

Essentially this meant that the means of an integrable function over 
intervals containing a point x converge, at almost every point, to the value 
of the function at that point when the intervals contract to the point. The 
idea followed by Lebesgue in the proof was ingenious but not translatable 
to R2• Since the order structure of the real line is so crucial for the proof in 
Rl, what might be the corresponding tool for R2? 

As in so many other cases, the first impulse to develop new techniques 
came from the need to extend a theory to more general situations. 

Vitali's covering theorem 

Sharpening tools that have proved to be interesting, deep, and useful; 

pushing their scope further. 

At the end of the 19th century a number of covering theorems were 
discovered that helped substantially to clear up the structure of Euclidean 
space from an analytic point of view. The so-called Heine-Borel covering 

150 



GuzMAN 

theorem, the LindelOf theorem, and others, became important tools in this 

respect. Vitali's covering theorem was an important advance: Let M be a 

measurable set in the plane with a Vitali cover V forM (i.e. for every point 

of M a sequence of square intervals centered on the corresponding point 
and contracting to that point is given). Then one can extract from V a se
quence {Qk} of disjoint squares such that 

IM-U Qk I =0 

Vitali's theorem was not invented for the purpose of obtaining a proof 
of the Lebesgue differentiation theorem in R 2, but this was the use Lebesgue 

made of it in 1910, showing that his theorem for the line could be generalized 

to the plane if one takes the means of an integrable function over squares or 

circles containing the corresponding point. 

The Lebesgue differentiation theorem in R2 

The solution of an interesting problem often leads to deeper questions; 
a good problem is never exhausted. 

The result Lebesgue obtained was quite satisfactory, but it led imme
diately to a natural question: Can one replace the squares by more general 
intervals (e.g. by rectangles in the direction of the coordinate axes, or pe
rhaps by rectangles in arbitrary position)? These natural questions turned 
out to be quite challenging and these problems remained open for a long 

time, as we shall see. 

The value of paradox 

A paradoxical situation can be the beginning of a new development. 

From 1908 until 1924 there was in the air a belief that Vitali's theorem 
would also hold if intervals were substituted for squares. The theorem of 
Lebesgue would then admit a nice and direct generalization. The fact, first 
proved by H. Bohr (1918) and first published by Banach (1924), that intervals 

in the plane do not satisfy Vitali's lemma seemed counterintuitive. This 
sort of paradox made the study of the covering properties of different systems 

of sets in the plane more challenging, and at the same time started to throw 
some new light on the subject. 

This is in many cases the effect of perceived paradoxes. It has been 
reported that in the midst of working on a difficult problem the physicist 
Niels Bohr was overheard to say: "How wonderful! We have met a paradox. 
Now we have some hope of making progress." 
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An impasse concerning the strong density problem (1924-1934) 

There are periods of impasse when progress can come from many directions; 

one must remain open to all possibilities. 

Since Vitali's lemma fails for intervals, what will happen to the 

differentiation theorem of Lebesgue? Even in the case when the function f 

is the characteristic function of a measurable set, the problem of generalizing 

the theorem to the plane seemed to be quite difficult. This so-called strong 

density problem (the local density of a measurable set with respect to 

intervals in the plane) remained open for many years-until 1933, when 

Saks was able to prove the strong density theorem. In the meantime, many 

mathematicians were looking in other directions to find some light that could 

illuminate this challenging question. 

The role of a good game 

A good mathematical game can be the beginning of a deep theory. 

In 1917 S. Kakeya proposed a problem that looked like a puzzle: What 

is the infimum of the areas of those plane figures within which a needle of 

length one can be inverted by continuous motions? The problem has a very 

long and interesting history in which some important mathematicians show 

up: e.g., Besicovitch, Perron, Rademacher, Schoenberg. Those interested in 
the ramifications of it are invited to consult the bibliography proposed at 

the end of the paper. (By the way, the surprising solution, given by 

Besicovitch in 1928, is that the infimum mentioned in the statement of the 

problem is zero.) Here it should suffice to mention that the problem has had 
very profound implications for the subject of differentiation of integrals 

and for Fourier analysis. By means of the tools developed in order to solve 

it C. Fefferman in 1971 was able to solve an important problem which had 

remained open for many years (the multiplier problem for the ball). 

Different lines of thought concerning a theory 

At the point where different subjects intersect can often be found many deep 

questions and much light on those subjects. 

At the beginning of the century the theory of Lebesgue measure was 
recognized as an important tool in many connections in mathematical 
analysis. It generated a strong interest in the geometric structure of 
measurable sets. Some of the questions proposed at the time later proved to 
have deep implications for differentiation theory. In 1926 Banach proposed 
the question: How large in measure can a linearly accessible set in the unit 
square Q be? ("Linearly accessible" means that each point of the set can be 
reached by a straight line originating outside Q.) In 1927 Nikodym solved 
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the problem in a long and complicated paper by constructing a set N contained 
in Q and having measure 1 (a set of full measure in Q) such that through 
each of its points there is a straight line not intersecting the set N again. N 
is a strange set that, in spite of "filling" Q, seems to leave many more points 
of Q in its complement Q- N. At the end of Nikodym's paper appears an 
observation of Zygmund that shows that the collection of all rectangles in 
the plane is an unsatisfactory system for proving the Lebesgue differentiation 
theorem, and, further, that the density theorem with respect to the system of 
plane rectangles does not hold. 

Later on, R.O. Davies, working in this same direction, constructed 
still more paradoxical and spectacular sets than that of Nikodym. 

The versatility of mathematical tools 

When you find a good tool, try to make use of it in some connected problems. 

The strong density theorem was proved by Saks in 1933. By then 
F. Riesz was already in possession of a powerful tool concerning continuous 
functions in R 1, the so-called rising sun lemma (also called the water flowing 
lemma). He was able to apply it to solving several interesting problems of 
the moment with ease, presenting another simple and easy proof of the strong 
density theorem in 1934. 

In this same year, Jessen, Marcinkiewicz, and Zygmund were able to 
give the definitive theorem in the direction of differentiation of functions 
by the system of intervals in Rn: Iffis a function in L(log+L)n-1(Rn) then 
the intervals differentiate the integral off and this space of functions is in 
some sense the best one. 

After climbing the peak 

When the evolution of a theory along a particular path seems to be close 

to the summit, one may need to start looking for different lines of thought. 

After the Jessen-Marcinkiewicz-Zygmund theorem, the attention of 
the mathematicians concerned with the differentiation of integrals turned in 
a natural way in other directions. Busemann and Feller took a new path in 
1934 and R. de Possel yet another in 1936. 

The abstract and the concrete 

Examine the concrete and try to discover a general pattern. 

Busemann and Feller introduced into the field the consideration of 
what has been called the halo of a measurable set with respect to a differen
tiation basis (a generalization of the system of all spheres or of all intervals 
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used in the differentiation theorem). From the concrete ideas introduced by 
Saks and Riesz in their treatment of the strong density theorem, the idea of 
the halo was a natural development. By means of it Busemann and Feller 
were able to present the characterizations of systems of sets that would 
have good differentiation properties. The time had come to try to leap from 
the concrete cases to some more general formulations which could be used 
in other cases. They managed it by giving a quantitative characterization
by means of something which was later perceived to be a (1,1) weak-type 
inequality for the maximal Hardy-Littlewood operator-of the systems of 
sets used for differentiating the integral. 

For his part, R. de Possel proceeded in a similar vein, from the concrete 
to the abstract. He observed what happens in the plane with respect to the 
differentiation and covering properties of the different systems: 

a) Squares satisfy Vitali's lemma; squares allow the differentiation of 
LI(R2). 

b) Rectangles in arbitrary directions do not satisfy Vitali's lemma; 
rectangles do not have the strong density property. 

c) Intervals allow the differentiation of Llog+(R2); but not of V (R2). 

In a natural way, he decided to try to explore what are the covering 
properties, if any, of the system of intervals. He was able in this way to 
initiate an interesting line of research, looking for the quantitative connec
tions between the differentiation properties and the covering properties of a 
differentiation basis. 

So we can see here in action another interesting principle, which should 
be kept in mind: 

When you notice a qualitative connection, try to find the quantitative 
reasons for it. 

The progress of the theory was interrupted by the Second World War. 
After it came many other interesting developments: in particular, from the 
work of Besicovitch in connection with Geometric Measure Theory, and 
from the intervention of many analysts working in Fourier Analysis. Those 
interested in following up this subject in detail are invited to consult some 
of the references below. 
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LE CALCUL INFINITESIMAL 
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LES INFINITESIMAUX AU FILDES AGES 

It is interesting that a method which had been given up as untenable has 
at last turned out to be workable and that this development [ ... ] was 
brought about by the refined tools made available by modern mathe
matical logic. (Robinson, 1973, p. 16) 

Le concept d'infinitesimal, de quantite « infiniment petite », a connu 

un sort variable au fil des ages. Hannis par les uns, utilises de fa�on 

heuristique mais souvent avec circonspection par les autres, les infinite
simaux, jusqu'a tout recemment, n'avaient pas droit de cite en mathematiques, 

surtout apres que les analystes du XIXe siecle eurent introduit dans le calcul 

differentiel et integral, par !'approche en e-b, un canon de rigueur ayant 
cours jusqu'a nos jours. Bien sur le physicien et l'ingenieur avaient persiste 

dans leur utilisation intuitive des infinitesimaux, mais le mathematicien 
savait que tout cela pouvait (et devait !) etre remplace par un discours 
rigoureux evacuant toute notion d'infiniment petit actuel. 

Deja les Grecs utilisaient les infinitesimaux pour resoudre certains 

problemes de geometrie. Ainsi Archimede (287-212 A. C.) s'autorise a operer 

sur des decompositions infinies des figures. Toutefois, il s'agit la pour lui 

strictement d'une methode de decouverte de proprietes, non d'une fa<;on 

acceptable de les demontrer rigoureusement. Travaillant dans la tradition 
d'Aristote et d'Euclide, Archimede voit les nombres comme satisfaisant a 

ce qu'on appelle aujourd'hui la propriete d'Archimede : etant donne deux 
nombres, le plus petit, additionne a lui-meme un certain nombre (fini !) de 
fois, en viendra toujours a surpasser l'autre. Un tel contexte interdit done 
}'existence d'infiniment petits. Neanmoins, comme il le revele dans son traite 
La methode (decouvert en 1906 seulement), Archimede n'hesite pas a faire 
appel a son intuition des quantites infinitesimales pour identifier certaines 
relations (comme le volume d'une sphere). Intervient ensuite une etape de 
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validation dans laquelle ces relations sont prouvees par une argumentation 

indirecte (Ia «methode d'exhaustion )) ), debarrassee de toute presence 
infinitesimale. 

Pour illustrer l'apport des infinitesimaux, considerons une preuve de 
Nicolas de Cuse (1401-1464) etablissant le rapport entre l'aire d'un cercle et 

sa circonference (Davis et Hersh, 1980, p. 238). Soit un cercle de rayon r 

que nous envisageons comme un polygone ayant une infinite de cotes 

infiniment petits et tous egaux entre eux (voir figure 1, ou une portion du 

cercle est observee a l'aide d'un « microscope infinitesimal )) a grossissement 

infini, tel qu'utilise dans Keisler (1986)). Chacun de ces cotes est la base 

d'un triangle isod:le dont le sommet est le centre du cercle et dont la hau

teur h est le rayon r du cercle, puisque la base du triangle est infiniment 

courte. L'aire du cercle, etant la somme des aires de ces triangles, est done 

egale a la somme des bases ( c'est-a-dire la circonference) multipliee par �. 
Une telle argumentation pourrait etre remplacee, par exhaustion, par un 

raisonnement par contradiction n'utilisant que des constructions finies (Davis 
et Hersh, 1980, p. 240). On obtient ainsi une preuve repondant aux canons 

classiques de rigueur mais occultant forcement, par son approche indirecte, 

l'intuition forte suggeree par la vision infinitesimale. 

Figure 1 

La mise en place d'une theorie generale de Ia differentiation et de }'in
tegration fut realisee simultanement par Newton (1642-1727) et Leibniz 
(1646-1716). Si Newton utilise a Ia fois une vision infinitesimale et une 
vision reposant sur la notion de limite, accordant finalement sa preference 
a cette derniere, Leibniz, de son cote, choisit resolument !'approche infinite
simale. Mais pour lui, les infiniment grands ou petits n'ont pas d'existence 
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veritable: ce ne sont que des« fa($ons de parler », des« fictions ». II oppose 

l'emploi des infinitesimaux au «style d'Archimede » (entendre les argu

ments indirects resultant de Ia methode d'exhaustion - Leibniz ignorait 

evidemment les heuristiques infinitesimales d'Archimede devoilees dans La 

methode): 

( ... ] on n'a pas besoin de prendre l'infini ici a Ia rigueur [ ... ] Car au lieu de 
l'infini ou de l'infiniment petit, on prend des quantites aussi grandes et aussi 
petites qu'il faut pour que l'erreur soit moindre que l'erreur donnee, de sorte 
qu'on ne diffi:re du style d'Archimede que dans les expressions, qui sont plus 
directes dans notre methode et plus conformes a l'art d'inventer. (Robinson, 
1974, pp. 261-262) 

Le calcul developpe par Newton et Leibniz a vite connu des succes 

eclatants dans ses applications. Cependant de serieuses difficultes logiques 

sont apparues quant a ses fondements, tant selon }'approche de Newton que 

celle de Leibniz. Ainsi le recours aux infinitesimaux amene une contradiction 

flagrante, comme l'illustre le calcul de Ia derivee de x2 : 

d(x2) (x + dx)2 - x2 
--a:x-

= 

dx 
= 2x + dx = 2x 

L'accroissement infinitesimal dx, qui se comporte comme zero a Ia fin du 

calcul, ne peut bien sur etre nul au depart. Cette ambivalence n'a pas manque 

d'etre severement attaquee, en particulier par Berkeley (1685-1753). Dans 
son celebre pamphlet The analyst, celui-ci condamne avec virulence }'utili

sation de ces « increments evanescents » : 

For when it is said, let the increments vanish, i.e., let the increments be nothing, 
or let there be no increments, the former supposition that the increments were 
something, or that there were increments, is destroyed, and yet a consequence 
of that supposition, i.e., an expression got by virtue thereof, is retained.( . . . ] 
I have no controversy about your conclusions, but only about your logic and 
method. (Berkeley, 1734, pp. 25, 30) 

Meme si Ia controverse entourant le statut des infinitesimaux n'empeche 

pas Euler (1707-1783) de les utiliser avec art (voir Robert, 1985, pp. 3-5), 

de telles attaques eurent neanmoins un effet devastateur. Et si les infiniment 

petits se retrouvent encore un siecle plus tard dans les textes de Cauchy 

(1789-1857), c'est essentiellement dans un role heuristique « d'interme

diaires qui doivent [ ... J conduire a Ia connaissance des relations qui 

subsistent entre des quantites finies »(Robinson, 1974, p. 275), comme chez 
Archimede. Car avec Cauchy, et plus tard avec Weierstrass (1815-1897), se 
construit Ia theorie moderne des limites et de Ia continuite telle que nous Ia 
connaissons aujourd'hui, oil les considerations infinitesimales cedent Ia place 

a des inegalites en E-b. Pour le mathematicien, les infinitesimaux tombent 
alors en desuetude complete, meme s'ils restent un outil commode dont ne 
se privent pas d'autres scientifiques. 
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II y a un peu plus de trente ans, Abraham Robinson (1918-1974) a 

decouvert comment certains outils de la logique mathematique, plus preci

sement de la theorie des modeles, permettent de construire un corps de 

nombres hyperreels grace auquel le calcul differentiel et integral peut etre 

developpe de fa<;on rigoureuse dans un contexte infinitesimal : cette legi

timation a posteriori permet au mathematicien d'aujourd'hui de revenir en 

toute serenite aux methodes si fecondes faisant intervenir explicitement 

l'infiniment grand et l'infiniment petit (et remet en lumiere !'expression 

traditionnelle calcul infinitesimal). 

Apres un rappel des fondements logiques du calcul infinitesimal 

moderne, nous en presentons certaines versions qui debouchent sur des 

approches con<;ues specifiquement a des fins pedagogiques en vue du 

renouvellement de l'enseignement elementaire de l'analyse. 

LE CORPS DES HYPERREELS 

Skolem's works on non-standard models of Arithmetic was the greatest 
single factor in the creation of Non-standard Analysis. (Robinson, 1974, 
p. 278) 

Nous voulons examiner brievement de quelle fa<;on la logique mathe

matique intervient dans la construction primitive de Robinson. A cette fin, 

nous indiquons comment des resultats de Skolem, d'abord per<;us comme 

temoignant d'aspects pathologiques des formalismes, recelent l'idee mai

tresse sous-jacente a une introduction rigoureuse de quantites infiniment 

grandes et petites. 

L'etude des langages formels implique une double vision syntaxique 

et semantique, rendant compte a la fois des aspects deductifs (enonce 

formellement demontrable) et interpretatifs (enonce vrai sous telle inter

pretation). Plus generalement, on s'interesse a la notion d'ensemble d'enonces 

coherent (n'engendrant pas de contradiction) et possedant un modele (c'est

a-dire une structure d'interpretation rendant vrais ses enonces). Le theoreme 
de completude, demontre par Godel en 1930, affirme justement !'equivalence 

entre la syntaxe et la semantique, dans le sens qu'un ensemble d'enonces est 
coherent si et seulement s'il a un modele. Un corollaire immediat en est le 

theoreme de compacite, qui donne !'equivalence entre l'existence d'un modele 
pour un ensemble r d'enonces et !'existence, pour chaque sous-ensemble 
fini de r, d'un modele. C'est cette propriete de finitude qui joue le role-cle 
dans la construction suivante, donnee par Skolem en 1934. 

Soit la structure '1{ de l'arithmetique dans les naturels et le langage 
formel correspondant L muni des symboles appropries (entre autres pour 
l'addition et la multiplication). Nous designons par Theorie (5\0 l'ensemble 
des enonces deL vrais dans '1{. Le « true >> syntaxique permettant d'obtenir 
un modele non standard de l'arithmetique consiste a enrichir L par l'ajout 
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d'un nouveau symbole forme] a jouant le role d'element infini par l'inter
mediaire des enonces n < a ou n est un nature] quelconque. Nous obtenons 

ainsi, au niveau du langage enrichi £, ]'ensemble d'enonces [. = Theorie (71[) 
U { n < a I n nature I} qui, par compacite, possede un modele, disons '!£', 
dont Ia restriction au niveau de L donne un modele ']{_* de l'arithmetique 
englobant N et dans lequel vivent des elements infinis. Par construction 
meme, les deux structures ']{_ et ']{_* sont elementairement equivalentes 
(']{_ = ']{_*), dans le sens qu'elles valident exactement les memes enonces de 
L : c'est Ht le fameux principe de transfer! qui joue un role fondamental 
dans l'utilisation des modeles non standard. La figure 2 schematise Ies eta pes 
de cette construction, les fleches pleines indiquant les changements de niveau 
de langage. 

(3) (2) (1) 

£ � --- Tfiiorie (9{) � - - - g.{_ 

(4) (5) 

Figure 2 

(8) (7) 

9{_* 

(6) 

Le constat ayant permis a Robinson de donner des assises rigoureuses 
au calcul infinitesimal est que Ia meme demarche, mais cette fois a partir du 

corps !!(des reels, donne une structure!!(* de nombres hyperreels comprenant 
des infinis et consequemment, par inverse multiplicatif, des infinitesimaux. 
(L'appellation analyse non standard utilisee par Robinson pour denommer 
sa theorie indique d'ailleurs clairement son origine dans les modeles non 
standard - pour certains (Deledicq, 1992), le sigle anglais « NSA » en est 
venu a designer Ia Nouvelle et Simple Analyse.) La structure'.!(* etant obte
nue a partir d'un corps, on a done une « belle » arithmetique des hyperreels. 
A noter cependant qu'en tant que corps ordonne contenant proprement '1( 
comme sous-corps ordonne, les hyperreels forment necessairement un corps 
transgressant Ia propriete d'Archimede (Levitz, 1974): cela ne contredit 
aucunement le principe de transfert si l'on prend garde de traduire « lrfxy 
reels, 3n naturel tel que y < nx »par« lrfxy hyperreels, 3n hypernaturel tel 
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que y < nx », de sorte que le multiple nx peut etre vu comme resultant d'une 
« somme infinie ». 

La presence d'infinitesimaux nous permet de definir, outre l'egalite 

habituelle, une relation d'« egalite a un infinitesimal pres)) : deux hyperreels 

a et b sont infiniment voisins (a .. b) lorsque leur difference a-b est infini

tesimale ( et non forcement nulle ). C'est cette relation qui fournit Ia solution 

a l'aporie revelee par Berkeley, puisque l'on peut maintenant conclure, pour 

Ia derivee de x2, que 2x + dx ... 2x. 

S'il a semble utile de rappeler Ia construction primitive de Robinson, 

c'est qu'elle apporte une reponse limpide et eclatante au probleme de }'exis

tence d'une structure dans laquelle cohabitent (en harmonie !) des nombres 

finis, infiniment grands et infiniment petits. Qu'une telle structure puisse 

exister etait fortement conteste par exemple par un Cantor qui pretendait 
pouvoir en demontrer l'impossibilite a l'aide de sa theorie du transfini 

(Luxemburg, 1979, p. xxxi) ou un Russell qui concluait ses remarques sur 

le calcul infinitesimal par les commentaires : « Hence infinitesimals as ex

plaining continuity must be regarded as unnecessary, erroneous, and self

contradictory» (Russell, 1903, p. 345). 

De nombreuses approches, donnant lieu a une litterature abondante, 

ont ete proposees en vue de concretiser Ia construction precedente, approches 

qu'il est bien sur impossible de presenter dans le cadre de ce texte. Qu'il 

suffise de mentionner l'utilisation des ultrapuissances et elargissements par 

Robinson lui-meme (Robinson, 1974), les approches algebriques de Hatcher 
(1982) ou Laugwitz (1986), ou encore }'utilisation de series formelles par 

Tall (1980). Plusieurs de ces approches sont evocatrices de Ia construction 

des reels via les suites de Cauchy, ce qui les rend attrayantes pour quiconque 

est habitue a ce formalisme (a ce sujet, on consultera avec profit les expo

sitions faites, entre autres, dans Artmann, 1988; Ebbinghaus et al., 1991 ; 

Henle et Kleinberg, 1979; Hoskins, 1990; ou Hurd et Loeb, 1985). Toute

fois, si on a en vue des applications pedagogiques du calcul infinitesimal, il 

est clair que l'effort consacre a construire rigoureusement les hyperreels 
vient entraver Ia demarche d'apprentissage en analyse proprement dite -
de meme pour les reels d'ailleurs, dans un cadre classique. C'est dans cette 
optique que des approches axiomatiques ont ete elaborees. 

AXIOMATISATION DU CALCUL INFINITESIMAL 

Once one recovers from the shock of being told that infinitesimals and 
other idealized elements were there all along in the sets with which we 
are familiar,[ ... ] one will find our approach very easy to use. (Nelson, 
1977) 

Une critique frequente des opposants a un enseignement de l'analyse 
hyperreelle est qu'un cours de logique est quasiment prealable. La reponse 
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de Keisler a ete de produire un manuel d'enseignement elementaire du calcul 
(Keisler, 1986) dans lequel les proprietes mathematiques des nombres (reels 
et) hyperreels sont cristallisees sous forme de quelques axiomes : ceux 
donnant les proprietes algebriques et d'ordre usuelles des reels ; l'axiome 
de la completude des reels ; un axiome d'extension enon<;ant !'existence d'un 
sur-ensemble des reels contenant un infinitesimal et auquel toute fonction 
reelle peut etre prolongee ; et enfin un axiome de transfert affirmant qu'une 
propriete vraie de tous les reels l'est egalement de tous les hyperreels. On 
en tire toutes les notions requises pour le calcul infinitesimal, en particulier 
la fonction st qui associe a tout hyperreel fini le reel constituant sa partie 
standard (de sorte que, par exemple, st(2x + dx) = 2x) . 

Si l'axiomatisation de Keisler presente les hyperreels comme un prolon
gement des reels, tout comme chez Robinson, il en va autrement de !'approche 
de Nelson (1977) dans laquelle les «nouveaux» nombres sont en quelque 
sorte deja la mais ne peuvent etre per<;us qu'avec des « lunettes » speciales. 
Elaboree dans un contexte ensembliste, l'axiomatique de Nelson repose sur 
l'adjonction d'un predicat standard a la theorie classique des ensembles 
(disons ZFC- i.e. Zermelo-Fraenkel avec choix) dont !'utilisation est codi
fiee par trois axiomes dits d'idealisation, de standardisation et de transfer! 
(d'ou le sigle 1ST designant la «Internal Set Theory» de Nelson). La 
robustesse theorique de cette approche tient dans le fait qu'IST est une 
extension conservative de ZFC (Nelson, 1977), c'est-a-dire que tout ce que 
1ST demontre a propos des objets classiques de la theorie - ceux dont la 
definition ne fait pas intervenir le nouveau predicat- est deja un theoreme 
de ZFC. (Ceci n'est pas sans rappeler !'intuition sous-jacente a !'equivalence 
elementaire.) 1ST est done coherente relativement a ZFC : si Ia contradiction 
1 = 0 pouvait y etre demontree, elle serait aussi un theoreme de ZFC. 
Robinson avait clairement envisage la possibilite d'une approche a la Nelson : 

However, from a formalist point of view we may look at our theory syntactically 
and may consider that what we have done is to introduce new deductive 
procedures rather than new mathematical entities. (Robinson, 1974, p. 282) 

Le cadre restreint de ce travail ne permet pas une etude detaillee de 
chacun des axiomes d'IST (que le lecteur pourra trouver dans des ouvrages 
tels Deledicq et Diener (1989), Diener et Reeb (1989) et Robert (1985), ou 
encore dans l'un des nombreux articles traitant du sujet, entre autres dans 
Deledicq (1990), Diener et Diener (1989), Gilbert (1992), Robert (1984), et 
Robert (1989)). Qu'il suffise d'en indiquer certaines consequences. L'axiome 
d'idealisation (qui n'est pas sans rappeler un argument de compacite, en 
ramenant Ia satisfaction d 'une propriete a sa satisfaction dans les parties 
finies de l'univers) entraine !'existence d'elements « ideaux » au sein meme 
des ensembles habituels ; en particulier, il existe dans les naturels des entiers 
« illimites », c'est-a-dire majorant tout entier standard (au sens du predicat 
adjoint). C'est ce resultat qui sous-tend !'assertion celebre de Reeb (1979) : 
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« Les entiers naifs ne remplissent pas 1\J. » En d'autres termes, les nombres 
jouant le role d'infiniment grands sont deja la, parmi les naturels, mais avant 
Nelson on ne les « voyait » pas (de meme se trouvent deja dans IR des« infi

niment grands » et des « infiniment petits » ). L'axiome de standardisation 
permet d'associer a toute construction un ensemble standard regroupant tous 
les objets standard resultant de la construction. On en deduit !'existence 
d'un objet standard « au voisinage » de tout objet : on a ainsi la notion de 
partie standard sur laquelle repose l'etude des limites. Quant au transfert, il 
affirme qu'une propriete classique est universellement vraie des qu'elle est 

vraie des objets standard. De far,;on equivalente, si une propriete classique 

peut etre satisfaite dans l'univers d'interpretation, alors ce fait peut etre 

« observe », en ce sens que la propriete do it etre vraie pour certaines valeurs 

standard. 11 resulte de cet axiome que les objets usuels (0, rt, IR, sinus, ... ) 
sont standard. 

11 ne faut pas sous-estimer le « choc culturel » que constitue cette 
presence d'infiniment grands et petits au sein des ensembles habituels. C'est 

la un changement majeur de perspective par rapport au point de vue d'un 
Keisler, pour qui l'univers est modifie par l'ajout de ces elements ideaux. 

Chez Nelson, les elements ideaux sont deja presents dans notre univers 

numerique (ils sont done tous finis !), mais on ne les distinguait pas aupa
ravant des nombres standard- un peu, pour reprendre l'image de Deledicq 

(1992), comme si les nombres avaient ete crees en couleur mais que nous ne 

les percevions qu'en noir et blanc. Un tel cadre permet !'elaboration d'une 
theorie de differenciation des ordres de grandeur qui n'avait pas vraiment 
trouve place jusqu'ici en mathematiques. A cet egard, il est preferable de 
parler de nombre idealement grand (i-grand) ou meme simplement tres 
grand, plutot qu'« infiniment grand» (Deledicq, 1992; Wallet, 1992). En 
convenant d'appeler appreciable un nombre ni i-grand ni i-petit, on peut 
mettre en place des regles operatoires (« regles de Leibniz », Deledicq, 1992) 
pour l'arithmetique des ordres de grandeur- voir figure 3, ou l'on designe 
par limite un nombre qui n'est pas i-grand. (A remarquer que les appreciables 
sont tous du meme ordre de grandeur, mais qu'il n'en est pas de meme des 
i-petits ou des i-grands. 11 est utile d'introduire une deuxieme generalisation 

+ ip app ig X ip app ig + ip app ig 

ip ip app ig ip ip ip ? ip ? ip ip 

app app lim ig app ip app ig app ig app ip 

ig ig ig ? ig ? ig ig ig ig ig ? 

Figure 3 
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de l'egalite ou l'on compare a et b en verifiant si le rapport � est i-voisin 

de 1 : on retrouve ainsi les notions d'egalites arithmetique et geometrique 

d'Euler- Laugwitz, 1986, p. 91.) 

L'interet d'un modele des changements d'ordre de grandeur peut etre 

illustre par certaines analogies, comme I' evolution quotidienne des revenus 

engendres par un placement de 1,00 $ a un taux de 8 % : chaque journee 

correspond a un revenu de 0,00022 $, valeur « petite » a l'echelle de la 

monnaie courante, de sorte que la valeur de l'avoir, en especes sonnantes et 

trebuchantes, reste inchangee jour apres jour ; c'est en effectuant le produit 

par le nombre «grand» 365 que l'on retrouve le revenu annuel (appreciable) 

de 0,08 $. Ou encore si le passage du singe a Darwin a pu se faire par des 

etapes correspondant chacune a une evolution« petite », c'est que le nombre 

de generations intermectiaires est « grand » (mais bien sur fini). (A noter 

que com me les reels ne resultent pas pour Nelson d'une extension de corps, 

il n'est pas etonnant que ceux-ci satisfassent la propriete d'Archimede : 

l'enonce « Vxy reels, 3n naturel tel que y < nx » est verifie, pour un Xi-petit, 

en prenant un entier n i-grand approprie.) 

APPLICATIONS PEDAGOGIQUES DU CALCUL INFINITESIMAL 

But so great is the average person's fear of infinity that to this day 
calculus all over the world is being taught as a study of limit processes 
instead of what it really is: infinitesimal analysis. (Rucker, 1982, p. 87) 

II n'est pas facile de faire un bilan exact de l'impact pedagogique de la 

theorie moderne des infinitesimaux sur l'enseignement de base en analyse. 

Les remarques suivantes pourront neanmoins donner une idee de l'activite 

en ce domaine. II convient sans doute de distinguer deux mouvements, le 

premier etant plus pres d'une approche a la Keisler et l'autre, en nette 

progression, se situant dans la Iignee de Nelson. 

La rehabilitation des infinitesimaux par Robinson a rapidement sus

cite des experiences visant a mettre a profit leur potentiel pedagogique, 
compte tenu tant de I' intuition forte qu'ils vehiculent que de la simplification 

logique - diminution des quantificateurs - qui resulte habituellement de 

la formulation dans un contexte non standard de notions telles que limite ou 

continuite. Le traite de Keisler (1986) a ete redige dans cette optique et a 

ete utilise regulierement dans divers contextes pedagogiques depuis pres de 
vingt ans. L'experience Ia plus celebre a cet egard est sans doute !'etude 
comparative de Sullivan (1976) etablissant clairement que cette approche 
constitue une solution interessante et viable- tout en n'etant pas Ia solution
miracle aux maux de l'enseignement. Un autre document frequemment utilise 
dans l'enseignement est le texte succinct de Henle et Kleinberg (1979). On 
trouvera dans Artigue et al. (1986) le rapport d'un cours fonde sur ce texte 
ainsi qu'une analyse detaillee des reponses d'un examen qui amene Ies auteurs 
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a conclure que la majorite des etudiants semblent avoir profite de l'ensei

gnement. Des experiences pectagogiques sont egalement relatees dans 

Wattenberg (1983) et Foley (1986), tandis que Figols (1990) utilise les hyper

reels en vue d'un enseignement elementaire. Tall (1981) compare la vision 

infinitesimale avec d'autres approches pedagogiques, en particulier avec les 

methodes numerique et graphique sur ordinateur. 11 convient enfin de sou

ligner le cas assez exceptionnel de !'University of Teesside (Middlesbrough, 

UK), oil l'enseignement de base du calcul, depuis pres de dix ans, se fait a la 

Keisler : l'objectif vise est d'eviter les embuches conceptuelles de !'approche 

traditionnelle tout en favorisant le developpement de I' intuition. L'experience 

semble positive et les etudiants paraissent acquerir tout aussi bien, sinon 

mieux, les habiletes calculatoires habituelles. 

L'approche de Nelson a connu un impact considerable, et ce tout 

particulierement en France, sans doute sous !'influence de Reeb et de l'equipe 

alsacienne d'analyse non standard. D'abord utilisee comme outil de deve

loppement de l'analyse et des mathematiques appliquees, la theorie 1ST de 

Nelson a vite ete pen;ue comme fournissant un cadre conceptuel remarquable 

a des fins pectagogiques. Parmi la litterature tres abondante publiee recem

ment sur le sujet, soulignons Antoine et al. (1992), Deledicq et Diener (1989), 

Deledicq (1990), Deledicq (1992), Deledicq (non date), Gilbert (1992a), 

Lutz (1987) et Wallet (1992). L'article de Gilbert (1992a) cherche a repondre 

ala question : « L'analyse non standard peut-elle faciliter l'apprentissage de 

I' analyse ? »en examinant certaines difficultes celebres de l'analyse classique 

dans le contexte de Nelson. Antoine et al. (1992) vise !'introduction de 

concepts non standard au lycee, tandis que Deledicq (non date) est un cours 

facultatif en DEUG. Ce dernier document presente d'ailleurs une «hypothese 

didactique » fort interessante a propos de la gradation que permet la 

«Nouvelle et Simple Analyse » par !'introduction successive des trois 

axiomes d'IST, depuis un calcul infinitesimal portant essentiellement sur 

les ordres de grandeur jusqu'a !'analyse infinitesimale des limites et de la 

continuite. 

CONCLUSION 

[ . . .  ] non-standard analysis, in some version or other, will be the analysis 
of the future. (Godel, 1974) 

Selon Mac Lane (1986, p. 155), les matbematiques ne sauraient etre 

reduites ni a un formalisme pur ni a une accumulation d'idees empiriques, 
et consistent plutot en « idees intuitives ou empiriques formalisables ». Les 

infinitesimaux constituent un exemple eloquent d'un tel point de vue, leur 

rehabilitation dans le cadre de l'analyse non standard mettant ala disposition 
du mathematicien des outils evocateurs et puissants. Leur acceptation se 

heurte cependant a certaines reticences- tout comme cela fut le cas, jadis, 
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pour les nombres negatifs ou complexes - voire a des oppositions farou

ches- on se rappellera Ia polemique provoquee par Ia critique virulente de 

Bishop {1977). (On remarquera d'ailleurs Ia quasi-absence de !'analyse non 

standard des derniers congres internationaux des matbematiciens.) 

II est bien connu que les techniques de !'analyse non standard se sont 

averees fructueuses dans leurs applications en recherche, en particulier dans 
l'etude des bifurcations des systemes dynamiques (Diener, 1984; Diener et 

Diener, 1989). Meme si le nouveau cadre ne permet pas de demontrer « plus » 

que le cadre classique, car resultant d'une extension conservative, il provoque 

souvent une importante simplification conceptuelle et factuelle. (On pourrait 

reprendre ici, mutatis mutandis, les mots celebres de Hadamard : « La voie 

Ia plus courte et Ia meilleure entre deux verites du domaine reel passe souvent 

par le domaine imaginaire »(Hadamard, 1959, p. 114)). Une telle simplifi

cation se retrouve par exemple dans }'utilisation faite de Ia « cohabitation » 

discret/continu dans !'elaboration par Harthong et Reeb d'un modele du calcul 
sur ordinateur dans lequel le calcul en virgule fixe, a un ordre de grandeur 

donne, revient a travailler sur une portion de Ia droite naturelle, mais « vue 

de loin » (voir Diener et Diener, 1989). 

Les renseignements que nous avons pu recueillir en preparant ce travail 

font ressortir une certaine utilisation de }'approche infinitesimale dans l'en

seignement, mais peut-etre dans une moindre mesure que d'aucuns le 

prevoyaient il y a une quinzaine d'annees (il y a lieu de retenir le jugement 

en ce qui concerne l'impact eventuel du modele de Nelson, source, mais 

de puis peu seulement, d'une importante activite pedagogique ). Comment 

expliquer que le calcul infinitesimal n'ait pas ete davantage }'occasion d'un 

renouvellement pedagogique ? L'ordinateur y est peut-etre pour quelque 
chose, lui qui depuis un certain temps deja monopolise une energie consi

derable dans Ia problematique de l'enseignement quant a l'impact des 

logiciels graphiques ou symboliques. Sans doute egalement l'inertie inherente 
au systeme educatif est-elle si forte que tout espoir d'une repercussion rapide 

devient illusoire. Mais certains des obstacles sont vraisemblablement 

d'origine philosophique, de cette philosophie « implicite et quasi-spontanee 

qui accompagne nos discours et notre enseignement » (Wallet, 1992). 

Nous laissons le mot de Ia fin a Georges Reeb, dont !'influence a ete 
determinante sur le developpement recent de !'analyse non standard: 

[ . . .  ] notre maniere de parler aux eleves evoluera. Je me contenterai d'un 
exemple : alors que dans un passe recent il etait raisonnable d'affirmer : « La 
methode e,& de Weierstrass est Ia methode qui permet de fonder l'analyse 
classique >>, il est clair que dorenavant on se montrera plus circonspect, on 
remplacera I'article defini la par le plus prudent article indefini une. N'y aurait
il que cette seule implication sur notre enseignement, elle n'en serait pas moins 
tres importante. (Reeb, 1981, p. 259-260) 
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NOTE 

Ce texte est dedie, a l'occasion de son soixante-cinquieme anniversaire 

de naissance, au professeur Shuichi Takahashi, mon mentor, qui tres tot 

s'est applique a faire connaitre l'analyse non standard. 
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COMPUTER-BASED MICROWORLDS: 

A RADICAL VISION OR A TROJAN MOUSE?1 

Celia Hoyles 

University of London, United Kingdom 

In this paper I am going to talk about computer-based microworlds; 

computational worlds where mathematical ideas are expressed and devel

oped. I will address the following questions: 

• What is the potential of computer-based microworlds for mathematics 

learning? 

• Why are mathematics educators interested in the design and devel

opment of microworlds? 

• Is there a mismatch between theory and practice, between aspiration 

and implementation, and if so why? 

From an analysis of these questions, I will attempt to draw out some 

implications for the future in terms of teacher education, software and 

curriculum development. 

First, I will look back over more than a decade of research and 

development of computer-based microworlds-mainly in the context of Logo 

and mathematics since this is work in which I have played a small part. 

What did we achieve? What were our successes and failures and how can 

these be understood? What can we learn from these experiences to provide 

insight that stretches beyond the Logo mathematics community and into 
mathematics education more generally? 

The idea of the computer as a Trojan horse entering the classroom by stealth is 
taken from Olson (1988). 
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THE VISION AND THE REALITY 

When we started working in Logo mathematics in the early 1980s, we 

held as our goal the evolution of a mathematical culture-a change in the 

relationship between teachers, pupils, and mathematics. As Seymour Pap

ert commented in the foreword to the book I have recently edited with Richard 

Noss, "(We were interested in the) ways in which Logo and Logo research 

bear on relocating the boundary between what is and what is not to be counted 

as mathematics in the lives of children." (Papert, 1992, p. 13, my empha

sis.) What have we achieved in terms of evolution of culture? And, as we 

develop more powerful and sophisticated softwares for mathematics, do the 

boundaries shift? 

It is useful first to clarify the terms I am using. What is a "microworld?" 

In another paper (Hayles, in press), I have tracked the subtle (or not so 

subtle!) changes in the meaning of the word "microworld" from its genesis 

within universities and research laboratories to its incorporation into school 

practice. These changes in meaning make it difficult, perhaps impossible, 

to characterize a microworld in ontological terms; nonetheless I will sketch 

out what for me at least are its major features. 

At the core of a microworld is a knowledge domain to be constructed 
through interaction with software. Papert (1980, p. 125) suggested that a 

microworld is "a 'province of Mathland' where certain kinds of mathemat

ical thinking could hatch and grow with particular ease." Therefore the 

relationship of the student to the software is central, although the knowl

edge must also be recognized as complex, interrelated, and growing: three 

characteristics which are reflected in the software. This rules out software 

which demands simply a limited set of self-contained and pre-defined al

lowable actions, although exploration within microworlds is inevitably 

constrained. Feurzeig (1987, p. 51) describes a microworld as "a clearly 

delimited task domain or problem space whose elements are objects, and 

operations on objects which create new objects and operations." Yet there 

is more to microworlds: there must be ease of access simultaneously with 
deep challenge. As DiSessa (1987, p. 65) has suggested: "(in microworlds) 
besides a density of observable phenomenon-potential theorems-it seems 
that salient events ... happen to be correlated with good, investigatable and 
solvable problems." 

It perhaps makes sense to view a microworld as a process rather than 
an object. Microworld activity is characterized by active involvement of 
students within motivated and motivating project work whose goals have 
been negotiated with the teacher. The literature in Logo mathematics is re
plete with examples of microworlds. To take just one example, microworld 
activity was a cornerstone of the Logo mathematics project (Hoyles & 

Sutherland, 1989). Throughout this research, the students' work was 
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characterized by student autonomy, collaborative effort, and involvement. 

The feelings of the students are captured in the following interview extract: 

"What I really like about Logo mathematics is you don't have the teacher 

telling you all the time. It needs lots of brain power. Our robot took us 

weeks and weeks!" 

Obviously, interaction with the computer is structured by the software 

tools available, but it is open, insofar as the solution paths are not laid down. 

Students themselves decide upon solution strategies and, as part of their 

activity, they use mathematical ideas before the ideas are necessarily fully 

discriminated or generalized. (See Hayles, 1987, for a discussion of this 

approach to learning mathematics.) Let me give an example of this phenom

enon by briefly describing some work with a spreadsheet. The goal of the 

activity was to construct the polygon numbers. (See Figure 1.) 

position 
1 2 3 4 

in seq. 

triangle 

A L\ � numbers 
• 

1 3 6 10 

square 

D 5J @] numbers 
• 

1 4 9 16 

pentagon 

(1 & {;;] numbers • 

1 5 12 22 

hexagon 

0 Q @ numbers • 

1 6 15 28 

Generate the triangle numbers on a spreadsheet 

Generate the other p olygon numbers 

Investi gate different ways of generating the sequences 

Fi gure 1. Polygon numbers. 
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Every time we have offered this activity to groups of students, even 
mathematics educators, we are struck by the flexibility and variety of ap
proaches adopted. Influenced by prior mathematical knowledge, different 
relationships are constructed by interaction with the software and different 
goals emerge. Generalizations are made, but first in action, and frequently 
the way they are made and the language in which they are communicated 
appear ambiguous-unless they are interpreted within the micro-culture of 
the spreadsheet. Gestures-pointing to the computer screen-are crucial 
and in fact define the processes which have to be replicated. Thus, it is 
often action and gesture which capture any generalization rather than an 
articulated language of description. For example, two students described 
their construction of the triangle numbers by stating, "It's that one, add that 
one, equals that one, that one add that one equals that one ... and so on"
meaningless to read but completely clear when the words are accompanied 
by pointing to specific cells. 

This is an example of what Richard Noss and I have termed a situated 

abstraction (Hayles & Noss, 1992), the first step in constructing a mathe
matical generalization. It is "situated" in that the knowledge is defined by 
the actions within a context; but it is an "abstraction" in that the description 
is not a routinized report of action but, exemplifies the students' reflections 
on their actions as they strive to communicate with each other and with the 
computer. 

Thus, one way to characterize microworlds is to think of them as 
environments where students generate situated abstractions of a mathematical 
nature-a spontaneous process which can be developed later within more 
structured and formalized settings. In fact, it is easier to describe student 
activity in microworlds by contrasting it with what it is not-not practising 
routines, not guessing the teacher's agenda, not working competitively. 
Within microworlds students are "builders" of their own mathematics (See 
for example, Harel & Papert, 1990; Harel & Papert, 1991)-in collaboration 
with each other and with the teacher. 

So, in summary, interactions in a microworld-guided by "good" 
activities and "good" teachers2-can be characterized as follows: 

2 
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• They are playful. There are rules and constraints guided by mathemat
ical imperatives, but these stimulate activity rather than suppress it. 

• They are motivated. Students are interested and develop a sense of 
ownership over the ideas they construct together. 

This is a deliberately cryptic way to summarize some crucial ideas; namely that 
learning environments can only be characterized in relation to activities and 
teachers. (For a discussion of this see Hoyles & Noss, 1987.) 
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• There is a continuous dialectic between the formal and the informal. 

The computer formalizes the informal and informalizes the formal. 

• The mathematics is to some extent implicit and an incidental part of 

the activity. It is not necessarily visible as an explicit goal for the 
pupils. 

So our radical vision in the early microworld movement was that 

students, software, and knowledge would grow together interactively in the 

pursuit of epistemologically rich goals. There would be change within the 

practice of school mathematics; change in how the mathematics curriculum 

was perceived and how it was transacted; change which would democratize 

mathematics whilst improving mathematical understanding and classroom 

practice. 

But what of the practice? How has the computer revolution affected 

schools, if at all? It is clear from a review of the available literature (mainly 

in the United States and the United Kingdom) that the impact of computers 

on school life does not match the vision. As Becker put it, "There were 

'dreams' about computer-using students ... dreams of voice-communicating, 

intelligent human tutors, dreams of realistic scientific simulations, dreams 

of young adolescent problem solvers adept at general-purpose programming 

languages-but alongside these dreams was the truth that computers played 

a minimal role in real schools." (Becker, 1982, p. 6) In the same vein, Becker 

later argued, "As we enter the 1990s, it is important to understand how 
much of that early limited reality still remains and to understand how much 

of the idea of transforming teaching and learning through computers remains 

plausible. We need to be aware of the 'old habits' and 'conventional beliefs' 
that are common among practising educators and the 'institutional con

straints' that impede even the best of intentions to improve schooling through 

technology." (Becker, 1991, p. 6). In the United Kingdom the findings are 

similar. In a survey conducted by the Department of Education and Science 

(DES, 1991), computer use in mathematics classrooms was reported to be 

limited and, where the computer was in evidence, it was simply an alternative 

medium within a thoroughly conventional framework. 

REFLECTIONS 

So why is there this apparent mismatch between theory and practice, 
between dreams and reality? What has happened to the radical dream? Why 
has the Trojan horse turned into a Trojan mouse? The way to understand 
this phenomenon is to recognize that most school activity exists in a culture 
of its own where learning has to co-exist alongside other agendas: manage
ment, accountability, selection, and the "curriculum." As any innovation 
moves into schools, I identify four processes by which the innovation is 
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transformed-pedagogizing, compartmentalizing, incorporating, and neu

tralizing-each of which stems from requirements of the school culture. 

Pedagogizing 

In the Logo community, the role of the teacher in the children's 

mathematical development has increasingly been emphasized. Despite 

reports to the contrary, Papert himself held that teachers play an important 

role in the learning enterprise and argued that teachers should be co-explorers 

with students in their joint pursuit of mathematical goals (Papert, 1980). In 

the Logo mathematics project mentioned earlier, although we set out to 

intervene "lightly," in the context of the students' own work-to suggest 

ideas to explore or to point to "interesting" mathematical extensions-on 

analysis of our transcripts of student work, we were surprised by the 

significant structuring role our "subtle" interventions had on student progress 

and the direction of their work. In the areas we had emphasized, the students 

made consistent and excellent progress, whilst in others, development was 

haphazard. 

In retrospect, the theories of Vygotsky provide a coherent framework 

for interpreting these findings within the realm of psychology. Initially, we 

had taken a Piagetian approach, expecting that students would construct 
mathematical knowledge through interaction within our micro-worlds. We 

hypothesized that they would build their ideas through interaction and 

reflection on the results of their actions: a process facilitated by the feedback 

provided by the computer. However, we came to appreciate how mathe

matical knowledge emerged through social interaction, with the teacher and 
other students offering "scaffolding" within a child's zone of proximal 

development (Vygotsky, 1978). This interpretation brings pedagogic inter

vention to center stage, as mediating between the child and his or her 

experience. 

Thus as Logo moved into the school context, it came to be recognized 
that the teacher must bring to attention the "interesting" mathematical is
sues: to bridge the gap between what the pupils see and what the teachers 
see; to make links between students' constructive activity on the computer; 
their expression these links orally and on paper; and to push towards gener
alization so that the students learn to solve not just the problem in hand but 
to seek out the general beyond this particularity. 

Inevitably, in schools, other social and cultural issues come into play 
which have to be dealt with by teachers, such as issues of access to and 
dominance over the machines, particularly in relation to boys and girls. In 
addition, once the teacher is acknowledged as an important actor in the learn
ing process, the teacher's intentions and beliefs must be considered, 
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as these inevitably shape the nature, intention, and timing of teacher inter

ventions. We have studied how teachers mediate in the context of a course 

of in-service education concerned with the introduction of computers. We 

set out to analyze how the course activities and the teacher's goals and be
liefs mutually constituted each other: how the teacher structured the computer 
activities according to his or her aims, and simultaneously how the activi

ties structured the teachers' beliefs and practices. 

We constructed caricatures of the course participants to provide a 

synthesis of views, attitudes, and practices of a cluster of teacher case stud

ies. The caricatures attempted to draw attention to teacher characteristics 

and behaviors which we deemed crucial by exaggeration of some facets and 

omission of others. Thus, they reflected our ideas about categories by which 

to gauge mathematics teaching and teachers. They mirrored our beliefs as 

well as reflected the teachers' beliefs in so far as they resonated with any 

individual viewpoint. 

The five caricatures which emerged from our study were: Mary, the 

frustrated idealist; Rowena, the confident investigator; Denis, the controlling 

pragmatist; Fiona, the anxious traditionalist; and Bob, the curriculum 

deliverer (Noss, Sutherland, & Hoyles, 1991; Noss & Hayles, 1992). Each 

illustrated very different ways of integrating computers into practice and 

the different foci upon which they reflected during this process. Thus they 

represent an attempt to capture the complexities inherent in pedagogizing 

the computer innovation. 

Compartmentalizing 

In any review of the local histories of curriculum innovations, a re

peating pattern can be discerned. When the innovation first enters the school, 

it tends to do so as a topic which is added-on to the existing curriculum. For 

example, in the United Kingdom we have seen "investigative mathemat

ics" transformed into "investigations"-and then timetabled on a Friday 

afternoon leaving the rest of the mathematics curriculum unchanged and 

untouched by the new phenomenon! Why does this happen? I suggest two 

reasons: in order to cope with the change by limiting the disruption caused 

at its introduction, and to marginalize the innovation by keeping it insulat

ed from mainstream work. These reasons have the same effects despite 
stemming from very different reactions to the innovation: the first has the 
ultimate aim of integrating the innovation into practice, the second of ex
cluding it. One effect of the process of compartmentalizing as far as 
computers are concerned is that computer work frequently becomes sepa
rated from mathematics and other knowledge domains, appearing as a new 
topic in its own right: for example, in courses of computer studies, informa
tion awareness, information technology. 
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The second reason for the process of compartmentalizing can be traced 
to more psychological considerations. I have already touched upon the no
tion of situated abstractions: the influence of the medium on mathematical 
expression and the fragmented and situated nature of students' mathemati
cal understanding. In fact, as you will have noticed, we now talk about "Logo 
mathematics" which reflects its existence as an entity in itself. I have noted 
already that it has been consistently reported that pupils tend not to link 
their computer work with their paper and pencil work-a criticism similar 
to the oft-lamented absence of connection between science and mathemat

ics, for example. This phenomenon has been described variously as fractured 
knowledge, knowledge in pieces (Papert, 1980; DiSessa, 1988). Pupils com

partmentalize their understandings and "situations co-produce knowledge 
through activities" (Seely Brown et al., 1989). Thus mathematical abstrac

tions remain inextricably linked to the context in which they are constructed. 
Thus "psychological" compartmentalizing interwoven with "bureaucratic" 
compartmentalizing raises real problems of communication and synthesis. 
How can we bridge the discursive disjuncture between microworlds and 
other school mathematics, or how can we expand school mathematics to 
incorporate this new culture and to do this in real classrooms? 

Incorporating 

Another phase in the move of an innovation into school is a change in 
the innovation itself in order to meet the requirements of the school culture 
and the school curriculum: the phenomenon of didactic transposition, as put 
forward by Chevallard (1985). Chevallard has suggested that any content to 
be taught must be embedded in the school context to make it teachable; but 
since the school context consists of lessons, "time" pressure, accountabili
ty, and testing, knowledge is forced into linear packages. Management 
considerations supersede the cognitive and affective goals of mathematical 
learning and, by this process, the knowledge itself becomes essentially triv
ialized. 

A rather stark exemplification of didactical transposition is evident in 
the treatment of Logo within the UK mathematics national curriculum. Under 
the attainment target, Shape and Space, is the statement "recognize differ
ent types of movement" illustrated by Turn to left or right on instruction 

(PE, games, or Logo) and at another higher level, under the heading "spec
ify location," is the example Use Logo commands for distances and direction. 

Similarly, within the algebra attainment target, appears Create shapes by 

using DRAW and MOVE commands in BASIC in the appropriate graphics 

mode or by using Logo commands. In all these examples, Logo is not even 
specified as a language, let alone a philosophy or culture. It is now a set of 
commands! In case this is interpreted merely as a Logo phenomenon, let me 
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give you an example of the didactical transposition of spreadsheets as they 
became incorporated into the same national curriculum. We find the fol

lowing statement: Explore number patterns using computer facilities or 

otherwise with the example Use the difference method to explore sequences 

such as 2 5 10 17.26. Note how the process of software interaction is clearly 
laid down: both the goal and the solution path of a well-defined and self

contained mathematical "fragment" is completely specified. There is little 
(if any) room for pupil decision-making-pupils building their own mathe
matics. The underlying framework is one of behaviorism and mastery 
learning, in contrast to the constructivism of the microworld designers. 

Neutralizing 

A process of transition more associated with computers than with gen
eral characteristics of innovation is the shift from seeing the computer as a 

means of exploration to using the computer simply as a means to a pre
scribed end: just a tool. Often the intention behind this tool designation is 
to alleviate anxiety among teachers by indicating that there is nothing very 

special about the computer, that it is after all just like a modern pencil! But 
is it? What becomes of the radical vision of transforming education through 
microworlds if we have to pretend that "business is as usual"? More cru

cially, the designation "just a tool" frequently conveys a veiled attack on 
the student autonomy made available by programmable software. It focuses 
attention on the utilitarian function of the computer-to produce an end

and implies that computer tools are somehow value free, and can be "applied" 
to a curriculum in ways that are insulated from the process and practice of 
education. Microworlds take on input-output features where process is sub

sumed under delivery and any revolutionary potential is neutralized and 
suppressed. 

THE FUTURE 

So what of the future? What are the implications of this story and 
what can we learn from this very evident transformation of a radical vision 

into a Trojan mouse? Many developments in the United States try to "pre
serve" the innovation from the political misuse of teachers by producing 
curriculum packages, computer tools with accompanying material which 
deliver the curriculum. The teacher has little or no role in the learning process 
except to encourage and to manage. The software, described as educational 
or instructional, is assumed to produce learning in ways that are safe. Both 
curriculum and educational practice remain unchanged. But these metaphors 
have a clear message, a top-down transmission model of learning that 
attempts to bypass teachers and keep children on very well-defined tracks. 
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We know that this inevitably leads to the separation of the bottom-up 

spontaneous mathematizing of pupils from the top-down specifications of 
the curriculum. Classrooms will continue to display all their familiar features, 

such as: students avoiding mathematics wherever possible, using their 

energies to pick up non-mathematical clues as to how to obtain correct 

answers, becoming answer-oriented and product-oriented, competing rather 

than collaborating, and expending the least effort in order to achieve optimal 

results. Students' performance gives little indication of their mathematical 

competence, and in fact the most critical questions to address in trying to 

interpret their productions are, "Whose agenda are the students following?" 

and "What are the students' goals?" 

Thus the production of packages fails to problematize educational 

practice and presents a picture in which the curriculum, knowledge, and 

teacher-pupil relationships are givens. Additionally, it deliberately de

professionalizes teachers and in so doing fails to recognize that all packages 

are of necessity mediated by students and teachers. There is no such thing as 

a teacher-proof curriculum! 

So what direction would I like us to take? At the level of software and 
curriculum design, we still need more expressive computational media tuned 

for the development of mathematical knowledge, more carefully designed 

and creative activities with rich avenues to explore with the software avail
able, and more precise analysis of pedagogy and the way the computer 

structures and is structured by the classroom culture. At the level of the 

teacher, we need to provide opportunities for teachers to express their own 

mathematical ideas with the software (to have fun mathematically too!), to 

support their attendance at substantial courses (half a day is not enough and 
can be counter-productive) which maintain a mathematical rather than a 
technical focus, and to make available ample hardware (preferably with no 
advertising plugs!) and easy access to technical and educational assistance. 

An overriding aim should be to resist the pressure to push through 

change in the short term, to go for technical fixes which have little to do 
with developing mathematics teaching and learning. As Polin (1991) 
suggested, "We need to instill a different vision of teacher development in 
our impatient policy-makers and in our harried teachers, a vision that 
acknowledges the many years of practice it takes to acquire and integrate a 
new way of teaching." (Polin, 1991, p. 7). It is important to recognize the 
tendency of schools to adopt a minimalist approach to change but also to 
understand that change is a process not an event. Let us not be diverted by 
the demands of a fragmented curriculum and its associated assessments but 
rather strive to retain our radical vision of a different culture for learning 
mathematics. 
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DIFFERENT WAYS OF KNOWING: 

CONTRASTING STYLES OF ARGUMENT 

IN INDIA AND THE WEST 

George Gheverghese Joseph 

University of Manchester, United Kingdom 

Many of the commonly available books on history of mathematics 

declare or imply that Indian mathematics, whatever its other achievements, 
did not have any notion of proof. To illustrate this viewpoint, with two 

examples, the first taken from one of the better known texts on the history 

of mathematics, Kline (1972, p. 190) writes: 

There is much good procedure and technical facility, but no evidence that 
they (i.e., the Indians) considered proof at all. They had rules, but apparently 
no logical scruples. Moreover, no general methods or new viewpoints were 
arrived at in any area of mathematics. It is fairly certain that the Hindus (i.e., 
the Indians) did not appreciate the significance of their own contributions. 
The few good ideas they had, such as separate symbols for the numbers, were 
introduced casually with no realisation that they were valuable innovations. 
They were not sensitive to mathematical values. 

A more recent opinion is that of Lloyd (1990, p. 104) who writes: 

It would appear that before, in, and after the Sulbasutra (the earliest known 
evidence of mathematics from India), right down to the modern representatives 
of that tradition, we are dealing with men who tolerate, on occasion, rough 
and ready techniques. They are in fact interested in practical results and show 
no direct concern with proof procedures as such at all. 

These quotations raise a number of fundamental questions: What is 
mathematics? how is it created? and how is its quality to be assessed? But a 

more general question is: How do mathematicians produce information about 
mathematical objects? Underlying all these questions is the issue of proof, 
often perceived as a litmus test of whether we are "doing" real mathematics 
or doing it well. 
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THE CULTURAL CONTEXT OF PROOF: 

THE CASE OF THE SULBASUTRAS 

It is not often sufficiently recognized that, between different mathe
matical traditions, there are certain basic differences in the cognitive 
structures of mathematics-differences in their ontological conceptions re
garding the existence and nature of mathematical objects and methodological 
conceptions regarding the nature and ways of establishing mathematical 
truths. The first quotation above represents a viewpoint that sees ways of 
establishing mathematical truths (or what are more commonly known as 
"proofs") as being immutable and infallible. The second quotation is from a 
text which, while acknowledging the legitimacy of "informal" proof proce
dures for confirming or checking a result, requires that a formal proof 
procedure should observe two crucial distinctions: (a) that between the "prac
tice of proof (of whatever kind) and an explicit concept corresponding to 
the practice, a concept that incorporates the conditions that need to be met 
for a proof to be given" and (b) that between "exact procedures and approx
imate ones" (Lloyd, 1990, pp. 74-75). On both these criteria, Lloyd concludes 
that early Indian mathematics did not have "any explicit notion of what 
proof is" (Lloyd, 1990, p. 75). 

Lloyd's argument is interesting. In a comparison of the similarities 
and differences between Greek and Chinese mathematics, he accepts that 
both traditions "practised proofs and deploy concepts to describe their 
procedures that are subject of explicit reflection and comment." But he points 
out three major differences between the two mathematical traditions. First, 
the Chinese were only concerned with whether a certain formula or algorithm 
produced a correct solution and showed little interest in the type of self
conscious attempts at abstract justification of the procedure which constituted 
the Greek notion of proof. Second, the Greek concern with first principles 
led to "the classification of different types of indemonstrable primary 
premises, axioms, postulates and definitions, and with making those used 
explicit at the outset of a sequence of demonstrations." (p. 121) There is no 
analogue to this concern in ancient China. The final and the most important 
difference between the two mathematical traditions relates to their two basic 
preoccupations: the Greek demand for rigorous demonstration compared to 
the Chinese emphasis on "practical applicability" which led to exploration 
of analogies and common structures in procedures for solution of groups of 
problems. Lloyd's argument is not that the ancient Chinese geometry did 
not have a general procedure for "proof"-this is not in any case a valid 
claim, given the widespread use of the "out-in complementarity principle" 
(or what we would call "dissection-and-reassembly principle") in ancient 
Chinese mathematics-but that the Chinese did not share to the same degree 
the Greek enthusiasm for foundational questions or the concern with ultimate 
justification.1 
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Lloyd, as his quotation above implies, denies even this basic accom

plishment on the part of the Indians. He bases his case on an examination of 

the earliest known geometry in India, Vedic geometry, for which the basic 
sources are the Sulbasutras, conservatively dated as recorded between 800 

and 500 BC, though they contain knowledge from earlier times. The Sul
basutras are instructions for the construction of sacrificial altars (vedi) and 

the location of sacred fires (agni) which had to conform to clearly laid

down instructions about their shapes and areas if they were to be effective 

instruments of sacrifice. There were two main types of ritual, one for wor

ship at home and the other for communal worship. Square and circular altars 

were sufficient for household rituals, while more elaborate altars whose 

shapes were combinations of rectangles, triangles, and trapeziums were re

quired for public worship. Some of the most elaborate of the public altars 

were shaped like a falcon just about to take flight (Vakrapraksa-syena), as 
shown in Figure la. It was believed that offering a sacrifice on such an altar 

would enable the soul of the supplicant to be conveyed by a falcon straight 

to heaven. 

Figure la. The first layer of a Vakrapaksa-syena Altar: the wings are each made 
from 60 bricks of type a, and the body, head and tail from 50 type b, 
6 type c, and 24 type d bricks. Each subsequent layer was laid out using 
different patterns of bricks with the total number of bricks equalling 200. 

For further details of the use of the "out-in complementarity" principle in Chi
nese mathematics, see Joseph (1992, pp. 180-183). 
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Most sacrificial altars were constructed with five layers, each of 200 
bricks, which reached to the height of the knee. For special occasions ten, 

fifteen, up to a maximum of ninety-five layers of bricks were prescribed for 

use in the construction of the falcon-shaped altar. The top layer of the basic 

altar (Figure 1 b) had an area of 7.5 square purushas. 2 A "purusha" was 

defined as the height of a man with his arms stretched above him, say 2.5 
metres, which would give the altar an areal measure of approximately 47 

square metres. 

Figure lb. The basic Altar. 

Figure lc. A Prototype of the Altar. 

For the second layer from the top, the prescription was that one square 
purusha should be added, so that the total area would be 8.5 square purushas. 
Similarly, each successive layer area should be increased by 1 square 
purusha, until with the 94th successive increase of 1 square purusha, the 
area of the base of this huge construction would be 101.5 square purushas 
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(See Figure ld). There is the implication that the higher the level at which 

the sacrifice was performed, the more effective the sacrifice. 

Figure ld. Constructing the Altar. 

It is clear that, in the construction of larger altars, if the same shape as 

the basic shape is required, there are two "hidden" geometrical problems: 
(a) that of finding a square equal in area to two given squares and (b) the 
conversion of a rectangle into a square of equal area or vice versa. These 

constructions are achieved in the Sulbasutras using the Pythagorean theo

rem. 

In the Katyayana Sulbasutra (named after one of the authors) appears 
the following proposition which is more or less replicated in the other two 
major Sulbasutras (those of Apastamba and Baudhayana): 

The rope (stretched along the length) of the diagonal of a rectangle makes an 
(area) which the vertical and horizontal sides make together. (Katyayana 
Sulbasutra, 2.11) 

Using this theorem, the Sulbasutras show how to construct both a 
square equal to the sum of two given squares and a square equal to the 
difference of two given squares. Further constructions involve the trans

formation of a rectangle (square) to a square (rectangle) of equal area. A 

2 Apart from minor variations, the body of the first layer falcon-shaped altar was 
4 square purushas square metres, the wings and tail were one square purusha 
each plus the wing increased by t of a square purusha each and the tail by frJ
of a square purusha so that the image would more closely approximate the shape 
of a falcon (See Figures lb and lc). 

Thus the total area of the top layer of Vakrapaksa-syena altar is 

4 + (2 x 1.2) + 1.1 = 7.5 square purushas. 
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discussion of these constructions is found in Joseph (1992, pp. 230-232). We will consider only one of these constructions. 
A remarkable achievement of Vedic geometry was the discovery of a procedure for evaluating square roots to a high degree of approximation. The problem may have originally arisen from an attempt to construct a square altar twice the area of a given square altar. The problem is one of constructing a square twice the area of a given square (A) of side 1 unit. It is clear that for the larger square (C) to have twice the area of square A, it should have side � units. Also, we are given a third square (B) of side 1 which needs to be dissected and reassembled so that by fitting cut-up sections of square (B) around square (A), it is possible to make up a square close to the size of square (C). Figure 2 shows what needs to be done. The instructions given by Apastamba (1.6) and Katyayana 

(2.13) in their Sulbasutras may be translated thus: 
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Increase the measure by its third and this third by its own fourth less the 
thirty-fourth part of that fourth. This is the value with a special quantity in 
excess. 

Square C Square A Square B B 
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Figure 2a. To draw square C =square A+ square B. 
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Figure 2b. Application of "Out-In Complementarity Principle." 
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If we take 1 unit as the dimension of the side of a square, the above 
formula gives the approximate length of its diagonal as follows: 

G 1 1 1 
'\j "- = 3 + 3 X 4- 3 X 4 X 34 = 

1.4142156 

The Sulbasutras contain no clue as to the manner in which this accurate 
approximation was arrived at. A number of theories or possible explanations 
have been proposed. Of these, the most plausible one is that of Datta (1932), 
which is discussed in Joseph (1992, pp. 235-236). 

THE NATURE OF PROOF: A DIGRESSION 

Consider the word "proof" in the sense that Lakatos (1976, p. 9) uses 
it to mean a "thought experiment which suggests a decomposition of the 
original conjecture into subconjectures or lemmas, thus embedding it in a 
possibly quite distinct body of knowledge." 

In this broad sense any "proof" has psychological, social and logical 
features (Resnick, 1992, pp. 15-17). The psychological task is to convince 
the readers of its conclusions. The notation and the way in which the 
argument is formulated, organized, and presented determines whether the 
proof succeeds at this task. Yet success in convincing an audience does not 
necessarily mean that the proof is free of error. Proofs make certain claims 
about mathematical objects.3 Understanding such claims requires training 
and the more "advanced" the mathematics the longer the training required. 
Nowhere is this training more important than in the comprehension of the 
logical framework in which the proof is embedded. Therefore, it is important 
to distinguish between the psychological and the logical powers of proof. A 
logically impeccable proof could appear obscure and unconvincing because 
the audience has not acquired through training a satisfactory understanding 
of the mathematical objects of which the claims are being made in the first 
place. 

It is the third feature of a mathematical proof that is often ignored. 
Proofs are social and cultural artifacts. They evolve in a particular social 
and cultural context. And this is important since we might tend to forget 

The nature of mathematical objects determines how we make contact with them. 
If mathematical objects are based on the Euclidean ideas of atomistic and ob
ject-oriented view of space (points, lines, planes and solids) this will be in 
complete contrast to a Navajo idea of space as neither subdivided nor objec
tified and where everything is in motion (Bishop, 1990, p. 51}. The crucial point 
is that ideas of proof are culturally created and they must be understood within 
that culture, resisting the easy temptation to make crude comparisons across 
cultures and oppositional ways of deciding between ideas which the quotation 
from Kline at the beginning clearly typifies. 
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that part of finding out how a proof works includes finding out how well its 
intended audience (the author included) is prepared to follow it. This is 
further complicated by the fact that proofs are context-bound-not only in 
relation to a proof's language and notation but also its reasoning and data 
(or the uses to which a mathematical result is put). 

THE INDIAN PROOF (OR UPAPATTI)4 

For a period going back about two thousand years, a great deal of 
attention in Indian mathematics was paid to providing what was often re
ferred to as upapatti (which may be roughly translated as a "convincing" 
demonstration) for every mathematical result. In fact some of these upapat

tis were noted by European scholars of Indian mathematics up to the first 
half of the nineteenth century. For example, in one of the early English 
translations (1817) of parts of Brahma Sputa Siddhanta of Brahmagupta 
(c. 650 AD) and of Lilavati and Bijaganita of Bhaskaracharya (c. 1150 AD), 
Colebrook gives in the form of footnotes a number of upapattis from com
mentators and calls them demonstrations. Similarly, Whish (1835), who 
brought to the attention of a wider public work in Kerala on infinite series 
for circular and trigonometric functions, showed sample upapattis from a 
commentary entitled Yuktibhasa (1600) which related to the Pythagorean 
theorem. It would indeed be interesting to find out how the currently popu
lar view, that Indian mathematics lacks the very notion of "proof," has come 
about during the last one hundred and fifty years. 

In this context it is important to realize that the rather scanty discus
sion of the methodology of Indian mathematics contained in the text on the 
history of Indian mathematics concentrates on a few original texts, notwith
standing the fact that traditionally the commentaries seem to have played at 
least as great a role in the exposition of the subject as the original text itself. 
It is no wonder that mathematicians of the calibre of Bhaskaracharya 
(c. 1150 AD) and Nilakantha (a 15th century Kerala mathematician/astron
omer) wrote not only major original treatises but also erudite commentaries 
on either their own works or on important works of an earlier period. It is in 
such commentaries that one finds detailed upapattis for results and proc
esses discussed in the original texts as well as more general discussion of 
the methodological and philosophical issues concerning Indian astronomy 
and mathematics. 

As an illustration let us consider the commentaries of Ganesha Daivajna 
(c. 1545 AD) on the texts Lilavati and Bijaganita, both written by Bhaskara
charya.5 Both texts were highly influential in the development of Indian 

4 
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mathematics. According to Ganesha, ganita (used both as a generic word to 

describe the subject of mathematics as well as in a specialized sense to 

describe calculation) is mainly of two types: vykata ganita and avyakta 
ganita. Vyaktaganita (also called patiganita or calculations with the board) 
is that branch of ganita which employs clearly laid out procedures or 

algorithms well known for general use. This is in contrast to avyakta ganiti 
(also called bijaganita) which is distinguished from the first type by including 

procedures that use indeterminate or unknown quantities in the process of 
solution. The unknown quantities were referred to by terms such as yavat 
tavat (i.e., "as much as") and different colors (varna) denoted by abbrevi

ations such as ka (for kalaka or black), ni (for nil aka or blue), etc., just as in 

modern algebra unknowns are denoted by symbols x, y, z, etc. 

5 

___ l __ _ 

I 
,-

1.1 < � <t.l 2 4 

Figure 3a. Evaluation of � (combining three squares). 

Remove 

2<f"5<2t 

Figure 3b. Evaluation of J5 (combining five squares). 

Remove 

The two commentaries referred to are Buddhivilasini on Lilavati and Siromani
prakasa on Siddhantasiromani, edited by Apte {1937-41). Ganesha was the son 
of Keseva Daivajna, a distinguished astronomer. Taught by his father, his com
mentary on Lilavati is one of the best commentaries on this famous text of 
Bhaskaracharya. 
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+ 

Figure 3c. Combining two cubes. 

Many of the upapattis relate to the second type of ganita-bijaganita. 

It would be misleading to name the two types-patiganita and bijaganita

as arithmetic and algebra respectively. Patiganita subsumes not only 

arithmetic and geometry, but also topics included under algebra such as the 

solution of equations, provided one does not have to make recourse to 

indeterminate quantities for carrying through the process of solution as in 

the "method of false position" first used by the Egyptians about four thousand 

years ago. 

A specific illustration of the use of upapattis would be useful. In a 

chapter on solution of quadratic equation from Bijaganita, Bhaskaracharya 

poses the following problem: 

Say what is the hypotenuse of a plane figure, in which the side and upright are 
equal to fifteen and twenty? And show the upapatti of the received mode of 
computation. 

Later he adds: 

The demonstration follows. It is two fold in each case: one geometric (kshe
tragata) and the other algebraic (avyaktaritya) ... The algebraic demonstration 
must be exhibited to those who do not comprehend the geometric one. 

Ganesha provides two upapattis which are elaborations of the ones 

outlined by Bhaskaracharya. These are given verbatim below, the only 

change being that we continue to use the Pythagorean triple (15, 20, 25) 
given in the original example rather than Ganesha's (3, 4, 5). 

The upapatti for the avyakta method 
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Take the hypotenuse as the base and denote it as "ya" in the figure. Let the 

"bhuja" and "koti" (the two sides) be 15, 20 respectively. Let the perpendicular 

to the hypotenuse from the opposite vertex be drawn. This divides the triangle 

into two triangles which are similar to the original. Now use the rule of 

proportion. When "ya" is the hypotenuse the "bhuja" is 15, then when this 

"bhuja" 15 is the hypotenuse, the "bhuja" which is now2 the segment of the 

hypotenuse to the side of the (original) "bhuja" will be 1;a . Again when "ya" 

is the hypotenuse, the "koti" is 20, then when the "koti" 20 is the hypotenuse, 
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the "koti" which is now the segment of hypotenuse to the side of the (original) 

"koti" will be 2�: . Adding the two segments of "ya", the hypotenuse, and 

equating the sum to (the hypotenuse) "ya" gives "ya" = 25. 

Modern notation (See Figure 4a) 

Since CDB, CBA, CDA are similar 

So 

and 

Therefore, 

Given b = 20, a = 15 

d 

B 

a d a2 -=-=> d = -

c a c 

c 

D 

ya = c 

Figure 4a 

The upapatti for the kshetragata method 

e 

A 

Take four triangles identical to one another and let different "bhujas" 
rest on different "kotis" to form the square as shown. The interior square 
has for its side the difference of "bhuja" and "koti". The area of each triangle 
is half the product of "bhuja" and "koti" and four times this added to the 
area of the interior square gives the area of the total figure. 

This is nothing but the sum of the squares of "bhuja" and "koti". The 
square root of that is the side of the (big) square which is nothing but the 
hypotenuse. 
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Modern notation (See Figure 4b) 

c 

b 

Figure 4b 

Let ya = c, bhuja = a and koti = b 

c
2 

= (b- a)2 + 2ab 

= a2 +b2 

a 

(The geometrical representation above bears an uncanny resemblance to that 
given in the earliest extant Chinese text on astronomy and mathematics, the 
Chou Pei Suan Ching, dated around the early part of the first millennium BC.) 

What seems to be all too apparent from this example is that the notion 

of upapatti is significantly different from the notion of proof as understood 

in the Greek or even in the modern traditions in mathematics. 

The upapattis of Indian mathematics are presented in a precise 

language, displaying all the steps of the argument and indicating the general 

principles which are employed. In this sense they are no different from the 

"proofs" found in modern mathematics. But what is peculiar to the upapattis 
is that while presenting the argument in an "informal" manner (which is 

common in mathematical discourse anyway), they make no reference 

whatsoever to any fixed set of axioms or link the given argument to "formal 

deductions" performable with the aid of such axioms. 

Most mathematical discourse in the Greek as well as in the modern 

tradition is carried out with clear reference to some formal deductive system, 

though the discourse itself might be in an "informal" mode, similar to that 
of Indian mathematics. More importantly, the ideal view of mathematics in 

both the Greek and modern traditions is that of a formal deductive system. 
Their view is that "real mathematics" is (and ought to be presented) as formal 
derivations from formally stated axioms. This ideal view of mathematics is 
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intimately linked with yet another major philosophical presupposition of 

western tradition: that mathematics constitutes a body of infallible or absolute 

truths. It is this quest for securing absolute certainty to mathematical 

knowledge which has motivated most of the foundational and philosophical 

investigations into mathematics and has also shaped the entire course of 
mathematics in the western tradition right from the Greeks to contemporary 

times. 

What the upapattis of Indian mathematics reveal is that the Indian 

epistemological position on the nature and validation of mathematical 

knowledge is very different from that in the Western tradition. This is brought 

out, for instance, by the general agreement among the Indian mathematicians 

as to what a upapatti is supposed to achieve. Ganesha declares in his preface 

to the commentary on Bhaskaracharya's Lilavati that: 

Whatever is discussed in the vyakta or avyakta branches of mathematics, 
without upapatti it will not be nirbhranta (i.e., free from misunderstanding). It 
will not acquire any standing in an assembly of scholar mathematicians. The 
upappati is directly perceivable, like looking in a hand mirror. It is, therefore, 
to elevate the intellect (buddhi vriddhi) that I proceed to enunciate the upapattis. 

As regards the modes of argument which are allowed in the upapattis, 
one distinctive feature appears to be that Indian mathematics permitted the 

use of the method of indirect proof (reductio ad absurdum) but only to show 

the non-existence of certain entities. The method of indirect proof was called 

tarka by the Indian logicians. Indian mathematicians subscribed to the 

general methodological dictum of most schools of Indian philosophy: that 
the tarka was not an independent pramana and could therefore not be used 

to prove the existence of an entity whose existence cannot be otherwise 

proved. 

It should be emphasized that this does not mean that Indian mathematics 
totally abandoned the method of indirect proof. For example, consider the 

upapatti of the result that a negative number has no square root given by 

another commentator Krishna Daivajna (c. AD 1600) (edited by Dvivede, 

1920). 

A negative number is not a square. Hence how can we evaluate its square 
root? It may be argued that "why cannot a negative number be a square? Surely 
it is not a royal command" ... Agreed. Let it be stated by you who claim that a 
negative number is a square as to whose square it is; surely not of a positive 
number, for the square of a positive number is always positive. Not also a 
negative number because then also the square will be positive by the same 
rule. This being the case, we cannot see how the square of a number becomes 
negative. 

In not accepting the method of indirect proof as a valid means for 
establishing the existence of an entity (whose existence is not even in prin
ciple establishable via direct means of proof), the Indian mathematicians 
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took what is referred to today as the constructivist approach to the issue of 
mathematical existence. But the Indian philosopher-logician did more than 

merely disallow certain existence proofs. The general Indian philosophical 

position is in fact one of completely eliminating from logical discourse all 

reference to unlocatable entities whose existence is not even in principle 

accessible to direct means of verification. This appears to be the position 

adopted by Indian mathematicians. And, for this reason, many an "exist

ence theorem" (where all that has been proved is the non-existence of a 

hypothetical entity incompatible with the accepted set of postulates) of Greek 

or modern western mathematics would not be considered to have any mean

ing in Indian mathematics. 
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Writing from an international perspective is likely to include over

generalizations and biases inadvertently made or held by the author. Inclusive 

and meaningful statements about international aspects of education run the 

risk of over-generalizing if they emphasize meaningfulness at the expense 

of inclusiveness, and the risk of being vacuous if they do the opposite. 

Moreover, any author's perspective of international affairs is biased by the 

author's spatial-temporal context including culture, society, and history. 

As the author of this paper, my perspective is that of a mathematics educator 

who belongs to a developing country in a very old culture. Having this in 

mind, I move to describe the contours of the terrain to be covered in this 

paper. 

The 90s promise to be the decade of transition to the information age. 

Scientists, economists, and educators predict deep changes in society, 

economy, and education. Countries vary in their response to the challenge 

of coming to grips with the demands and consequences of the information 

age. The following four examples taken from the United States of America, 

India, Jordan, and the world Conference on Education for All are illustrative 

of the different kinds of responses. 

In the United States of America, a number of forward-looking books 
and reports in the 80s focused on the theme of America 2000 and the transi
tion to the twenty-first century. Everybody counts (National Research 
Council, 1989) was one such report which focused specifically on math
ematics education. Everybody counts describes vividly the various forces 
that impinge on mathematics education in the United States and the mobil
ization of human resources needed to bring about a transition to the twenty
first century. It also outlines national policies, strategies, and support 
structures for renewal of mathematics education. One underlying theme is 
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to make American mathematics education the best in the world in order to 

sustain the nation's leadership in a global economy. 

Thousands of miles away, the National Institute of Educational Plan

ning and Administration in India prepared a document to spell out the Indian 

perspective on the subject of Education for All by 2000 (UNESCO, 1990). 

The report deals with a critical analysis of the present educational system in 

India, new approaches for securing higher levels of participation and reten

tion in schools, particularly of the main disadvantaged sections of society 

(women, minorities, excluded castes, ... ), curriculum, decentralization, and 

last but not least increasing financial provisions for education from 4 to 6% 

of the GNP. Nowhere to be seen is a preoccupation with the information age 

and its effect on education. 

Closer to home, Jordan proposed and implemented a reform plan whose 

main thrust was to improve the quality of education by up-dating and up

grading the educational system. The reform plan (Ministry of Education 

and Instruction, 1987) called for a change in the educational ladder by 

extending compulsory basic education by two years (from 6-14 years to 

6-16 years), followed by a two-year secondary school with different tracks. 

An overhauling of curricula, teacher training programs, school adminis

tration and school buildings were key points in the plan. Jordan, a developing 

country, allocated relatively large resources to this plan. Science and 

technology, although stressed, do not reflect an apparent sensitization to 

the demands of the information age. 

An international perspective is illustrated by the World Declaration 

on Education for All (Inter-Agency Commission, 1990). In article 1 of that 

Declaration, the World Conference on Education for All which convened in 

Jomtien, Thailand, specified the basic learning needs in the emerging glo

bal economic, social, and cultural environments of the 1990s. Basically, 

these learning needs comprise essential learning tools (such as literacy, oral 

expression, numeracy, and problem solving) for everybody to live and work; 

to participate fully in development to improve the quality of life; to make 

informed decisions; and to continue to learn. The satisfaction of these needs 
is to recognize the collective cultural, linguistic, and spiritual heritage of 
the community, and to promote the values of cooperation, justice, and toler
ance in an interdependent world. 

The preceding illustrative examples are too few to warrant any 

inference but may support the following specific observations: 
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those countries is to secure a competitive edge in the global 
economy. 

2. Developing countries are primarily concerned with provisions of 
resources to upgrade their education or to cope with quantitative 
growth. In both cases, it is not the demands of the information age 
that guide their policies, but rather the compelling problems of the 
present and the accumulation of the failures of the past. 

3. The international perspective proposes educational goals which aim 
at the future but are rooted in the cultural heritage of the commu
nity concerned. These goals are higher in standard and more 
forward-looking than those of developing countries, but less than 
those of industrialized countries. The message is for international 
cooperation rather than competition. 

MATHEMATICAL LITERACY FOR THE INFORMATION AGE 

More than any school subject, mathematics is at the forefront of the 
transition to the information age. In most industrial countries the use of 
computer technology in all economic sectors and the availability of high
speed communications have dramatically transformed the workplace, the 
social context, and the home environment. Moreover, continued introduc
tion of innovations in computer and communications technology will 
continually change learning objectives, making them moving targets. 
Because mathematical methods, skills, concepts, and attitudes are essential 
for this technological environment, a new mathematical literacy is called 
for: a mathematical literacy for the information age. Henceforth, this 
information age mathematical literacy will be denoted by lA mathematical 
literacy. 

The descriptions of the basic components of lA mathematical literacy 
in the literature turn out to be essentially the same. It is convenient to sort 
such components into three categories: abilities, attitudes, and contexts. 

Abilities 

Three such abilities are often mentioned as essential components of 
lA mathematical literacy: higher-order reasoning, communication, and prob
lem solving (Romberg, 1988; NCTM, 1989; NRC, 1989). Higher-order 
reasoning in mathematics consists of non-algorithmic and complex skills 
which involve multiple criteria, multiple solutions, judgment, interpreta
tion, uncertainty, self-regulation, imposing meaning, and mental effort 
(Resnick, 1987). Communication refers to the skills of reading, writing, 
discussing and translating using the language of mathematics. Problem 
solving encompasses a group of skills for utilizing higher-order reasoning 
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skills and communication skills to understand and resolve non-routine tasks 

in authentic problem situations. 

Attitudes 

A number of components of lA mathematical literacy have been iden

tified in the affective domain, including valuing mathematics, confidence 

in using mathematics, and cooperation while learning and/or utilizing math

ematics (NCTM, 1989). Valuing mathematics is seen as a deep-rooted 

conviction which is indispensable, not only in the school environment but 

more so at home, at work, in private decisions, and in the social context at 

large. Confidence in mathematics refers to an attitude of being empowered 

by mathematics to do things which are not possible without the possession 

of that power. Cooperation is viewed as the means of imparting the belief 

that learning and/or using mathematics are not isolated activities, and the 
attitude that different perspectives enrich the learning of mathematics. 

Contexts 

lA mathematical literacy requires optimal contexts for its develop

ment. The physical context requires the utilization of a high-technology 

environment for learning, applying, or assessing authentic mathematical 

tasks. The social context makes it imperative that lA mathematical literacy 
be achieved by all, irrespective of social or ethnic divisions. lA mathemat

ical literacy for all is assumed to be necessary for economic survival and 

social harmony. The temporal context refers to a learning environment which 

provides the student with the power to learn for life. The changing demands 
of technology and communication require the power to continually learn 

and adapt to the new conditions. 

HISTORICAL PERSPECTIVE 

More than at any time before, disparities in the 1990s in mathematics 
education between industrialized and developing countries are not only of 

degree but also of kind. In the first half of the twentieth century formal 
education was almost nonexistent in most of the now-developing countries. 
In the few countries where formal education existed, the colonial powers 
and the countries under their patronage did share the same kind of mathe
matics education-that of the colonial powers. The formal education systems 
in these countries were modelled after those of the colonial powers and so 
were the curricula, textbooks, teaching methods, and even the language of 
instruction. Mathematics curricula could be transplanted across the bound
aries of countries, cultures, and traditions because of the deep-rooted belief, 
at that time, that mathematical concepts and skills are universally meaning
ful and applicable. The basic difference between the colonial powers and 
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developing countries was a matter of the degree of accessibility of formal 

education. In colonial countries, a minimum level of formal schooling (in
cluding arithmetic as one of the three R's) was almost universally achieved. 

In the colonies, formal education was limited to the few who were privi
leged to be admitted to foreign schools in order to prepare them as local 
counterparts for public service and the professions. 

The modern mathematics movement which appeared in Western coun

tries in the 60s triggered similar reforms in the newly independent developing 
countries. The changes in mathematics education that took place in the de
veloping countries had a number of characteristics. First, the reform was 
introduced in secondary schools and for college-bound students: i.e., for a 

very small proportion of the student population. Second, the reform lagged 
behind similar efforts in Western countries by more than a decade, and most 

often as the thrust of that reform was going downhill in the West. Third, the 

new curricular materials were produced by adopting and/or adapting curric
ular materials developed in Western countries and dominated by Western 

mathematics educators, or local mathematics educators educated and trained 

in the West. Fourth, the reform was basically limited to the reorganization, 
addition, or deletion of mathematical topics. So similar were the reform 

efforts in developing and industrial countries that Howard Fehr (1965), 
writing on mathematics education around the world, did not feel the need to 
refer to any of the developing countries. 

In the 70s and 80s , the repeated swings in the Western countries that 

ranged from" back-to-basics" to emphasizing individual and societal-based 

objectives, did not resonate in the developing countries. The latter continued 
to diffuse the excesses of modern mathematics, but always maintaining a 

content-based orientation. 

Perhaps for the first time in this century, the 90s are witnessing a 

divorce in mathematics education between the industrialized and the devel
oping countries. lA mathematical literacy is radically different from that 

which is prevalent in most developing countries. The differences encom
pass targeted abilities and attitudes as well as the physical, social, and 
temporal contexts of the learning environment. Moreover, lA mathematical 
literacy is a result of a paradigm shift from the industrial age to the infor
mation age. Thus the reform movement of the 90s in mathematics education 
is expected to be a system-wide transformation, unlike previous reform ef
forts which focused on one or a few components of a very complex social, 
economic, and cultural system. The reform movement of the 90s in the in
dustrialized countries promises to be a synchronized movement aimed at 
transforming mathematics education as a whole while providing for chang
es in policies, strategies, and support structures in the larger social, economic, 
and cultural contexts. 
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Mathematics education is thus poised to act as a wedge sustaining and 
reinforcing the division among countries along social, economic, and cultural 

lines. In the global village, the growing gap is developing into some sort of 
separate development (apartheid) in mathematics education. 

CONSTRAINTS AND BARRIERS 

Bridging the gap between lA mathematical literacy and traditional 
math-ematical literacy in the developing countries does not seem to be easily 
attainable in the near future because of economic, social, and cultural 

constraints and barriers. 

Resource constraints 

Within their competing priorities, developing countries are unlikely 

to be able to afford the material and human resources needed to implement 
the kind of reform in mathematics education being contemplated or imple

mented in the industrialized countries. One prominent feature of that reform 
in the industrialized countries is that it is a system-wide transformation. 
This entails radical changes in the orientation of the school curriculum and 
the re-allocation of resources to quality improvement. The development of 

such authentic skills as higher-order reasoning, communication, and prob

lem solving requires radical changes in the tools, methods, and learning 
environment of mathematics instruction. Thus resources have to be invest

ed in curriculum development, teacher education and re-education, and the 

implementation of educational technology. Most developing countries can

not afford to allocate already scarce resources to a system-wide reform on 
this scale at a time when they have to cope with more basic and urgent 
needs. 

The problems of the developing countries are very different from those 
of industrialized countries. Table 1 presents macro-level comparative data 
on some education indicators. Three problems stand out in developing coun
tries but not in the industrialized countries. First, participation in education 
as expressed in gross enrollment ratios, particularly in the second level of 
education (12-18 age-group), is a pressing problem in developing countries 
(a non-participation rate of more than 50% in the second level of education 
is found in developing countries compared to less than 7% in industrialized 
countries). Second, the participation of females in education in developing 
countries is uniformly much lower than males, whereas such differences do 
not exist in industrialized countries. Third, the adult (15 years or more) lit
eracy rate in developing countries is close to 65%, with a gender difference 
favoring males. This compares to a literacy level of 97% in industrialized 
countries with no gender differences. Fourth, to cap such differences, public 
expenditure on education is almost eight times greater in industrialized 
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countries than in developing countries in billions of dollars and 140% in 

percentage of GNP. 

It is obvious that the gap is bound to increase as industrialized countries 

increase their investment in education while developing countries struggle 

with such perennial problems as working to increase participation rates in 

education, particularly for females, and to increase their human capital by 

decreasing adult literacy. 

Table 1. Education Indicators in Developing and Industrialized Countries. 

Developing countries Industrialized countries 

Male Female Male Female 

Gross enrollment ratio* 

First level education 105.5 90.4 102.0 101.1 

Second level education 50.3 37.5 93.5 93.8 

Third level education 10.1 6.5 37.0 36.5 

Adult literacy (percentage) 74.9 55.5 97.4 96.1 

Public expenditure on 
education 

US $ (billion) 125.8+ 897.9+ 

percentage of GNP 4.1+ 5.8+ 

Source : UNESCO World Education Report, 1991 

+indicates that the figure is for 1988, other figures are for 1990 

* gross enrollment ratio = total enrollment in level regardless of age +population of 
the age group officially corresponding to that level. 

In communications and media, developing countries lag far behind 

the industrialized countries. Table 2 presents comparative data on commu
nications and media indicators. In all the media, ranging from book 

production to television, the media indicators for the industrialized countries 
are more than those in the developing countries. Needless to say this 

difference is increasing, particularly in respect of the backbone of the 
information age: the computer. 
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Table 2. Communications and Media Indicators in Developing and Indus
trialized Countries. 

Developing Industrialized 

countries countries 

Book production 

Titles per million inhabitants 57 507 

Daily newspapers 

Circulation per thousand inhabitants 43 337 

Printing and writing paper 

Consumption (kg) per inhabitant 1.5 41.4 

Radio receivers 

Number per thousand inhabitants 173 1008 

Television receivers 

Number per thousand inhabitants 44 485 

Source: UNESCO World Education Report, 1991. 

Social barriers 

In developing countries, the main social barriers in the way of achieving 

lA mathematical literacy are the contexts of mathematics instruction and 

learning. The physical context of the classroom is far from being the high

tech environment that is required for lA mathematical literacy. Even if such 

an environment could be afforded it would be radically different from the 

one that applied mathematics in the larger social context, thus reducing the 
authenticity of classroom instruction. 

Mathematics education for all is not easily attainable in developing 
countries. This is because the priority in such countries is to provide for 
universal access to and participation in schooling. Moreover, the "human 
capital" in these communities (with more than 40% adult illiteracy on the 
average) is lower than the critical threshold needed to graft and sustain a 

major quality-improvement intervention of this magnitude. 

Again, life-long education and the development of the power to learn 
do not match social beliefs, expectations, and rewards. In developing coun
tries, education is still conceived as a means of upward social mobility. 
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However, success in education is measured by upward mobility on the edu

cational ladder culminating in official certification. Thus the ultimate goal 

is not to "develop the power to learn" but to move upward on the educational 

ladder. Mathematics, because of its perceived hierarchical nature, reinforces 

the "upward mobility" objective at the expense of developing the power to 

learn (Jurdak, 1992). 

Cultural barriers 

The values and beliefs about mathematics and its teaching in devel

oping countries are the main cultural barriers in the way of achieving lA 

mathematical literacy. The implied conception of mathematics in lA math

ematical literacy is that of a mode of thinking, skills, and concepts valued 

for their power in solving and communicating authentic problems. In 

developing countries, the prevailing conception of mathematics is that of 

an external body of knowledge which is valued for its utility in upward 

mobility on the educational ladder. 

lA mathematical literacy conceives of teaching mathematics as a 

cooperative activity in which students develop new knowledge through ac

tive construction and interaction in the social context of the classroom. In 

developing countries, the teaching of mathematics is conceived as a process 

of transmitting predetermined concepts and skills to the learner whose ulti

mate responsibility is to acquire mathematical knowledge and to demonstrate 

the possession of such knowledge in contrived testing situations. 

In addition, the value-systems in different countries may conflict with 

the values and beliefs embedded in lA mathematical literacy. Values about 

authority and those who possess it (Hofstede, 1986), social expectations of 

normative behaviors, and ideological beliefs as cultural carriers (Jurdak, 

1989) contribute significantly to the social climate of mathematics instruc

tion. Cultural dissonance is a resilient barrier in the way of achieving lA 

mathematical literacy. 

THE RESPONSES 

The challenge of bridging the gap between industrialized and devel
oping countries in the nature and level of mathematical literacy elicited 

three archetypal modes of responses: the neutral mode, the indigenous mode, 
and the transfer of technology mode. 

The neutral response mode 

The response of most developing countries to the challenge has been 
the neutral mode. This is the case because of an unawareness of the existing 
gap on the part of developing countries, the unaffordability of the demands of 
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lA mathematical literacy, or an unwillingness to introduce radical changes. 

Such countries continue to conceive of mathematics education and any 

change therein in terms of the assumptions and constraints of the existing 

framework. No special effort is made to take into consideration the impact 

of communications and computer technology on the society, economy, and 
education. 

The neutral mode may be judicious in the short term but risky in the 

long run. It may be wise to wait for the claims and promises of lA mathe
matical literacy to bear fruit, especially since the field of mathematics 

education has plenty of unfulfilled promises. However, if the claims of lA 

mathematical literacy become a reality, then the countries that adopt the 

neutral response mode will find themselves out of phase with industrialized 

countries and unprepared to participate effectively in the economy of the 

global village. 

The indigenous response mode 

The indigenous response mode advances the premise that mathemat
ics education should look inward in order to achieve authenticity in terms 

of the meanings of the indigenous cultural and social contexts. Ethnomath
ematics is perhaps the best-articulated response in this regard (D'Ambrosio, 

1985). Although a number of projects involving ethnomathematics have been 

implemented, their impact is localized. 

The indigenous mode has the advantage of optimizing meaningful 

learning of mathematics in the local context but may run the risk of isolat
ing communities and countries. The emphasis on the indigenous context in 

mathematics teaching is more likely to produce higher motivation and more 
authentic learning of mathematics in the local context. However, the de

emphasis on modern demands and modes of thinking, including their 
interaction with non-indigenous technology, is likely to increase the isola

tion of mathematics education from the international mainstream. As in 

nature, the balance between ecology and technology in mathematics is a 
delicate one. 

The technology transfer response mode 

Many developing countries have responded to the challenge of bridging 
the gap by acquiring the educational technology available in the schools of 
industrialized nations. The majority of these countries have high per capita 
income because of their natural resources, but otherwise have low level 
developmental indicators. These countries can afford to buy computers and 
audio-visual materials, can produce high-quality instructional materials, can 
build school facilities, and can even import foreign teachers. 
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The main advantage of the technology transfer approach is that it tends 

to maintain a technological linkage between developing and industrialized 

countries. On the other hand, it is often the case that the technology remains 

at a shallow level of adaptation because of incompatibility with the indig
enous ideological and social values inherent in such communities (Jurdak, 

1988). The technology transfer is likely to affect the "skill" component of 

lA mathematical literacy, but is unlikely to change the "value" and "context" 

components. 

The challenge 

Until recently, mathematics education has provided a common ground 

where the international community in mathematics education could meet, 

talk the same language, ask similar questions, and share different answers. 

The 1990s seem to be witnessing a growing gap between developing and 

industrialized countries, thus threatening the common ground, the common 

language, and the shared concerns of mathematics education. 

The three types of responses discussed earlier do not seem to be 

conducive to the restoration of mathematics education as a common ground 

of shared concerns with multiple perspectives. I believe that there is a need 

for a concerted international effort to halt the divergence in mathematics 

education between developing and industrialized countries, especially the 

division that is taking place along economic and cultural lines. 

Perhaps the need is for a vision similar to the one which motivated the 
World Conference on Education for All. Three ingredients are essential for 

such a vision. First, the focus of this vision should be mathematics for all 
within the framework of basic education for all. Mathematics education for 

all should cover not only some nations or regions but the international 

community at large, and not only some advantaged sections of the society 

but the whole society. Second, the international community in mathematics 

education should formulate guidelines for sustainable international devel

opment in mathematics education in the areas of goals and objectives, 

curriculum, professional preparation of teachers of mathematics, and as

sessment. These guidelines should be realistic enough to be attainable by 

developing countries and ambitious enough to be a basis for industrialized 
countries to build on. Third, there should be an international support system 
in mathematics education to enhance the capacity of developing countries 
to attain these guidelines and also to promote the understanding and 
utilization of diverse cultural values and practices. 

209 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

REFERENCES 

D'Ambrosio, U. ( 1985). Environmental 
influences. In R. Morris (Ed.), Studies 
in Mathematics Education, 4, 29-46. 
Paris: UNESCO. 

Fehr, H. (1965). Reform in mathematics 
education around the world. The Mathe
matics Teacher, 58, 37-44. 

Hofstede, G. (1986). Cultural differences 
in teaching and learning. International 
Journal of Intercultural Relations, 10, 
301-320. 

Inter-Agency Commission for the World 
Conference on Education for All (1990). 
World Declaration on Education for All. 
New York: Inter-Agency Commission. 

Jurdak, M. (1989). Religion and lan
guage as cultural carriers and barri
ers in mathematics education. In C. 
Keitel (Ed.), Mathematics, education 
and society. Science and Technology 
Education, Document Series No. 35 
(pp. 12-14). Paris: UNESCO. 

Jurdak, M. (1992). Assessment in math
ematics education in Arab countries. 
In M. Niss (Ed.), A ssessment in math
ematics and its effects. Dordrecht, 
The Netherlands: Kluwer Academic 
Publishers. 

210 

Ministry of Education and Instruction 
(1987). Recommendations of the Na
tional Conference on Educational De
velopment. Amman, Jordan: Author 
(in Arabic). 

National Council of Teachers of Mathemat
ics (1989). Curriculum and evaluation 
standards for school mathematics. Res
ton, VA: NCTM. 

National Research Council (1989). Eve
rybody counts. Washington: Nation
al Academy Press. 

Resnick, L. (1987). Education and learn
ing to think. Washington: National 
Academy Press. 

Romberg, T. (1988). Curricular interfaces 
in school mathematics: the "ideal" with 
the "real". Madison, WI: National Center 
for Research in Mathematical Sciences 
Education. 

UNESCO (1990). Development of edu
cation: 1988-1990, National report of 
India. Report presented at the 42nd 
session of the International Confer
ence on Education, Geneva. 

UNESCO (1991). World education re
port. Paris: UNESCO. 



BONUSES OF UNDERSTANDING 

MATHEMATICAL UNDERSTANDING 

Thomas E. Kieren 

University of Alberta, Canada 

A class of 8-year olds has been developing a sense of the nature of 
fractions (particularly those whose denominators are powers of two) by 
folding and shading parts of sheets of writing paper taken as units. Now the 
teacher stands before the class holding a much larger sheet of paper which 
he has pre-folded and which is shaded as follows. 

,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. 

" " " " " " " " " " 
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. 

" " " " " " " " " " 

" " " " " " " " " " 
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. 

" " " " " " " " " " 
,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. ,.. 

" " " " " " " " " " 

" " " " " 
,.. ,.. ,.. ,.. ,.. 

" " " " " 
,.. ,.. ,.. ,.. ,.. 

" " " " " 

He asks the children what they can say about it. Kara replies immedi
ately and brightly, "It's five fourths." After getting other responses from 
the class the teacher returns to Kara and asks, "Why did you say five fourths?" 
Looking thoughtful, Kara replies "Well, a half of a half is a fourth. So, five 

fourths!" 

Would we say that Kara is exhibiting mathematical understanding here? 
If so, what are the characteristics of the way in which we view understand
ing which allows us to say this? It is the purpose of this essay to describe 
one way of understanding mathematical understanding, as well as briefly 
attending to others, and to illustrate the bonuses of such an understanding 
when one considers children doing mathematics. 
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It is challenging to try to describe and discuss mathematical under

standing. Wittgenstein (1956, p. 298) has put it this way: "Understanding a 

mathematical proposition-that is a very vague concept." He continues by 

saying that a person can prove a proposition and justify each step in their 

reasoning clearly-that is, the person can generate a legitimate sophisti

cated-looking mathematical product-and yet this is not sufficient evidence 

that the person is acting with understanding. Acting with understanding, it 

seems, involves being able to see the significance and consequences of the 

proposition, to see alternatives to it and alternative approaches in produc

ing it and to be able to situate it or interweave it with one's more informal 

intuitive knowledge of that area of mathematics (Wittgenstein, 1956; 

Morascvik, 1979; Bohm & Peat, 1987). If one were to situate such under

standing in Ernest's (1991) picture of the social construction of mathematics, 

it seems that understanding would lie in the realm of subjective knowledge. 

It would appear that Wittgenstein is alluding to a kind of tension between a 

clear public mathematical product and the more subjective activity which 

would have to be considered if one were to judge whether the person who 

"produced" the mathematics acted with understanding. 

If mathematical understanding is an aspect of personal and what ap

pears to be "subjective" mathematics, is it worth studying? Does it not suffice 

for a teacher or researcher (or fellow mathematician) to simply recognize 

understanding when it is observed? Bateson (1979, 1987) has associated 

knowing something, say a piece of mathematics, with the ability to act ap
propriately or live in a situation which calls for the knowledge. But he says 

that acting with understanding, the capability to reflect on and organize 

one's knowing, carries with it a bonus. If one equates knowing with doing 
or living, then perhaps the bonus of understanding is in raising the quality 

of that life. 

In what follows I will attempt to argue for the bonus of understand

ing mathematical understanding by presenting one such understanding, 

a theory for the growth of mathematical understanding which Susan Pirie of 

Oxford University and I have been developing over the past few years. In 
addition, a situation drawn from studies of 12-year olds building knowl
edge of fractions will be analyzed using constructs from our model. The 
purpose of such analyses will be to highlight the bonuses which accrue from 
our understanding of mathematical understanding. 

In developing our theory we are following (and in part developing) an 
enactivist view of cognition which holds that a person is autopoietic, bring
ing forth their world in the sphere of their behavioral possibilities (Maturana 
& Varela, 1987; Varela, Thompson, & Rosch, 1991). Understanding in such 
a non-representationist activity is seen when a person, in conjunction with 
their environment, which often includes other human actors, uses their 
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knowledge structure to organize their own knowledge (von Glasersfeld, 

1987). Such understanding is seen as "a series of ongoing meaning (making) 

events in which a person's world stands forth" (Johnson, 1987, p. 175). In 
such a view one's understanding is seen to grow out of one's knowing expe

riences (and to organize them) and complementarity one's understanding 

configures one's knowing actions. 

BONUSES OF UNDERSTANDING IN THE LITERATURE 

Of course, it should not be thought that our understanding of mathe

matical understanding is the only way to gain the bonuses of understanding. 

Over the past 20 years there has been a continuing dialogue in mathematics 

education which is attempting to make clearer the "vague concept" of 

mathematical understanding. Skemp (1976, 1987) distinguished between 

and elaborated the ideas of instrumental understanding (knowing how 

without knowing why) and relational understanding (knowing how and being 

able to elaborate why in terms of one's other mathematical knowledge). 

Skemp himself felt an immediate bonus of such an understanding of under

standing-it enabled him to see that mathematical understanding was not a 

monolithic entity but to observe that there were possibly many kinds of 

understanding. 

A bonus of Skemp's work for mathematics education has been the 

continuing generation of ideas on mathematical understanding-including 

this essay. Herscovics and Bergeron (1983, 1988, 1989, 1992) extended the 

number of kinds of understanding which a person might have (e.g. concrete, 
symbolic, logical, formal). But rather than see such types of understanding 

as isolated acquisitions, they instead organized a two-tiered structure of 

types of understanding distinguishing understanding of preliminary physical 

concepts for any fundamental mathematical concept from that of the 

emerging mathematical concept. Within tiers they distinguished intuition, 

procedures, abstractions, and formalizations as indicators of a person having 

acquired particular understandings with respect to a mathematical concept. 

One of the bonuses which flowed from such an understanding was the 

capability of making distinctions between different kinds of physical 

understanding of a concept, say addition of natural numbers or integers. 

A second bonus was that such a model suggests that teachers can fruitfully 
engage in epistemological analyses of mathematics concepts in a way that 
will help them perceive and structurally situate different types of under
standings of the concepts which their students might acquire. 

Miller, Malone, and Kandl (1992), using ideas from Ryle (1949), 
understood mathematical understanding as a three-dimensional space with 
"knowing that" ranging from discrete to integrated knowing, "knowing how" 
ranging from simple to complex, and "knowing why" ranging from intuitive 
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to rigorous. A person's understanding of a piece of mathematics (such as 

Kara's at the beginning of this essay) would be situated in this three

dimensional space. (Kara had a somewhat integrated, rather simple and 

intuitive-and physical procedural, to add a concept from Herscovics and 

Bergeron-understanding of fractions.) One bonus of such an understanding 

is that a teacher could think of student understanding of a concept both in 

terms of current positions and goal positions in such an understanding space. 

As illustrated in their study with high school teachers and students, Miller, 

Malone, and Kandl's model provided teachers and students with a language 

for talking about understanding, thus revealing for teachers and students 

understanding which occurred in their classrooms. 

Rather than viewing understanding in terms of types or acquisitions, 

Sierpinska (1990) saw understanding in terms of a sequence of action events 

where understanding changed due to facing epistemological obstacles. She 

writes, "But the moment we discover something is wrong with (our) knowl

edge (i.e. we become aware of an "epistemological obstacle") we understand 

something (emphasis added) and we start knowing in a new way." Some 

bonuses which accrue to such an understanding of mathematical understand

ing are that the latter is seen as occurring in events rather than as a type of 

acquisition, that depth of understanding of a topic can be observed in terms 

of the number of epistemological obstacles faced, and like Herscovics and 

Bergeron it prompts an epistemological analysis of mathematics on the part 

of teachers. 

A MODEL FOR THE GROWTH OF 

MATHEMATICAL UNDERSTANDING 

In reacting to understandings of mathematical understanding which 

defined it in terms of types or linear combinations of types of understanding, 
Pirie (1988) attempted to observe understanding as it occurred in children 

and found it to be a dynamic non-linear process. She and I combined that 

thinking with a dynamic model of personal knowledge of mathematics 

(Kieren, 1988) into stimuli for a five-year continuing project of building 
and using the model for the growth of mathematical understanding illustrated 
below (Figure 1 ). 

We observed the growth of a student's understanding of a mathemat
ical topic within an environment of possibilities (provided in part by teachers 
and other students) as playing itself out within a framework of eight kinds 
of acts of understanding. It is beyond the scope of this paper to give many 
details of these levels or modes of understanding, but we have done so in 
other work (Pirie & Kieren 1989, 1990, 1992; Kieren & Pirie, 1992; Kieren, 
1990; Kieren, Mason, & Pirie, 1992). The observer makes assumptions about 
what a student brings to the current observation task. We call such 
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Figure 1. Model for the growth of mathematical understanding. 

assumed capabilities Primitive Knowing and it forms the core of understand

ing of a new topic. In the first example studied below it was assumed that 

Tanya and her 12-year-old classmates could divide various units equally 

and knew at least some fraction language. The three next inner rings: Image 

Making, Image Having, and Property Noticing are three successively more 

sophisticated informal, local context dependent ways of understanding. The 

next three rings-Formalizing, Observing, and Structuring-are modes of 

understanding in which a person knows and understands mathematics in 

ways which are less context dependent and more abstract. Details of some 
of these six modes of understanding will arise in the discussion of examples 

illustrating the bonuses of having and using such a model. 

Let me briefly discuss the outer ring: Inventizing. We have coined a 

new word here because we do not wish to say that students or mathematicians 

are not inventive in the other informal or formal understanding activities. 

By "inventizing" we mean that a person is capable, once they have a full 

formal structural command of a mathematical topic, of putting such knowl
edge "in a box" and developing, without giving up the previously understood 
knowledge, a completely new way of lookong at and building from phenom
ena developed in the previous structure. A contemporary example of this is 
work in fractal or chaos theory where previously structured understandings 
of pathological functions have given rise in some mathematicians to full 
and totally new understandings of mathematics. 
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There are several features and consequences of this model and related 
theory which allow it to be useful in observing change and growth in a 
person's mathematical understanding. Notice the asymmetric nested rings. 
This suggests that the understanding activity (if not disjoint and detached) 
at an outer more sophisticated level always enfolds and embeds and has 
access to less sophisticated more context-dependent related inner level 
understandings.! This aspect of the model (and the findings in the example 
below) is in accord with Varela, Thompson, and Rosch (1991) who suggest, 

If we wish to recover common sense, then we must invert the representationist 
attitude by treating context dependent know-how not as a residual artifact that 
can be progressively eliminated by the discovery of more sophisticated rules 
but as, in fact, the very essence of creative cognition. 

Our theory balances for a person an emphasis on what Ernest (1991) 
calls the formal "front" of mathematics with the informal "back", and in 
fact gives a central position to the latter. 

Another critical feature of the model is indicated by the heavy rings 
which we call "Don't Need Boundaries." When a person has an image, they 
can talk about and act on the mathematics without doing the explicit activity 
which brought it forth. Similarly when persons are applying a method or are 
formalizing they no longer need to reference context-dependent images or 
local properties. When persons are setting mathematical propositions in a 
structure, they do not need to think of procedures for doing formal processes 
(such giving up of processes might be related to Sfard's (1991) notion of 
reification). So these Don't Need Boundaries illustrate the powerful freeing 
of mathematical understanding from the constraints of less formal and less 
logically sophisticated actions. But persons acting beyond such a boundary 
may act as if they were blind to the history of informal, intuitive, and context
dependent activities which were necessary in generating the outer level 
mathematical understanding for those persons. 

The most critical feature of our model is the notion of "folding back." 
To illustrate this feature, let's return to the illustration of Kara's work that 
we started this paper with. Kara had been engaged in folding units, small 
sheets of paper, into halves, fourths, eighths, sixteenths. From this activity 
she had generated an image of fractions as amounts coming from folding, or 
principally related to folding. Now she was faced with a new situation. Here 
was a fraction which did not come from her action but was simply a very 
different unit with fractional parts indicated on it. She was, in some sense, 
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stuck. Our evidence suggests that she just applied her image of fractions 

from folding to justify her answer of five fourths. She knew the five was 

right from counting the shaded parts; she observed the top part of the display 

as "half of a half", generating and justifying her sense of "fourths." Although 

the teacher did not say anything further about Kara's work, that evening 

Kara went home to fold "giants" of her own and by the next day came back 

with a knowledge of fractions as amounts, or at least relative amounts, which 

were independent of the folding activity. They were amounts that you could 

put together, add up, etc. So here we have a case of a person possessing an 

image being provoked to fold back to further image making to extend her 

image. 

Figure 2. Folding back in Kara's understanding of fractions. 

Our theory prompts us to see mathematical understanding, as changing 

in this way, almost on a continuing basis. That is, a person is more or less 
continually folding back, building up a larger, if less formal, idea that will 

support the new situation in which they find themselves. This is, of course, 

related to Sierpinka's notion of epistemological obstacle and to overcoming 
one's epistemological obstacles. But for us, folding back provides a 
mechanism by which a person can weave the path of understanding. Using 

a weaving metaphor for a moment, one might think of the eight modes of 
levels as the observational "warp" in which a teacher or a researcher can 
observe a child's mathematical understanding activity growing through this 
process of folding back and moving out to more sophisticated understanding. 
Figure 2 shows Kara' s understanding of fractions as it changed over a period 
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of several days (Kieren, Mason, & Pirie, 1992). Other research which we 

have conducted suggests that analysis of a person's understanding over 

shorter or longer periods of time would reveal the same kind of dynamically 

woven pathway. 

BONUSES OF THIS UNDERSTANDING 

OF MATHEMATICAL UNDERSTANDING 

The bonuses of understanding mathematical understanding arise in 

several ways. Such understanding changes the way in which an observer 

sees students doing mathematics. Thus one kind of bonus is a change in the 

actual thinking of the understanding observer. This brings about a second 

kind of bonus-thinking otherwise about school mathematics. Rather than 

simply adhering to convention in considering students' mathematics, a per

son with an understanding of understanding is empowered to move beyond 

convention. A third kind of bonus is entwined with the two above. A person 

who understands mathematical understanding, particularly one who uses 

our model and theory gains a new and different platform and a new lan

guage for observing mathematical understanding as it is acted out by students 

in classrooms. 

A VIGNETTE OF PERSONAL UNDERSTANDING 

Tanya is a 12 year old, who would agree with her teacher's assessment 

of her as "OK" in mathematics, in a typical grade seven mathematics class 

in a large western Canadian city. In her previous schooling she has studied 

the meaning of fractions but has not seriously considered operations on 

fractions. This is evidenced by her performance on a pre-test on addition of 

fractions (Figure 3a). Tanya makes and enunciates the "classic" error with 
respect to addition and when there are more than two addends she claims 

not to know what to do. 

But in Figure 3b it is clear that Tanya's addition knowledge is radically 

improved after several days of instruction. This observation was repeated 
for 20 of 22 of her classmates who, like her, did not know how to add 

fractions; three classmates showed pre-instruction addition knowledge. 

A positively changed performance, such as Tanya's, might be considered 
sufficient knowledge for the observer of Tanya's understanding. It is a bonus 
of our theory that one can "think otherwise" about Tanya's understand

ing. As will be seen below, we can explicitly profile Tanya's understanding 
as it occurred and not reduce such understanding to pre-test/post-test 
differences. 
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Tanya's Addition knowledge 
a. Prior to instruction: 

a) Three other fractions which show the same amount as 3. 
� 1f_ .§_ 
q 6 ld 

b) ! + i = � 

c) 2+�= 7 
3 8 II 

Jh.. "'ot s"'re if tfs •ishr but J think 
it's top i' top divided by bottom+- bottom. 

1 1 1 /J 
a) 4 + 3 + 2 I :1 

3 4 J_ 
J:J. u JJ. 

b)5 2._ 31 8+ 3-Jf 
Is J6 Ji/ i' J.4 

1 7 s :l.O c) 8 + 24 + 12 = :14 
l 7 /0 

:14 J1j :14 
4 4 ,q 6 d) TO i' s t- J.O JO 
4 4 4 8 

/0 t- S = lO i' T.i 

1 doll\'t k"ow how to da t�ts Ol'\e Yet. 

b. Post-Instruction: 

is about 3 beca ... se 

is about I an.d 
jj_ . b d6 :J.O 15 o. ouf ! Ql'\ TiJ is obou t I, 
so aproxam�te[y J, 

Figure 3. Tanya's pre- and post-instructional addition of fractions performance. 

Tanya's class was one of several involved in a study of the growth of 
mathematical understanding. To allow an observer to "see" such growth the 
students worked in a number of settings which provided them space to build 
their own ideas, working both individually and in groups. While all students 
were in the same settings, each child responded according to his or her own 
particular structure of understanding. No instruction on any standard 
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algorithms for operations on fractions was provided. Operational processes, 

such as those shown in Tanya's work, arose individually in working in the 

settings in the classroom. 

Two central activities used were (Figures 4a and 4b below). 

b) 

a) 

1 0 
1 u 1D 3 

tO �I 

1 
D 

1 
12 24 D 

Figure 4. Action settings for fractions. 

1 
81 

The first setting, partially illustrated in Figure 4a, engaged the children 
in folding many different unit fractions and seeing fractions as multiplicative 

in nature with particular fractions arising out of successive fraction folding 
actions- one twenty-fourth comes from a half of a twelfth or from a third 
of an eighth, for example. Such activity was accompanied by significant 
amounts of drawing, discussion justifying their results, and by complex 

metaphorical records of such folding behavior as exemplified by 
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Following the folding, the children worked with what came to be called 

the "pizza fraction kit" (See Figure 4b above) with fractions shown by pieces 

cut from st x 11 paper. (One serendipitous consequence of this is that "ver

tical thirds" and "horizontal fourths" have almost the same width, and 

twelfths are very nearly square.) It was hoped that students would, in using 
this kit, come to see fractions as additively combinable quantities. 

Let us now pursue the bonus of our understanding using the above 

theory and model of mathematical understanding by analyzing pieces of 
Tanya's work taken from several days of instruction and from an interview 
several weeks later. During the intervening time she had no instruction on 

addition of fractions. With other students working in groups of three, Tanya 

attempted to make combinations of fraction pieces which "made" other 

fractions. Here is a typical example of Tanya's work (Figure 5). 

Action 

Tanya finds various combinations from 

the Pizza Fraction Kit which additively 
"cover" other fractions. 

2_ +_l_ +_2_ =2_ 
8 12 6 3 

Record 

Figure 5. Tanya's image making actions. 

We call this kind of activity of Tanya's "Image Making" because she 

is taking elements of her primitive knowing (use of fraction language) and 
using them toward a new end, physically combining fractions and describing 

them. Tanya's activity illustrates another feature of our theory. Under
standing at any level in our theory consists of two complementary activities, 
an appropriate mathematical action and the expression of that action. The 
latter consists in the recording, reflecting on, describing the nature of, or 

justifying the action. Here we see Tanya's action (notice the eighths and 
twelfths exactly fitting on the third) and part of Tanya's expression vis-a

vis the action. She also drew her covering on the board and described how 

it worked both to her partners and the class at large. Following a day of such 
activity Tanya was observed as having an image of addition of fractions. 
This was manifested in her writing: 

Fractions are equal if they co ver the s ame amount. 

She appeared to have an image of addition which could be summarized 
as follows: 

"Adding" me ans finding known pieces on which the a ddends can fit. 
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Of course she did not say this, but it is visible in her response to the 

following task: 

Find combinations of two or three or more fractions which make 1. 
Tanya gave the following written response: 

l+i+1� =1 

When asked by the teacher to show why this worked, Tanya did an 

interesting re-write: 

1 1. 2 4 
3 6 12 12 

She split the six twelfths into two parts, thus enabling her to show 

three pieces each of which fits on one third (with three thirds making one). 

Tanya's image making activity as characterized and exemplified above 
seems to be idiosyncratic and very context-bound. But it seems to be a rather 

clear illustration of student understanding action based on her own cognizing 
structure, yet co-emerging with her (instructional) environment. 

It should not be thought that such context-based images cannot grow. 

Several days later Tanya was observed noticing a property, based on this 

peculiar image, as she did the following task: 

Here are pizza orders from three tables. How much is needed to fill all three 
orders? 

I) 1+2. 2 3 

Tanya responded, 

3l because 1.1. 3 22 
1 

II) 2.+� 3 6 
III) 1. + 1. 2 6 

2 2 5 1 
33 66 

11. 3 1 

We would infer that Tanya was noticing an image-based property: 
"Look for fractions you can combine to known fraction pieces." Thus, like 
DiSessa's (1987) phenomenological primitives (P-Prims) in science, Tanya 
can build from and generalize her image making here into property noticing. 

But her initial image-making actions had their limitations, as seen in 
Tanya's work in the following: 

Tanya: 

Teacher: 
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Tanya: I can't get them to fit. 

This situation and the follow-up activity suggested by the teacher 

proved to be "invocative in nature" (Kieren & Pirie, 1991, 1992). That is, in 

the face of this interaction and the suggestion that Tanya, and other students, 
try making fraction piece combinations and cover them with one kind of 
fraction (sixths, eighths, sixteenths or twelfths for example), Tanya folded 

back to renewed image making activity. 

After this activity Tanya showed revised image making. Faced with 

the task 

l_+J_+l_ 
2 4 8 

Tanya responded, "I can make all these fractions using eighths." 

Using our model we would infer that her image making is now illus-

trative of an understanding which could be characterized by the statement: 

To add, find pieces (from one's kit or one's imagination) which fit on the 
fractions you are adding. 

Notice, both in the example and the characterization, that Tanya's 
image making has undergone a subtle but significant transformation based 
on her new image making. 

Her subsequent adding activity can be observed to have new property 
noticing as well. 

Notice two things. Tanya was using her image-finding twenty

fourths- to fit. But she now combines this with her knowledge (in her 

primitive knowing) of equivalence and notices a new image-based property. 
As could be seen in Tanya's post-instruction adding, she could use this 

property to work on a wide variety of fraction piece combinations. But notice 
that such addition was still based on the analysis of each given fraction 
piece and hence was seen to be context and image dependent in nature. 

Several weeks after the conclusion of instruction on fractions Tanya 
was interviewed about addition of fractions. 
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Formalizing: 

T: What do you think about adding now? 

Tanya: Its ea.sy. 'jou ju.s� rl'lake fr'o.ctio�s -that work for" th.em all. 

Say you �ad; I� CJ.I'\d t· Welt sixths wo .. ld go for fa�dr 

so you.' d have to YV'CJ.ke fovty secot'lds. 

T: Why is that? 

Tanya: Well ]just k>'�owth.atfarty seco"ds wdl fit because 

sixths tii'VIes sevel'\ths "'o.ke forty seconds. 

T: So. 

Tanya: ; + i + f 
.!:L + !L + :§__ 
b 7 b 

J.8 .;z4 1.5.... 
=�+ 4J..t4a 

o."d like that. 

Here we see Tanya starting to apply a method or acting in a formaliz

ing way. Notice her choice of fractions to add. She deliberately chooses 

sevenths. Since she had not worked with sevenths previously and it is not 

an easy fraction to visually construct, it is suggested that Tanya now thinks 

of herself as having a method which works for all fractions (even something 

like sevenths). Further, notice that Tanya is not developing a common de
nominator on a piece-wise or fraction-by-fraction basis as was the case when 

she relied on her image of addition as finding pieces which fit (although 

some of that informal language lingers). Now she has a method which com
bines denominators of the fractions to be added, Tanya no longer needs her 
image to additively combine fractions. But, finally, notice that her formal
izing method does reflect her previous folding experience: she says that 
"forty-seconds" comes from "sixths" and "sevenths." Her method reflects 

and contains elements from the pathway of growth in her understanding. 

To this point the model and theory for the growth of mathematical 
understanding has been used part by part to analyze a number of different 
mathematical actions of Tanya. But the model can be used to illustrate the 
pathway of the growth of mathematical understanding for Tanya. 
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Figure 6. The pathway of Tanya's growth of understanding of addition of fractions. 

There is a general outward vector in Tanya's pathway but it is not 
monotonic. It involves a point, X, where she was provoked to fold back 
to more image making, leading to changed image having behavior (12 
signalling that addition now meant find a kind of piece to fit on addends as 
opposed to pieces(s) on which addends fit). The dashed line joint P2 to F1 
indicates that we do not know the nature of the pathway joining these 
indicated actions. We could speculate that the teacher's general question 
about addition provoked Tanya to think about fractions in a more sophis
ticated way, independent of her images. The question mark at the end of the 
pathway indicates that the theory suggests that Tanya could now be invoked 
to fold back to embedded less formal understanding activities or she could 
be provoked into observing a general theorem about addition, or she may 
now simply continue to understand addition of fractions using a formalized 
general method. But we do know that the pathways of Tanya's understandings 
will continue to be observed as a back and forth weaving within the modes 
of the model. 

THE BONUSES OF THE UNDERSTANDING 

OF MATHEMATICAL UNDERSTANDING 

What are the bonuses of thinking using our model for the growth of 
mathematical understanding? First, it allows us to think about growth in 
understanding as it is happening and not as simply a pre-test/post-test 
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difference. Although the model can be used to portray the growth of 

understanding of a concept over time, it is also useful in capturing the "fast 

dynamics" of understanding in mathematical action as it is happening: the 

transition following Tanya's image having (11) for example. Tanya's case is 

paradigmatic in showing that the growth of mathematical understanding is 

non-monotonic, involving movement out to more sophisticated understand

ing and folding back to less sophisticated understanding activity. This 

pathway really illustrates that observed understanding is a co-emerging 

concept: it grows jointly out of the action of the student and the observation 

and interaction of the teacher or researcher. Similarly, the model and theory 

provide the bonus of a way of viewing Tanya's constructive processes as 

she brings forth her mathematical world coupled with her environment. There 

is no such thing as "the" understanding of mathematics or addition of 

fractions. But there is Tanya, or any other student, engaging in her under

standing of mathematics and the observer's understanding of Tanya through 

the use of the model and its related constructs. 

CONCLUDING REMARKS 

If teaching in a way that enhances mathematical understanding in 

students is valuable, then it is important that mathematical understanding 

be made less vague. This paper has attempted to show that the bonus of any 

understanding of mathematical understanding is, in fact, to sharpen the 

teacher's or researcher's view of the understanding of students. More 

particularly, it was the purpose of this paper to show how Susan Pirie's and 

my developing theory for the growth of mathematical understanding provides 

a rich and active conceptual structure which helps its user to see and talk 

about mathematical understanding as it is happening. 

NOTE 

The research upon which this paper is based is supported in part by 

Social Sciences and Humanities Council Grant number 410 90078. 

The author also wishes to acknowledge the intellectual support and 

collaboration of Dr. Susan Pirie, of Oxford University, in many of the ideas 

discussed here. 
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CURRICULUM CHANGE: 

AN AMERICAN-DUTCH PERSPECTIVE 

Jan de Lange 

Utrecht University, The Netherlands 

To value the changes in curricula, one is often presented with one or 

two examples to give an impression of the real change at the practitioners 

level, not from the perspective of the theorist or the researcher. Those same 

practitioners-the teachers-often object that they cannot value a change 

in content and philosophy by looking at only one isolated example. It is for 

this reason that we would like to present a series of student worksheets, 

intended for 12-13-year-old students, that cover three lessons. 

The subject is geometry, but with connections to other strands. The 

examples are taken from a unit designed for the "Connected Mathematics" 

project, a cooperative project between the University of Wisconsin and the 

Freudenthal Institute in the Netherlands. 

Example: Worksheets from the Unit "Figuring all the Angles 2." (de 

Lange et al., 1992) 

Ship Ahoy 

Photo 1 Photo 2 

229 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES v'ICME-7 

Photo 3 Photo 4 

You are swimming in a canal and a ship is approaching you. It gets 

closer and closer. In the first picture the captain of the ship cannot see you 

because you are too far away. In the last picture the captain cannot see you 

either. 

1. Explain why. 

Of course it depends on the shape of the ship how close you can get in 

front of it and still be seen: 

2. Draw vision lines for the captain for each of the following ships. 

(the captain is at *) 

�--------
.2( 

Cargo ship 

Container ship 
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3. Measure in each of the cases the angle between the horizon and 

vision line. What does a small angle mean? 

Activity 

Bring a small boat to school (plastic or wood). 

Compare all the boats. Predict which one will have the biggest and 

which one the smallest blind spot. 

We will use your boat to make visible the blind spot of the captain; 

that is the part of the water he cannot see. We use: 

• a boat; 

• a piece of pin-board; 

• some pieces of thread; 

• pins. 

Step] 

Put your boat on the pin-board: 

Photo 1 

4. Make an estimate of the area that the captain cannot see. 
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Step2 

Construct a vision line straight forward, as in Photo 2. 

Step3 

Construct other vision lines. You may get something similar to Photo 3. 

Photo 2 Photo 3 

Step4 

Next we compute the ratio between the area of the blind spot and the 
area of the boat (forward of the bridge). The next pictures show you how 

this could be done: 

232 

Photo 4 

Photo 5 

5. Compute these areas and ratios for your boat, and compare them 
with your estimates in problem 4. 
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CHANGING GOALS 

Mathematics education is changing fast. There were major changes in 

the eighties in the Netherlands, Denmark, and Australia for example, and 

right now, in the early nineties, in other countries. 

The goals for mathematics education have changed as well. In the 
Netherlands the goals for the majority of children very much resemble the 

set of goals stated by the British Committee of Inquiry into the Teaching of 
Mathematics in Schools in 1982 (Cockroft, 1982). They are as follows: 

1. to become an intelligent citizen (mathematical literacy), 

2. to prepare for the workplace and for future education, 

3. to understand mathematics as a discipline. 

Nine goals were prepared by the Commission on Standards for School 

Mathematics of the National Council of Teachers of Mathematics (NCTM) 

in its 1989 report, Curriculum and evaluation standards for school mathe

matics. There are four societal goals and five goals for students. 

Mathematical literacy is articulated in the NCTM standards by five 

general goals for students: 

1. Learning to value mathematics. Understanding its evolution and 

its role in society and the sciences. 

2. Becoming confident of one's own ability. Coming to trust one's 

own mathematical thinking and having the ability to make sense of 
situations and solve problems. 

3. Becoming a mathematical problem solver. This is essential to 
becoming a productive citizen and requires experience in solving 

a variety of extended and non-routine problems. 

4. Learning to communicate mathematically. Learning the signs, 

symbols, and terms of mathematics. 

5. Learning to reason mathematically. Making conjectures, gathering 

evidence, and building mathematical arguments. 

These goals reflect a shift away from the traditional practice, subsuming 
traditional skills under more general goals for problem solving, com
munication, and critical attitude. 

NEW THEORIES: REALISTIC MATHEMATICS EDUCATION 

At the same time the goals of mathematics education are changing, 
there is the evolution of new theories for the learning and teaching of 
mathematics. 

233 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

At the Freudenthal Institute the "theory for realistic mathematics 
education" evolved after twenty years of developmental research. This theory 
appears to be related to the constructivist approach. (See Freudenthal, 1983, 
1991; Treffers, 1987; de Lange, 1987; Gravemeijer et al, 1990; Streefland, 

1991.) However, the realistic mathematics theory is a theory of learning 

and instruction in mathematics only, while the social constructivist theory 

is a theory of learning in general. 

The characteristics of the realistic mathematics education theory are 

as follows. 

Conceptual mathematization: from concrete to abstract 

In Freudenthal's view the learner is entitled to recapitulate the learning 

process of mankind (Freudenthal, 1973). This means that instruction should 

not start with the formal system, a final product, nor with embodiments, nor 

with structural games. The phenomena by which the concepts appear in 

reality should be the source of concept formation. Others call this process 

"extracting the appropriate concept from a concrete situation" (Ahlfors et 

al., 1962) or "conceptual mathematization" (de Lange, 1987). 

To put this a little more precisely, the real-world situation or problem 

is first explored intuitively, for the purpose of mathematizing it. This means 

organizing and structuring the problem, trying to identify the mathematical 

aspects of the problem, and discovering regularities and relations. The ini
tial exploration with a strong intuitive component should lead to the 

development, discovery, or (re)invention of mathematical concepts. 

After a formalization and abstraction of the concepts, they are used by 
applying them to new problems. This leads to a reinforcement of the concepts 

and to a readjustment of the perceived real world. In this way the learning 

process has an iterative character. The contexts serve a twofold purpose: as 
a source for concept development and as an area of application. 

Free productions 

Students should be asked to "produce" more concrete things. Treffers, 
(1987) stresses the fact that by making "free productions" the student is 
forced to reflect on the path taken in the individual learning process and, at 
the same time, to anticipate its continuation. The form of free productions
to write an essay, to do an experiment, to collect data, to draw conclusions, 
to design exercises that can be used in a test, or to design a test for other 
students in the classroom-can be an essential part of assessment. 
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Interactive learning 

Interaction between students and between students and teachers is 

essential. Balacheff (1985) expresses the point clearly. 

Working in pairs is not only a source of explanation but also a source 
of confrontation with others. This adds greatly to the dynamics of the activity. 
Contradictions coming from the partner, due to the fact that they are 

explained, are more likely to be perceived than contradictions confronting 
the solitary learner, derived only from the facts. They are also harder to 

refute than in a conflict resulting from the individual and temporary 

hesitations between two opposing points of view that the solitary learner 

experiences when confronted with a problem. 

Integrated learning strands 

Mathematics is integrated with the real world(s). Second, the integra

tion of mathematical strands is essential. One of the reasons is that applying 
mathematics is very difficult if mathematics is taught "vertically", that is if 

its various subjects are taught separately, neglecting the cross-connections 
stated by Klamkin (1968) . In applications one usually needs more than al

gebra alone or geometry alone. Integration on yet a third level is implied 
when students compare different models and integrate them. 

Authentic assessment 

Galbraith (1991) concluded there is a need to confront inherent con
tradictions that exist when constructivism drives curriculum design and 
knowledge construction, but positivistic remnants of the conventional par

adigm drive the assessment process. In the Netherlands a similar separation 
is seen in the reaction of many teachers and researchers, such as "I like the 
way you have embedded your math education in a rich context, but I will 
wait for the national standardized test to see if it has been successful." 

The assessment procedures should do justice to the goals of the 
curriculum and to the students-context independent generalized testing is 
unjust when for instruction the context includes the real world of mathematics 
itself, at least in the realistic mathematics education approach. An essential 
question is: "Does assessment reflect the theory of instruction and learning?" 

LEVELS OF UNDERSTANDING 

Most instruction in mathematics education focused on learning to name 
concepts and objects, and to follow specific procedures. The result, as Bodin 
(1991) points out, is that a student can solve a given equation without being 
capable of expressing the steps made or of justifying the results, and without 
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knowing which type of problem it is connected to or without being able to 
use it as a tool in another situation. 

The current emphasis for all students must shift to reasoning skills, 

communication, and a critical attitude. While these "higher order" thinking 

skills are difficult to describe, Resnick (1987) listed some of their features 

that are in stark contrast to current mathematics criteria. De Lange (1987) 

described experiences with "higher order" thinking mathematics and their 

assessment, stressing the process versus product character of the new 

curriculum. During the experiments in the Netherlands (1981-1992) it 

became clear that the mathematics thinking was non-algorithmic, had 

multiple solutions, involved uncertainty, and a need for interpretation. 

The issue needs to be addressed at the different levels necessary to 

represent both instruction and assessment. Three arbitrary levels reflect the 

decade-long experience of experimentation and implementation with the 

new mathematics curriculum in the Netherlands (de Lange, 1992). 

The lower level refers to objects, definitions, technical tools, and simple 
algorithms. 

The middle level deals with connections (between objects, concepts, 

strands), the integration of different concepts, and simple problem solving. 

The higher level deals with higher order thinking skills, developing a 

critical attitude, reflection, mathematical reasoning-probably including the 

concept of proof-and generalization. 

These three levels of mathematical understanding can help us to see if 

we really meet our educational goals. The boat example is a concretization 
of these principles and ideas. The boat example is also a product of an 

interesting international project, whereby the Dutch Freudenthal Institute 
develops materials with the perceived American culture in mind. The 

American collaborators at Madison, Wisconsin then "americanize" the 
materials which are tried out at pilot schools with both Dutch and American 

observers. Our conclusions are based on experiences from this project and a 
smaller project that can be considered as a pilot. (See de Lange et al., 1993.) 

To understand and appreciate the project some differences in the 
educational contexts in the Netherlands and the United States will be 
described. 
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One major structural difference between the countries is that the United 
States has sixteen thousand school districts, with each school district 
responsible for its own schools. The Netherlands can be regarded as having 

one school district making many things easier to accomplish. 

There is also a difference in the perceived status of the teacher. Com

plaints about teachers are not uncommon in the Netherlands or the United 

States, or presumably in many other countries. But close observation in the 
United States and the Netherlands makes clear that there are considerable 

differences in the status of the teachers and their mathematical backgrounds. 

The Dutch teacher can still be regarded as an expert: the teacher has a 
lot of freedom, knows mathematics, makes excursions into the unknown, is 

interested in innovations, and is very willing to criticize them. The Ameri

can teacher seems to be in a less favorable situation: the impression exists 
that she is not always considered to be an expert. There are numerous other 

experts: the superintendent, the school board, the standardized test, and last, 

but not least, the parents. The pressure of these experts on the teacher seems 
at times unreasonable and unfair. 

Another significant difference is the fact that the Netherlands has a 
system of tracking students: depending on the choice of the school the stu
dents are placed in the lower, middle, or higher track at the age of 12, 13, or 
14, though the students still have the opportunity to change tracks during 

their school career. The decision regarding student placement is taken by 
the parents and the Head of the school. The United States officially has no 

tracking, but many schools appear to have some kind of tracking in effect. 

The final difference, that in our view has a major effect on the level of 

(mathematics) education, is the very large role of extra curricular activities 
at schools in the United States and the almost complete lack of these activities 

in the Netherlands. For an observer from the Netherlands it is very strange 
to see that mathematics lessons are cancelled because the high school band 
or the track-and-field team has to practice, not to mention the cheerleaders. 

The teaching and teachers 

The background and history of context use is almost non-existent in 
the United States. When implementing a new "problem oriented context 
rich" curriculum one is immediately aware of this fact. It is often not clear 
why a certain context is used, whether or not it is appropriate, what the role 
of the context is. Discussion is hampered by the fact that there is little history 
in the use of contexts for many American teachers. 
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For the Dutch developers it was surprising that even the criteria for 

the use of contexts differ in the United States and the Netherlands. The 

cultural differences were larger in reality than anticipated, not that it was 

ever assumed that the Dutch materials could just be "translated" into Eng
lish. Both the American and Dutch staff were very well aware that a "cultural 

adaptation" should be carried out by the Americans. Earlier experiences 

with "Dutch" materials in other countries had convinced us of this not very 

surprising fact. 

Other differences between the countries are that in Dutch classrooms 

there seems to be a lot more interaction and group work-interaction between 

teachers and students, and between students. This does not necessarily mean 

that Dutch classrooms excel in group work. All kinds of teaching occur in 

the Netherlands: frontal teaching, group work, whole class discussion and 

also individual work. The United States classroom tends to be more 

organized, the lessons have a clear structure, and everybody knows his or 

her role. 

Many American teachers have to be chameleons: part of the year they 

teach what they want, what they think is useful, in the way they like. At 

other times they start to teach to the tests: once they know when a standard

ized test will take place, they teach to the test. In the Dutch system, teaching 

to the test is also not uncommon, but the tests do reflect the intended curric

ulum to a degree. And the discussion now focuses on ways to improve the 

examinations in order to better represent the actual teaching-learning proc

ess. 

The textbooks used in most American classrooms are very structured 

and have "closed" questions, with only one correct answer, no need for 

explanation of strategy, no "real" real-world problems, but "dressed-up" 

problems where the role of the context is nothing more than cosmetic. On 
the other hand the Dutch textbooks quite often look less structured, contain 

a lot of text, have many problems where context plays an essential role, and 

require students to reflect on the answer. 

Parents 

A very significant difference involves the role of the parents in Dutch 
and American schools. In the Netherlands parental involvement in education 

is very low. Many heads of schools and teachers alike complain about how 
hard it is to interest parents in their children's progress at school. Even 
"parents' evenings", where parents may discuss with individual teachers 
matters relating to their child, are barely surviving. Parents do not seem to 
be interested in any global issue such as curriculum change, structural 
changes in the educational system, or authentic assessment. They take for 
granted being informed by a letter from the principal. 
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One is tempted to interpret this situation in a positive way by arguing 

that parents consider the school and the teachers to be the experts. In the 

United States the impression exists that the real experts are the parents, 

putting pressure on the teachers and the system. This parental involvement 

can be frustrating for teachers, especially for those teachers who try to im

plement certain innovations in their teaching and learning practice. 

These differences between the educational cultures in the field of 

mathematics education seem to be quite large and certainly affect the process 

of developmental research as implemented in the American Middle School 

project. But equally interesting is the fact that some very fundamental 

questions and problems which were confronted in the past decade in the 

Netherlands turned up in the United States. In implementing our Realistic 

Mathematics Education materials and philosophy, we had to face a number 

of problems and for some we have some reasonable answers. Others form a 

very concrete starting point for future developmental research. 

PROBLEMS AND QUESTIONS IN 

THE UNITED STATES AND THE NETHERLANDS 

Some of the problems encountered with the introduction and imple-

mentation of new curricula based on the "realistic" philosophy are 

o the "loss" of teaching, 

o the "loss" of basic skills and routines, 

o the "loss" of structure, 

• the "loss" of clarity of goals, 

• the complexity of "authentic" assessment. 

Each of these points will be discussed in some detail. 

Teaching 

Teaching is often interpreted as an activity mainly carried out by the 

teacher: he or she introduces the subject, gives one or two examples, may 
ask a question or two, and invites the students who have been passive lis
teners to become active by starting to complete exercises from the book. It 

is not unusual that most of the time this "activity" is carried out in an indi
vidual way. 

The lesson will be ended in a well organized way, the "closure", and 
the next lesson will be conducted in a similar scenario. 

Realistic-mathematics education makes teaching more complex. The 
teacher is not supposed to teach anymore. And learning the art of "unteach
ing" has been proven to be very difficult and very personal. 
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Referring once more to the boat problems, it will be clear that one 

cannot "teach" these pages in the traditional way. This does not mean that 

we have a fixed scenario readily available for the teacher who is eager to 

learn. The classroom in combination with the teacher will determine in which 

way an optimal result, consisting of interaction, individual work, group work, 

classroom discussion, student presentation, teacher presentation, and other 

activities, can be obtained. 

The teacher's role is that of organization and facilitation-a process 

that cannot be described in detail for "the" teacher. The teacher needs to 

make personal adaptation. To make things more difficult the teacher faces 

even more obstacles. Regularly teachers and students will be confronted 

with problems that have different "correct" answers or one correct answer 

and different strategies. 

Different strategies often involve more than one level of mathemati

cal thinking, forcing the teacher into a discussion about the values of the 

strategies. To add even more to this already long list of points that need 

to be addressed one has only to think about assessment. Teachers find it 

difficult, if not impossible, to design their own tests. This means that the 

designers should be the persons and institutions responsible for the design 

of the students and teacher materials. They should not only design a "bal

anced" package of assessment materials that covers all the content, goals, 

and levels, but should also provide advice on grading the tasks. 

Basic skills 

Discussion about the role of basic skills is related to the implementation 

of realistic mathematics curricula, but it is ongoing in many countries in its 
own right. For many teachers this discussion has not been part of their daily 

practice, basic skills are a matter of fact, and form the kernel of mathematics 

education. Both in the Netherlands and the United States the discussion 

only slowly entered the ranks of the practitioners, the teachers. 

In the Netherlands a group was formed during the seventies to battle 
against the innovations that are now called Realistic Mathematics Educa
tion. For a short period, it had considerable success in pointing out that 
basic skills were threatened. A report in the Netherlands seems to indicate 
that at the primary school level the "new" students perform equally well on 
basic skills as the students in the old curriculum, and that they outperform 
the old curriculum students on the field of problem solving. 

When the new curricula for upper secondary were introduced, many 

once widely accepted basic skills were minimized. But as the new standard

ized examinations were trying to operationalize the new programs, one 
cannot say how poorly prepared the new students are at this moment 
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compared with the students from ten years ago. Both the goals of mathe

matics education and the examinations have changed. 

The attentive teacher notices that in the occasional situation where the 
students need a basic skill, they often lack it. Of course at one moment in 

their career they had mastered this skill, but with little need to use it, this 

outcome was predictable. 

We are still in the process of learning, as will forever be the case, and 

a real solution is not at hand. It seems necessary to analyze the implemented 

curricula, the "real" world problems that we think are relevant, and the skills 

that are necessary to solve them. In the United States the Curriculum and 

evaluation standards (NCTM, 1989) make clear that decreased attention 

should be given to rote practice, rote memorization of rules, written practice, 

long division, (paper and pencil) fraction computation, developing skills 

out of context, memorizing rules and algorithms, and manipulating formulas. 

This is not a cure for the problems and it will take a lot of practice, exper

iments, developmental research, discussion, and a clear picture and vision 

of how to integrate technology (graphic calculator) into the teaching and 

learning process. 

Structure 

The boat example makes clear that the structure underlying the exer

cises is not easily recognizable as a traditional mathematical structure. The 
structure is a didactical one and can have different forms depending on the 
subject. In general the students will explore a problem in an intuitive way

in some way that relates to their or the real world. 

Quite often the context or situation may obscure the mathematical con

cept. If we want students to understand the concept of vision lines and related 

subjects (blind area, hidden corners) and use that same idea for introduction 

of the tangent (much later) we could have chosen the traditional format: just 
tell the students what a vision line is, give an example, and have them 

complete many similar exercises. This is definitely easier for the teacher, 

but the students will be on the loser's side. 

Another matter of concern, especially when teachers are confronted 

with the new curricula for the first time is the fact that the units seem to lack 
a beginning and an end. The first page does not require the teacher to ex

plain the next topic-the students just have to start working. It is not an 
introduction for the next subject-"today we are going to a new subject: the 
linear equations ... etc." Leaving these tasks to the students makes the situ
ation less structured. 
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The final point we would like to mention here is the fact that math
ematics is increasingly taught as a unity, and not as separate strands. In the 

United States this is a major problem. Algebra 1, Algebra 2, and Geometry, 

to name a few courses, do not seem very promising in the light of integrating 

learning strands. But it gives the courses more structure. Just having courses 

in mathematics indicates clearly the desired integration but the structure, 

especially the mathematical structure, will be less clear and less visible. 

Clarity of goals 

In the traditional program the goals were more or less clear. Solving a 

linear equation was a simple goal that could be reached by working with 

numerous linear equations. And as many students noticed: "You just do the 

last ones and then you will know whether or not he or she has reached the 

goal." But most of the goals of the traditional programs are now classified 
as "lower" goals-rote skills, simple rules and algorithms, definitions. 

However, in the new programs, we have different goals which we 

classified as "middle" and "higher" goals. At the middle level, connections 

are made between the different tools of the lower level. Concepts are inte

grated; although it may not be clear in which strand we are operating, and 

simple problems have to be solved without unique strategies. This means 
that, for both the teacher and the students, the intended goals are not always 

immediately clear. 

A final word on the loss of clarity of the goals. Apart from the differ

ent levels that tend to obscure the goals, we also have to face the fact that 

real problems, in the more complex sense, obscure mathematical goals also. 
It may be even worse. We may not know the goals precisely because the 
problem is so real and therefore so open ended that the goals can only be 
reconstructed afterwards. 

Assessment 

One of the main obstacles in implementing the new curricula will be 
the availability of appropriate assessment tools. As was mentioned earlier, 
while teachers in the Netherlands like the context approach, they want ev
idence of success from national tests before adopting it. Popper (1968) and 
Phillips (1987) have argued that a theory can only be tested in terms of its 
own tenets. This means that constructivist or realistic mathematics education 
teaching and learning can only be evaluated by assessment procedures de
rived from the same principles. 

On the other hand, not only have the new notions about learning influ
enced the ideas about "authentic" assessment. The new goals will also have 
their effect. The new goals emphasize reasoning skills, communication, and 
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the development of a critical attitude. Together, these are popularly called 

"higher order" thinking skills. These thinking skills were seldom or not at 

all present in traditional assessment and education. The change towards a 

"thinking" curriculum forces us to focus on "thinking" assessment as well. 
(Lesh & Lamon, 1992; Romberg, 1992; Kulm, 1990.) 

The goals of assessment, or better, the goals and principles of assess

ment have changed too, which adds to the problem of matching assessment 

to the teaching and learning process. It is interesting to see that the publica

tion that came out of the National Summit on Mathematics Assessment (For 
good measure, MSEB, 1991) states that their goals and principles are based 

on commonly held beliefs about assessment. It is not only interesting but 
somewhat surprising to see that the first principle is "the primary purpose 

in assessment is to improve learning and teaching". 

Surprising because if we compare this statement with the actual school 

practice there seems to be hardly any relation with this first "commonly 

held belief'. The principle itself is not new at all. Gronlund (1968) stated it 
clearly and we borrowed his ideas to formulate our principles: 

The first and main purpose of testing is to improve learning and teaching. 

Methods of assessment should be such that they enable the student to demon
strate what they know rather than what they don't know. 

Assessment should operationalize all goals of mathematics education. 

The quality of mathematics assessment is not in the first place determined by 
its accessibility to objective scoring. 

The assessment tools should be practical. (de Lange, 1987) 

An interesting (teacher designed) item that reflects these principles is 

the following: 

• Here you see a crossroads in Geldrop, The Netherlands, near the 

Great Church. 

N 

� 

��c 
E 
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In order to let the traffic flow as smoothly as possible, the traffic 

lights have been regulated so as to avoid rush-hour traffic jams. A 

count showed the following number of vehicles had to pass the cross

roads during rush hour (per hour) : 

M 0 40 200 30 

N 30 0 80 50 
A: from 

E 210 60 0 60 

c 30 40 80 0 

M N E c 

The matrices Gb G2, G3 and G4 show which directions have a green 

light and for how long. t means that traffic can flow through a 

green light for a period of t minute. 

M N E c M N E c 

M 0 1 1 0 M 0 0 0 0 
3 3 1 1 

N 0 0 0 0 N 0 0 2 2 Gt: 
1 1 

G3: 
0 0 0 0 E 0 0 E 

3 3 1 1 c 0 0 0 0 c 2 2 0 0 

M N E c M N E c 

M 0 0 0 1 M 0 0 0 0 
3 1 

N 0 0 0 0 N 0 0 0 
G2: G4: 

2 
E 0 1 0 0 E 0 0 0 0 

3 1 c 0 0 0 0 c 0 0 2 0 

• How many cars come from the direction of Eindhoven during that 

one hour? And how many travel toward the City center? 

• How much time is needed to have all lights turn green exactly once? 

• Determine G = G1 + G2 + G3 + G4 and thereafter T = 30G. What do 

the elements ofT signify? 

• Ten cars per minute can pass through the green light. Show in a 
matrix the maximum number of cars that can pass in each direction 

in one hour. 
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• Compare this matrix to matrix A. Are the traffic lights regulated 

accurately? If not, can you make another matrix G in which traffic 

can pass more smoothly? 

This item is interesting from different points of view: 

1. The mathematics is unusual: matrices at grade 9. 

2. The format is a restricted, timed, written test; but still very open. 

3. Interpretation and the understanding of the question is essential. 

4. One could make it suitable for even more open purposes by just 

asking the last question, and finding out how differently the students 

will handle the problem. 

5. The item can be transformed easily to a "project" like assessment. 

The item looks rather straightforward and easy to design. However, 

practice and research shows clearly that designing problems like this is 

extremely difficult and time consuming. 

The following example shows some other matters of concern: 

• Katie bought 40 cents worth of nuts. June bought 8 oz. of nuts. Which 

girl bought more nuts? 

a. June. 

b. They each bought the same amount of nuts. 

c. Katie bought twice as much. 

d. Katie bought 5 oz. more of nuts. 

e. You cannot tell which girl bought more nuts. 

This is interesting from different aspects. In the first place, it is 

encouraging that an American State Board of Education has the courage to 

try an item like this one, which is at least unusual. It is a breakthrough to 

provide insufficient information, certainly for grade 6. But of course there 

are some questions to be asked too. 

In the first place what does the fact that 61% of students have answered 
(e) correctly tell the teacher? Or, more precisely, What are we measuring 
here and how certain are we that the proper answer reflects the proper 

reasoning? The idea behind the item is certainly appealing, but the multiple 
choice format destroys it-at least in our perception. 
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Imagine that the item would have been as follows: 

• Each of the following four answers is correct under certain assump

tions. Describe the necessary assumptions in each of the four cases. 

Katie bought 40 cents of nuts. June bought 8 oz. of nuts. Which girl 

bought more nuts? 

a. June 

b. They each bought the same amount of nuts. 

c. Katie bought twice as much. 

d. Katie bought 5 oz. more of nuts. 

Now we have a completely different item. The children have to reason, 

to think, to write down their reasoning. With just a slight alteration, we 

have created a test item that operationalizes some higher order thinking 

skills as well as communication. 

Another problem still to be faced is the matter of objective scoring. A 

hypothesis that seems easy to defend is: 

The gains we make by obtaining a more or less complete measure of overall 
knowledge and capabilities by using a balanced package of assessment will 
by far outweigh the disadvantage that we have by "losing" a completely 
objective score. Intersubjective scoring and proper scoring instructions give 
enough guarantees for a fair measure: fair to the student and fair to the 
curriculum. 

Much more information is needed-pilot studies, and research. But in 

the first place development of new assessment tools and guidelines for their 

use and scoring. 

CURRICULUM CHANGE 

To value the process of curriculum change, its complexity, specifics, 

and generalities, it is enlightening to compare this process in different 

countries and contexts. The literature is almost exclusively devoted to local 

situations, mostly on a small scale, and quite often even on a laboratory 
scale. Often generalizations based on these studies hardly seem to take the 
different contexts into account. If mathematics education as a science is to 

be taken seriously, we should consider these factors more than is done 

currently, especially at an international forum such as ICME. 
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TRAINING TEACHERS OR 

EDUCATING PROFESSIONALS? 

WHAT ARE THE ISSUES AND 

HOW ARE THEY BEING RESOLVED? 

Glenda Lappan and Sarah Theule-Lubienski 

Michigan State University, United States of America 

Current trends in teacher education cannot be separated from current 

visions of student learning. As Brown, Cooney, and Jones (1990, p. 650) 

state, "It makes little sense to interpret either students' goals or teachers' 

goals in isolation one from the other." Hence, we will begin by exploring 

today's vision for mathematics students and its implications for teaching 

and teacher education. 

VISION OF STUDENT LEARNING OF MATHEMATICS 

What society needs from mathematics education for students is 

changing dramatically. In order to address these changing needs, the National 

Council of Teachers of Mathematics (1989) created the Curriculum and 

evaluation standards for school mathematics (CESSM). This vision of re

form promotes several inter-related components, including: (1) students 

actively "doing mathematics", (2) mathematics as thinking and sense

making, (3) powerful, but changing, mathematical content, and ( 4) a belief 
that all students can learn and appreciate mathematics. The implications of 

this vision of mathematics and mathematics learning for teacher education 

and professional development are major. We need to begin at ground level 

and build teacher education programs that can educate and support teachers 

in changing their minds and their practices to support more powerful 
mathematics and mathematical thinking for students. 

A framework for examining teaching 

There are many persistent obstacles to making changes in the teaching 
and learning of mathematics. In order to examine pre-service teacher edu
cation programs and professional development programs for experienced 
teachers for the likelihood that they can help make teachers change, we 
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need to build a framework of what teachers need to know and be able to do. 
Teaching is a very complex endeavor, not reducible to recipes or algorithms. 

Good teaching may look very different in different classrooms. In order to 

get beyond the surface features, one has to examine aspects of the teachers' 

decision making, judgments about the classroom, and about the students' 

learning. 

The writers of the Professional Standards for Teaching Mathematics 

(PSTM) identified four aspects of teaching that were judged to be so central 

to good teaching that they could be used to craft a framework, in the form of 

a set of standards, for what teachers need to know and be able to do. These 

four aspects of decision making are: choosing worthwhile mathematical 

tasks, orchestrating classroom discourse, creating an environment for 

learning, and analyzing teaching and learning. (NCTM, 1991). 

Worthwhile mathematical tasks 

There is no other decision that a teacher makes that has a greater impact 

on students' opportunity to learn and on their perceptions about what 

mathematics is than the selection or creation of the tasks with which the 

teacher engages the students in studying mathematics. Here the teacher is 

the architect, the designer of the curriculum. 

To make selections or craft tasks that give students these deeper, more 

relevant opportunities, the teacher must be guided by the mathematical 

content of the task. Problems should not be chosen merely because they are 

"fun," or because they use a manipulative that is available in the classroom. 

There must be the potential for students to engage in sound and significant 

mathematics as a part of accomplishing the task. 

A second consideration for a teacher in selecting or crafting tasks is 

that he or she teaches particular students. What the students already know 
and can do, what their mathematical needs are, and the level of challenge 

they seem ready to accept, are all fundamental issues for a teacher. For 
teachers to be effective at making such judgments they need to know the 
best results that we have from research and practice about students of the 
age in question, as well as to have particular insights into their own students' 
mathematical progress and ways of making sense of mathematics. 

We must build responses to the following questions in our teacher 

education programs: 
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What knowledge does a teacher need in order to be able to judge what her 
students know, to be able to recognize the difficulties that they are experienc
ing, to anticipate what will be difficult, to anticipate what will be more apt to 
push students forward in their thinking and their knowledge and skill in doing 
mathematics? 
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Classroom discourse 

The PSTM describes discourse as" the ways of representing, thinking, 

talking, agreeing, and disagreeing" (1991, p. 36) as a group of students and 

a teacher strive to make sense of mathematics. Discourse includes the ways 
that ideas are represented, exchanged, and modified into more powerful and 
useful ideas. Teachers have a critical role to play in establishing the norms 

of discourse in the classroom and orchestrating discourse on a daily basis. 
It is through the interactions in the classroom that students learn what 

mathematical activities are acceptable, which ones need to be explained or 
justified, and which explanations or justifications are acceptable. 

The implications of new forms of discourse in the classroom are very 

great for teacher education. Many teachers and intending teachers have never 
experienced learning mathematics in situations where what is valued is the 
quality of the thinking, the quality of the explanation or argument, and the 
quality of the decisions made based on the evidence. Additionally, many 
teachers and intending teachers have little experience using tools-intel
lectual as well as physical tools such as calculators and computers-as ways 
of modeling, exploring, or representing ideas. 

As teacher educators the question we must ask ourselves is, "How do 
teachers learn to conduct discourse in such powerful ways?" 

Classroom environment 

What students learn is fundamentally connected to how they learn it. 
The environment in which students learn affects their view of what mathe
matics is, how one learns it, and perhaps of more importance, their view of 
themselves as learners of mathematics. Environment means more than the 

physical surroundings. It includes the messages that students are given about 
what is expected of them. What is their work to be? What counts in the 
classroom? Is it speed? Neatness? Being quiet? Completing tasks? Or is it 
taking responsibility for listening to and helping others? Asking questions 
of themselves and of their classmates? Seeking evidence? Being curious? 

Working independently? Sharing ideas and strategies? 

Environment encompasses considerations of tasks and discourse and 
the emotional climate of the classroom. Is the environment of the classroom 
conducive to taking intellectual risks? Does every student feel valued? Do 
all the students feel that their ideas will be respected even if these turn out 
to be incorrect? Does every student expect to make conjectures or argue 
points or question others as they build their mathematical understanding? 
These questions raise further questions about our teacher education pro
grams: 
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How can teacher education programs and professional development programs 
help teachers develop learning environments in which students feel empowered 
to make sense of mathematics and in which they feel confident in themselves 
as learners of mathematics? 

Even if teachers, both pre- and in-service, have experienced such an 

environment for learning mathematics, it is unlikely that such experience is 

explicit about the decisions that a teacher makes and the ways that a teacher 

works to build such an environment. The teacher as analyzer, as researcher, 

is visible to the students only through tests and other means of evaluation. 

Perhaps this final aspect of decision making is the most elusive of all since 

here there is little outward evidence of the teacher's analysis. 

Analysis 

How well is the system that the teacher has created working? Are the 

tasks engaging the students? Are they effective in helping students learn 

mathematics? Do they stimulate the richness of discussion that students 

need to develop mathematical power? Is the classroom discourse fostering 

learner independence? Curiosity? Mathematical thinking? Confidence? 

Disposition to do mathematics? Is the classroom environment encouraging 

the kind of engagement that reaches every student and supports everyone's 

mathematical development? These are the kinds of questions that reflective 

teachers regularly ask themselves. The PSTM refers to these aspects of teach

er reflection as "analysis". 

Analysis also includes the regular assessment of student progress for 

the purpose of making instructional decisions. Assessing student perform

ance on skill-level items is not sufficient. The teacher needs to examine all 

aspects of the mathematical development of students, including how the 

tasks, discourse, and environment are working to build mathematical power 

for all students. 

In the same way that we argue for an environment for students in which 

they can explore mathematics we have to consider that preservice teachers 

do not learn pedagogical reasoning by being told. The environments that we 
build in which to educate teachers must help preservice teachers construct 

their own professional knowledge. Teaching is a creative act in much the 

same way that problem solving is a creative act. It may help to know some 
heuristics for attacking problems, but a list of heuristics will never make us 
problem solvers. It may help preservice teachers to have some heuristics 

with which to consider teaching situations and problems, but such a set of 
"how to's" will not make anyone into a professional teacher capable of 

making the kinds of decisions that are envisioned in the PSTM and the 

CESSM. 
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How is a teacher to learn how to make such decisions and to engage in such 
analysis? What experiences in pre-service programs or professional develop
ment activities with experienced teachers are effective at developing such 
professionalism in teachers? 

We now turn to an examination of the kinds of knowledge that we 

must consider in our professional development programs for teachers if we 

are to develop answers to the questions raised on what teachers need to 

know and be able to do and where they will learn it. 

WHAT DO TEACHERS NEED TO KNOW AND BELIEVE? 

Teachers need knowledge of at least three kinds to have a chance to be 

effective in choosing worthwhile tasks, orchestrating discourse, creating an 

environment for learning, and analyzing their teaching and student learning: 

knowledge of mathematics, knowledge of students, and knowledge of the 

pedagogy of mathematics. These domains of knowledge can be represented 

in a Venn diagram as shown: 

However, the Venn diagram makes clear one of the problems. Teach

ers work in the intersection of these domains of knowledge. It is the interplay 

of the various considerations that leads to defensible pedagogical reasoning 
on the part of teachers. Yet in teacher education programs we typically en
gage students in each of these domains of knowledge in isolation from each 
other. The integration of that knowledge in ways that helps teachers reason 
about their classrooms and their students is often left to the students' teach
ing experiences. The evidence suggests that this is not an effective means 

of helping teachers see the connections among the various domains of knowl
edge that they possess (Feiman-Nemser, 1983). 
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In the next sections of this paper we examine issues and promising 
research in areas of teacher learning that reflect the three areas or domains 

of knowledge diagrammed above. 

Knowledge and beliefs about mathematics 

The new vision for student learning has great implications for the 

knowledge of mathematics needed by teachers. Encouraging students to ex

plore mathematics sometimes leads to unexpected mathematical questions 

and situations, and teachers need mathematical knowledge in order to guide 

students in their explorations. 

McDiarmid, Ball, and Anderson (1989, pp. 13-14) emphasize the im

portance of teachers' mathematical knowledge. After reviewing current 

research in this area they conclude: 

Recent research highlights the critical influence of teachers' subject matter 
understanding on their pedagogical orientations and decisions ... Teachers' 
capacity to pose questions, select tasks, evaluate their pupils' understanding, 
and make curricular choices all depend on how they themselves understand 
the subject matter. 

Lampert (1988, pp. 163-164) argues that teachers need to know where 

the mathematics teaching and learning process is headed, "not in the linear 

sense of one topic following another, but in the global sense of a network of 

big ideas and the relationships among those ideas and between ideas, and 

facts, and procedures." A study by Steinberg, Haymore, and Marks (1985) 

supports her assertions. They found that well-developed mathematical knowl

edge correlated with having a more conceptual teaching approach, while a 

low level of mathematical knowledge correlated with a more rule-based 

approach. Additionally, Even (1993) found that teachers with limited con

ceptions of functions taught in a way that emphasized rules without 

understanding. 

McDiarmid et al. (1989, p. 7) also state, "Beyond representing the 

substance of a subject, teachers also represent its nature." In order for teach
ers to help students obtain more authentic and productive notions about 
mathematics, teachers themselves need to believe that mathematics is more 

than just memorizing rules. Yet American teachers tend to give inconsistent 
messages about the goals of mathematics: i.e., neatness, correct answers, 
rules and procedures (Stigler & Perry, 1988). 

Perhaps these mixed messages are indicative of current questions be

ing raised about the goals of mathematics education and the relationship 
between the discipline of mathematics and mathematics education. Should 
reasoning, thinking, and problem solving be the primary focus of mathe

matics education? Or should mathematical concepts, definitions, and 
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theorems be given primary emphasis? To what extent should the classroom 

community's norms be similar to the norms in the community of mathema

ticians regarding issues such as evidence and proof? 

Despite questions such as these being raised about the relationship 

between the discipline of mathematics and school mathematics, there does 

seem to be a great deal of agreement about the importance of teachers' 

mathematical knowledge. Instead of avoiding these issues with teachers, it 

might help teachers reconsider their rule-based notions of mathematics to 

realize that mathematics and mathematics education are both developing 

fields in which there are unanswered questions and debate. 

It seems clear that it is not just the quantity of mathematics that is at 

issue. Teachers need to learn mathematics in deeper, more connected ways. 

In order to develop this depth of mathematical understanding and be able to 

use their mathematical knowledge effectively in classroom, the current way 

in which mathematics is taught to teachers must be changed. Not only do 

mathematics teacher educators need to model good teaching, they must also 

give explicit attention to the relationship between teachers' mathematical 

knowledge and teachers' knowledge of mathematical pedagogy and students. 

Knowledge and beliefs about the pedagogy of mathematics 

The PSTM takes the stand that what students learn is fundamentally 

connected to how they learn it. "Consequently, the goal of developing stu

dents' mathematical power requires careful attention to pedagogy as well 

as curriculum." (NCTM, 1991, p. 21). Couple this stand with Thorn's (1972) 

suggestion that mathematical pedagogy reflects one's philosophy of math

ematics, and Hersh's (1986, p. 13) statement, "One's conception of what 

mathematics is affects one's conception of how it should be presented," and 
this sends a powerful message about what is important in our teacher educa

tion programs. What philosophy of mathematics do our students see in our 

programs? Is it coherent? Does it pervade all aspects of the education of 
teachers from the content classes in mathematics to how we work with stu

dents in the fields? Do we consciously try to make explicit matters having 

to do with what mathematics is? Do we engage students in activities that 

cause them to reflect consciously on their deep-seated beliefs about mathe
matics and what it means to know and to teach mathematics? 

In recent years research on teachers' beliefs and the interaction between 

beliefs and practice have received increasing attention. Thompson (1984) 
investigated high school teachers' beliefs and their classroom teaching and 
found evidence that teachers' beliefs, views, and preferences about math
ematics influence what they do in the classroom. Others who have studied 
teacher beliefs and the impact on teaching and learning are listed in the 
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references for this paper. (Shaw, 1989; Cooney, 1985; Brown, 1985; 

Dougherty, 1990; Peterson, Fennema, Carpenter, & Loef, 1989; Schram, 

Wilcox, Lappan, & Lanier, 1989; Nespor, 1987; Ernest, 1988.) We know 

from research that the deeply held beliefs of pre service teachers about what 

can and should happen in school, about what is possible and what is desirable, 

and about the nature of understanding (Stigler & Perry, 1988) are particular

ly difficult barriers to change. But we cannot improve teaching unless we 

confront what teachers bring to teaching and, more specifically, to teacher 

education. 

In 1988 a group at Michigan State University began a study of pre

service teachers as a part of the National Center for Research in Teacher 

Education. The study was based on an intervention designed to help us bet

ter understand what it takes to help pre-service teachers confront their beliefs 

about what mathematics is, what it means to know mathematics, and what it 

means to teach mathematics. We designed three courses in mathematics, 

two methods courses, one before and one after student teaching, and semi

nars during student teaching. We have written about our work in several 

papers listed among the references (Schram, Wilcox, Lappan, & Lanier, 

1988, 1989; Schram & Wilcox, 1988; Wilcox, Schram, Lappan, & Lanier, 

1991; Wilcox, Lanier, Schram, & Lappan, 1992; Schram, 1992; Lappan & 

Even, 1989). Here we summarize what we think we know as a result of this 

ongoing study. 

The 24 pre-service teachers entered the first mathematics course with 

a traditional view of mathematics as a well-ordered sequence of rules and 

procedures mostly focusing on number and number operations. They did 

not expect mathematics to make sense, but they did expect themselves to be 
able to remember or the teacher to give a rule after which the solution would 

be swiftly found. They perceived the role of the teacher to be explaining 

how to do the problems and telling the students when they were correct. We 

had a year with these students in which to create a new vision of what math

ematics learning and teaching-from the perspective of the mathematics 

classroom-could be. We were able to change in very powerful ways how 
the students perceived themselves as learners of mathematics. By the end of 
the intervention, the students valued the kind of environment we had creat
ed and the goals of problem solving and deep understanding that had driven 
our work. However, they valued this as an environment for themselves as 
learners, but nearly half of the students still held to their more traditional 
beliefs about what mathematics was important for elementary children and 
how one should teach that mathematics to children. 

We have continued to follow a subset of these students through their 
first three years of teaching (Wilcox et al., 1992). Our analysis of the data 
suggests that the choices the teachers make in their teaching of mathematics 

256 



LAPPAN AND THEULE-LUBIENSKI 

are influenced by the interaction of their views about knowledge and 

pedagogy, with the degree to which they perceived the context of the school 

in which they teach-with its policies and established curriculum-as a 

constraint. We have observed the complexities that new teachers face in at

tempting to create environments for learning mathematics in which children 

engage in personal and group sense-making. We have observed the isolation 

new teachers feel. We have concluded that disciplinary knowledge and a 

disposition to engage in mathematical inquiry or sense-making can be devel

oped in an intervention such as ours. However, this is not enough to overcome 

the deeply-held beliefs about how young children should learn mathematics 

and what is important for them to know. Additional work must be done to 

create environments in which these deeply held beliefs are challenged, ex

amined, and reconstructed. This cannot, in our opinion, be done solely in 

the preservice phase of teacher education. In fact, some professional devel

opment programs are based on the tenet that teachers need to change their 

teaching and see that a new approach "works" in their own classrooms before 

their beliefs change. (Owen, Johnson, Clarke, Lovitt, & Morony, 1988; 
Lockwood, 1991) Hence, working models of support systems for novice 

teachers need to be built. 

We turn to the third area of knowledge needed by teachers. 

Knowledge and beliefs about students 

Most teacher education and professional development programs try to 

help teachers learn about children. However, it is where this knowledge of 

children and mathematics meet that is of critical importance to us as math

ematics educators. The site for this meeting in many teacher education 

programs is in the student teaching experience. Yet many of us have expe

rienced the disappointment of students returning from student teaching 

experiences angry at the university faculty because the world of school was 

not what their teacher education program espoused. The hard work of mov

ing pre-service teachers to reconsider their beliefs and expectations about 

mathematics teaching and learning can be undone in a flash by a student 

teaching or beginning job experience in a school whose culture promotes 

order in the classroom, teaching as telling, and standardized test results as 

the measure of teacher success. 

A group at Michigan State (Lappan, Fitzgerald, Phillips, Winter, 
Lanier, Madsen-Nason, Even, Lee, Smith, & Weinberg, 1988) has studied 
teacher change at the middle grade level in a number of projects. One aspect 
of teacher change that we have taken very seriously is the challenge of 
creating environments in which teachers' "knowledge" or beliefs about 
students as learners of mathematics can be challenged. One effective means 
of challenging teachers beliefs and expectations-and hence, their knowledge 
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about students-has been intensive summer experiences which have a 

classroom teaching component and long-term follow-up support. 

The teacher participants were observers in classrooms taught by the 

staff. Each of them picked a particular child to study for two weeks. The 

teachers were to focus on the cognitive development of their child. What 

sense were they making of the mathematics? Each day we had a debriefing 

session at which the teachers talked about their child. It was quite difficult 

in the beginning for teachers to focus on cognition instead of behavior. They 

were quick to write students off as not very competent in mathematics. 

However, as the two weeks passed, all the children provided their "teacher 

observers" with surprises. Given a chance to listen to children making and 

defending conjectures about the problem situations being studied, the teach

ers began to look for more clues as to what the students were thinking. 

While this intervention was with experienced teachers, it raises ques

tions about how our teacher education programs, including field experiences, 

might be constructed. It also underscores the need for the creation of very 

powerful images of children in the act of making sense of mathematics in 

order to help teachers learn about students. 

SUMMARY 

One of our greatest challenges in educating professional teachers is 

taking seriously the integration of the domains of knowledge on which teach

ers base their practice. This requires fundamental changes in the ways in 

which we interact across disciplines within the university and among schools, 

universities, and the community. Such interactions are difficult. The partic

ipants in each of these areas (departments of mathematics, teacher education, 
educational psychology, schools, communities, business, and industry) do 
not speak the same language nor value the same activities. However, we are 

all bound by the same moral imperative-to do the best we can for the chil
dren in our communities. 

We have a clearer picture of the issues in both pre- and in-service 
work with teachers. We can be guided by the framework from the PSTM on 
crucial aspects of teacher decision making: 

• selecting worthwhile tasks, 

• orchestrating classroom discourse, 

• creating environments for learning, and 

• analyzing teaching and learning. 
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We have discussed three domains of knowledge that must be consid

ered in the professional development of teachers: knowledge of content, 

knowledge of pedagogy, and knowledge of students. We have identified 

teachers' and pre-service teachers' deeply-held beliefs about each of these 

domains of knowledge as part of what needs to be addressed. We have iden

tified time and long-term support, as critical aspects of change. Current 

work is giving us promising direction. The challenge is ours. If we want 

mathematical power for all students, we must find ways to restructure our 

university programs and to help restructure schools so that teaching becomes 

the profession to which we are all dedicated. 
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WHAT IS DISCRETE MATHEMATICS 

AND HOW SHOULD WE TEACH IT? 

Jacobus H. van Lint 

University of Technology, The Netherlands 

In the past 25 years the role of discrete mathematics has become 

increasingly important. The number of fields in which discrete mathematics 

is applied in some way also keeps increasing. It has been argued that, for 

some areas, where mathematical knowledge is necessary, one should replace 

the standard calculus course with a course in discrete mathematics. Although 

I feel that everybody should know some calculus, it is certainly true that 

knowledge of techniques from discrete mathematics is often just as useful. 

A number of years ago this idea of replacing calculus with parts of 

mathematics that were more relevant to the rest of the program was pushed 

strongly by computer science departments in the United States. This led to 

a stream of books on "Discrete Mathematics for Computer Scientists", most 

of which gave the impression that discrete mathematics is the union of all 

subjects in mathematics that are useful for computer scientists but not part 

of calculus. One finds logic and set theory as part of the hodgepodge of 

subjects in these books. My opinion is that this is not discrete mathematics 

at all. Of course logic, set theory, etc., are very useful for students ofcom

puter science but a course in these subjects should be given some other 

name. 

What is discrete mathematics? It is that part of mathematics that deals 

with discrete structures. Usually the objects that are studied are finite; but 
of course I also include infinite graphs and the integers and other locally 

finite structures. Essentially the subject includes combinatorial theory, ele

mentary number theory, finite groups, finite geometries, finite fields, and 

some newer areas such as coding theory. 

It is my impression that many courses that deserve the name discrete 
mathematics are taught in ways that leave students completely baffled. They 

have the impression that problems in discrete mathematics are solved by 
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ingenious tricks and that any new problem they will encounter requires them 
to invent the appropriate new trick. Compare this to a calculus course where 
one teaches methods such as differentiation, integration, solving linear dif
ferential equations, etc., and subsequently applies thes� methods in several 
different situations. A course in discrete mathematics should be similar! 
One should treat objects that appear in many places, sometimes disguised; 
methods of representation should be used in several different situations; 
ideas that reappear regularly in practice should also reappear regularly in 
the course; tools that play an important role in discrete mathematics should 
become part of the students' skills. To give an idea I mention several exam
ples of each of these topics (not a complete list). 

1. Objects: graphs, lattices, geometries, designs, codes, coverings, 
partitions, systems of sets, matroids. 

2. Representations: addressing schemes, coding, (0,1)-matrices, 
(0,1)-sequences, graphs, diagrams, pictures, subsets of lattices. 

3. Ideas: counting techniques, probabilistic techniques, (non-) exist
ence methods, construction techniques, unification (association 
schemes, matroids), optimization methods, max-flow, search tech
niques, symmetry. 

4. Tools: algebra (matrix theory, finite groups, finite fields, group 
rings), elementary number theory, permutation groups, geometry, 
analysis (power series, Lagrange inversion). 

The course should be structured as a multipartite graph with subsets 
of (1) to ( 4) as independent sets and as many edges as possible. Here an 
edge from say "graph" to "(0,1 )-matrices" means that this representation is 
used to describe graphs but'also to derive properties of graphs or to prove 
theorems about them. 

The following situation can and should occur: it has didactic value. 
One wishes to prove a certain theorem about, say, designs, and decides to 
use (0,1)-matrices as representation. The rows of the (0,1)-matrix can also 
be interpreted as words in a code. This leads to a formulation of the theorem 
that is to be proved, in another terminology. This other theorem may have 
already occurred in the course or it could be much easier to see how to 
prove it. One can also prove a "new" theorem about some combinatorial 
object and in retrospect observe that if this object had been represented in 
the appropriate way, one would have realized that the theorem had actually 
occurred earlier in some other form. 

If the instructor decides to take the tool "algebra"as a central item in 
the course, then the ideas used-for example: eigenvalues of matrices
should be applied for many different purposes, such as nonexistence theorems 
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for strongly regular graphs, properties of block designs, theorems in finite 

geometry. Similarly, the idea of using several small combinatorial objects 

to construct one large object should reappear (Latin squares, Hadamard 

matrices, block designs, etc.). 

A course taught in Eindhoven for several years started with a chapter 

on finite fields. A number of objects from combinatorics (Latin squares, 

Hadamard matrices, finite geometries, block designs, error-correcting codes) 

in each of which finite fields were heavily used to construct those objects. 

A number of ideas that I used will be treated below as examples. First, 

however, I mention a principle that was suggested by A. Revuz at the meeting 

on "How to teach mathematics so as to be useful" held in Utrecht in 1967. 

I have used it ever since with much success. Discrete mathematics is 

particularly suited for this principle. The idea is to let the students work on 

problems (usually in groups of two or three), solutions to be handed in as 

homework, and to teach the standard techniques and theorems necessary to 
solve the problems a few weeks later. Usually one sees several students in 

class recognize how useful a theorem is long before the proof is finished: 

"If I had known that idea two weeks ago, then ... " 

THE USE OF REPRESENTATIONS 

If possible, use representations of combinatorial objects not only as 

representations but in such a way that the chosen representation makes it 

easier to prove the theorem in question. 

Example 1 

A puzzle known as Instant Insanity, involving stacking up multicolor

ed cubes in some way (treated in many books on graphs), is extremely 
difficult, as the name suggests. It becomes practically trivial when the cubes 

are represented by graphs that reflect the color-structure. 

Example2 

A well known way of representing a partition is a so-called Ferrers 

diagram. Such a diagram actually is a representation of two partitions. This 

makes it possible to prove theorems of the type, "The number of partitions 
of an integer with property I equals the number of partitions with property 
II", by just looking at the diagrams. 

Example3 

Binary rooted trees can be represented by (0,1)-sequences with as many 
O's as 1 's, for which each truncated sequence has more O's than 1 's. These 

sequences are not difficult to count, whereas counting the trees directly 
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looks very complicated. The problem of counting the number of dissections 
of an n-gon into triangles looks quite different. Usually one first discovers 
that this problem leads to the same answer as the previous one before real

izing that it can be represented by the same kind of (0, 1 )-sequences. 

Example 4 

The reverse situation is also useful as an example. For instance, a 

problem on (0,1)-matrices can look like a difficult abstract problem. 

Interpreting the matrix as a representation of some combinatorial object 

translates the question into other terminology and can make it much easier. 

COUNTING TECHNIQUES 

This topic includes double counting, the principle of inclusion and 

exclusion, Mobius inversion, the use of quadratic forms, one-to-one map

pings, generating functions, Polya theory and probabilistic methods. Again 

a few (favorite) examples. 

Example 5 

This is one of the problems that students try to solve with no tools. Let 

the edges of a complete graph on six vertices be colored red and blue in 
some way. Prove that there is a triangle with all three edges of the same 

color (a monochromatic triangle). Nearly all students give the same proof. 
From any vertex there must be three edges with the same color, say red. The 

three edges between the other endpoints of the red edges are either all blue 
or one of them is red and in both cases we have a monochromatic triangle. 
So far, so good. The second question is to show that there are actually at 

least two monochromatic triangles. This yields three possible solutions: the 

empty one, complete nonsense, or a several page case analysis that is actu

ally correct. Then comes double counting in class! Every non-monochromatic 

triangle has two vertices where a red and a blue edge meet; call this a red

blue V. Clearly every vertex yields at most six of these red-blue V's. So, 
this second way of counting (or estimating) the number of non-monochro
matic triangles shows that there are at most 18 of them. As K6 contains 20 
triangles, we are done in a few lines. 

Example 6 

After the usual examples of inclusion-exclusion it is useful to point out the 
reverse procedure. Try to prove the formula 
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This can be done using analysis but it is not trivial. The term (- 1 )i in 

the sum suggests that maybe something was counted using inclusion and 

exclusion. What? This takes some thinking. The answer is the number of 

surjections from ann-set to a k-set and the formula becomes a triviality. 

Example7 

The following quadratic form method occurs in very many different 
situations. Let a; denote the number of combinatorial objects of a certain 

kind that have exactly i whatevers. Often one can easily count pairs of 

whatevers. Since za; counts the number of objects in question, zia; counts 

the number of whatevers, and finally };(�)a; counts pairs of whatevers, one 

can calculate expressions of the form z(i- m )(i- m - 1 )a;, where the choice 

of m is unrestricted. The fact that this quadratic form is non-negative yields 

an inequality. It is surprising how often this idea is used in combinatorics 

without it being pointed out that it is a general method. 

(NON-)EXISTENCE AND CONSTRUCTIONS 

Methods to be treated here include counting (probabilistic methods), 
the method of descent or minimal counterexample, algorithms and search 
techniques, induction and recursion, product techniques, substitution, alge

braic methods, contraction, introducing extra structure. Here are a few 
examples. 

ExampleS 

The construction of a Latin square of order mn from one of order m 

and one of order n is very similar to the construction of a Hadamard matrix 
of order mn from one of order m and one of order n. Both constructions 

should occur. Later one can use similar product methods in the construction 
of block designs. Even the idea of the product of graphs is analogous. 

Example9 

A well known proof technique in number theory can be extended to 
several parts of discrete mathematics, such as graph theory. To prove a 

theorem on finite configurations one assumes that it is not true, or that a 
counterexample exists. In that case there exists a minimal counterexample, 
where minimal refers to the number of components that justify the word 
"finite." One has to think of a way of reducing this number (delete a vertex 
or replace the integer n by n- 1) in such a way that the reduced object is 
still a counterexample. This yields a contradiction and thus the theorem is 
proved. Again, the point of this talk is that if one decides to show an example 
of the method, one should show several rather different examples. 
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Example 10 

The idea of substitution occurs in many constructions. Examples are 
replacing a vertex of a graph by some graph, points of a configuration by 
n-gons (e.g. in Joyal theory), and the following. In a block design with blocks 
of different sizes (every pair of points is in 1.. blocks) let there be a block B 
with seven points. We delete Band replace it by the seven triples (lines) of 
the Fano-plane (a (7,3,1)-design). The (i\ = 2lpairs that were covered by B 
are now covered by the seven lines of the plane. This method is used to 
replace the difficult restriction of constant blocksize by freedom in that 
respect in the first round of a construction, followed by substitutions of the 
type mentioned above to achieve a prescribed constant blocksize. 

Example 11 

Assume that a combinatorial object is defined by combinatorial re
strictions only. It may be difficult to construct even one example of such an 
object. One can freely introduce extra structure, such as symmetry, an auto
morphism group, and so on, in order to force the construction in a certain 
direction. If the extra requirements are not already prohibitive, one may 
have an easy construction of a first example of the theory. Again, this is a 
principle that should be illustrated by examples. 

APPLICATIONS 

Discrete mathematics as a course should be full of examples of 
applications in a wide area of subjects. Students should not only learn a 
number of applications but should recognize situations where a certain part 
of discrete mathematics is the natural tool to use. One should move from 
computer science, to social sciences, to electrical engineering to design of 
experiments, etc. Examples may be elementary, obvious, everyday, but it is 
essential to have several others that ensure that the students enjoy the course. 
They should be surprising, challenging, ingenious (like Instant Insanity), 

recent (such as satellite communication or the compact disc). Again, two of 
my favorite examples. 

Example 12 

Suppose one has a standard non-erasable binary memory such as pa
per tape (or a compact disc). Assume that one wishes to store one of the 
integers 1 to 7 in this memory on four consecutive occasions. The usual 
procedure is to reserve twelve bits for this purpose, where the four consec
utive triples each take care of one storage of a binary 3-tuple. The world 
supply shortage has now reached the stage where we cannot afford this and 
have to achieve the same with a memory of only seven bits! (The reader 
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should try to prove as an exercise that it is not possible to solve the storage 

problem with a memory of six bits.) The solution is provided by the Fano 

plane, a finite geometry with seven points and seven lines, three points to a 

line and three lines through a point, any two points on a unique line. Number 

the points 1 to 7 and on the first storage let a 1 in position i indicate a 

storage of the integer i. This is still easy. The next step is not difficult ei

ther. If the memory contains a 1 in position i and one wishes to store the 

integer j as new information, find the unique line through i and j and if k is 

its third point, put a 1 in position k. The reading device for this binary mem

ory is told that if it sees two 1 's, then it should interpret these as "the third 

point of the corresponding line". Two more usages of this memory to go 

and we leave it as an exercise to decide how to do it (Hint: a change of 

memory with two 1 's results in four 1 's; a subsequent change leads to either 

five or six 1 's). 

Example 13 

During the treatment of Hadamard matrices one has given the product 

construction and therefore the trivial Hadamard matrix of order two (rows 

++,respectively +-) makes it possible to construct such matrices of order 

2n. As an exercise the students have shown that this leads to a matrix H of 

order 32 with the property that there are six columns in the array consisting 

of Hand -H such that the corresponding 64 rows in this array are all different 

in these six columns (Note that 26 = 64). As application one treats the 

transmission to earth of pictures of Mars by the Mariner satellite. A picture 

is divided into very little squares (pixels) and for each square the degree of 

blackness is measured in a scale of 0 to 63 (expressed in binary). In this way 

the picture results in a long sequence of O's and 1 's to be transmitted to 

earth. The transmitted sequence is corrupted by noise and the effect is that 

the receiver sometimes interprets a 0 as a 1 and vice versa. In practice there 

was so much noise that pictures would have been completely useless. 

Suppose we are willing to take roughly five times as long to transmit a 

picture. We could repeat each bit five times; if no more than two out of five 

are received incorrectly, the receiver makes the right choice. This would be 

a substantial improvement but what was done in practice in 1969 was very 

much better. An integer, say 43, in binary 101011 was changed to the 
corresponding sequence of +'s and -'s (i.e.+ -+ - ++) and transmitted as 
the corresponding row of 32 +'s and -'s of the array of H and -H. This also 
takes five times as long (roughly). The reader should convince himself or 
herself that as many as seven of the transmitted symbols may be received 
incorrectly and nevertheless the receiver will still have the correct row as 
the most likely one. The result is known: the pictures were of great quality. 
A true and recent example! 
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NOTES 

The ideas presented in this talk were used as guiding principle in the 

book A course in combinatorics by J.H. van Lint and R.M. Wilson, Cam

bridge University Press, 1992. 

The talk by A. Revuz in Utrecht appeared as "Les pieges de l'ensei

gnement mathematique", Educational Studies in Mathematics, 1 (1968), 

31-36. 
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INTUITION AND LOGIC IN MATHEMATICS 

Michael Otte 

Universitiit Bielefeld, Germany 

PART ONE 

I am going to begin with what might appear to be a rather provocative 
thesis: Mathematics is the embodiment of intuitive thinking. 

In intuition other than in discursive knowledge something is immedi
ately present. In discursive knowledge it is only represented. A comparison 

with painting will help to illustrate the difference. In daily life a picture 
functions as a representation of something. In art it is different. There the 

pictures, although they might be representations too, do not primarily func
tion as illustrations or guides, but have a value of their own. They constitute, 
like theories, realities of their own kind. 

In his well-known article, Applied mathematics is bad mathematics, 

Paul Halmos (1981) has used the following comparison to describe the 
difference, as he sees it, between pure and applied mathematics. 

A portrait by Picasso is regarded as beautiful by some, and a police photograph 
of a wanted criminal can be useful, but the chances are that the Picasso is not 
a good likeness and the police photograph is not very inspiring to look at. Is it 
completely unfair to say that the portrait is a bad copy of nature and the 
photograph is bad art? 

This gives a first impression regarding the background of the idea of 
the difference between intuition and discursive knowledge, which has been 
of great importance throughout modernity. 

The strength of the intuitive is to be seen in its emphasis on acquaint
ance with an object, since a content has to be given from whence we can 
advance to knowledge. As Kant said: "In the absence of intuition all our 
knowledge is without objects, and therefore remains entirely empty." (A 62). 
The weakness of intuitive insight results from the lack of communicability. 
In intuition a certain spontaneity and immediacy can be observed in the 
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transition from not understanding to knowledge. Intuitive knowledge is 

characterized by an unawareness. I do not know how I came to this knowl

edge. Whenever something is said of an intuition a discursive process of 

cognition and language must already be occurring. "Intuitions without 

concepts are blind," as Kant said. For Kant intuitions were given through 

our sensibility, which is material, and passive, and lacking in internal 

continuity. 

Discursive processes, however, do not provide an object which really 

exists for us. They are rather metacognitions concerned with our dealing 

with objects rather than with the objects themselves. So it appears as if 

cognition has to proceed simultaneously on different levels and that we have 

to coordinate these levels within our concrete and mental activity. 

Up to the middle of the 19th century mathematics was for the most 

part divided according to whether it was supposed to deal with real meanings 

and therefore was to be based on axioms, like geometry or mechanics, or 

whether it was formal knowledge that had accordingly to rely on definitions, 

like arithmetic. These differences gradually disappeared when it was realized 

that the application of algebra to geometry may also be based on the 

algebraization of geometrical constructions rather than on the quantification 

of objects by means of real-valued functions. The dominant focus of concern 

shifted away from the "interface problems" between knowledge and the 

external world and moved towards the problem of the internal dynamics of 

knowledge and cognition. Mathematics for Kant was synthetic just because 

it concerned not the analysis of concepts but the fact that they apply to the 

world. Kant believed that the only role of concepts is that which enables us 

to get in contact with some objects as a guide for activity on these objects. 

Operations can be guided by thought, whereas objects can only be described 

and cannot be influenced in this way. We are not in command of the world, 

as Wittgenstein used to say. So after it was realized that our conceptu

alizations are not directed at the world per se, but toward the world as it is 

present to the system of our activities, people began to stop discussing 

knowledge altogether. It is (cognitive) activity that matters. The regularities 
we call mathematical knowledge appear in the relevance of patterns of 
activities in time. Pure mathematics was turned into an art and applied 
mathematics became considered "bad mathematics". 

Nevertheless: Mathematics is the incarnation of intuitive knowledge. 

Let me give a first argument for this claim. To understand a mathematical 
theorem means the same as watching the sun rise. This implies that if I have 
understood a mathematical theorem I have at the same time understood that 

it is true. Within intuition, knowledge of a fact and knowledge of its truth 
coincide. This situation applies to proving as well. With a proof we have 
simultaneously to present a proof that our proof is correct. If we attempt 
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this we are clearly faced with an infinite regress. The way out is to insist on 

a purely formal criterion for logical correctness. In one way or another the 

form of the knowledge becomes subject to intuition. But only the form. If 

we insist that mathematics has to do with real knowledge, or if we believe, 
as Rene Thorn has so aptly stated it at the Second International Congress on 
Mathematical Education, "The real problem of mathematical education is 

not that of rigor, but the development of meaning, of the existence of math
ematical objects" (Thorn, 1973, p. 202), then mathematics has to be intuitive 
knowledge. Existing or being is not a real predicate, as Kant said (B 626). 

Intuition, other than plain seeing, is directed at the reality or the essence 

of something rather than at its mere appearance, and intuition therefore 

always implies generalization. In intuition I perceive the general as if it 

were a particular object. By the distinction between essence and appearance, 

a difference between the actual observation of a thing and its capacities, 

tendencies, and possible developments is conceptualized. From this it follows 

that space is essential to intuition and that the processes of experience are 
transformed into the structures of geometrical vision. 

Intuitive knowledge is not discursive knowledge. Our intuitions as 

such are like a conglomerate of Leibnizian Monads, each of which represents 
the world from its own particular perspective. Theory as grasped by intuition 
represents a perspective, a way of seeing that is as such-i.e., in its claim to 
access reality-incommensurable with other perspectives. And, what is more 
important, this perspective introduces new ways of interrogating reality, 

new types of objects and new types of evidence of sentences, and so forth. 

Now the essential features of an act of imaginative creation may be 

summarized by stating that they consist in the seeing of an A as a B : A = B, 

or "all A are B", or "A represents all B", etc. Important however is the fact 
that there might be nbthing in "A" and "B" per se, no objective suggestion, 

no similarity in appearance, or whatever it is that establishes the relation, 
and nothing in the world that will, a priori, guarantee the success of such an 
act of creative imagination. On such grounds pure mathematics has, since 

Cantor, been called a free creation of the human mind; but of a mind that 

has to have the ability to perceive in a mathematical way, to see completely 

clearly that A is essentially B. The claim to have such an ability constitutes 
mathematical authority. This authority is based on the assumption of 
mathematical genius. Nowhere in science is the cult of genius so strong as 
in pure mathematics. 

What distinguishes the genius from the ordinary person is the style of 
reasoning, a style that becomes a standard of mathematical objectivity. 
Mathematics is governed by paradigms in Thomas Kuhn's sense. It may 
even, being intuitive knowledge, become a belief system. Any system, 
Stolzenberg writes, that is informed by a desire for a world-view that can be 
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maintained and that one will want to maintain will be called a belief system. 
"A belief system may be like a genuinely scientific system in every other 
respect, but it has this one distinguishing feature: All acts of observation, 
judgment, etc., are performed solely from the particular standpoint of the 
system itself." (Stolzenberg, 1978). 

The most dangerous belief of a mathematical system consists in the 
conviction that every question must have a determinate answer. If a person 
does not see the answer in a particular case, nor where an answer may be 
searched for, he or she is in all probability lacking in the ability to perceive 

the matter in a mathematical way. This may become a drawback when one 

is confronted with the claim that there exists an absolute and authentic 

relationship to any mathematical object as well as a determinate answer to 

any arbitrarily chosen question about it. 

Creativity, however, might demand that the whole framework of a prob
lem be questioned. And even creativity is a rather narrow aspect of human 

life. From the point of view of our social and individual life, it might even 
be appropriate to question that there exists a definite answer to a very par
ticular problem. Charles Peirce challenged even with respect to theoretical 
thought what he called the "fundamental axiom of logic": that "Every 

intelligible question whatever is susceptible in its own nature of receiving a 

definitive and satisfactory answer, if it be sufficiently investigated by 
observation and reasoning." (Kloesel, 1986, p. 545f). Unremitting creative 

technical virtuosity might have to give way to human conditions like dignity, 
kindness, self-esteem, philosophical reflection, tradition, love, or wonder. 

Mathematics is the incarnation of intuitive knowledge. This idea is 
naturally very attractive. However it is connected with a dilemma. Although 

the conviction that results from the intuitive character of our mathematical 
insights may indeed be very strong, it is also very fragile. We are always 
confronted with the uncertainty whether what seems to be so evident is not 
based on the error of a false choice of perspective. And when a great authority 
appears who claims exactly this, then our relationship to the truth in question 
that was based on intuition is destroyed irrevocably. This can further be il
lustrated by the following Gedankenexperiment. 

Suppose I have found a proof for some mathematical theorem, which 
after having checked out the argument of the proof step-by-step, is now 
intuitively completely clear to me. 
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the two situations; in the first there is an act of acceptance as such , while in 
the second there is instead an act of questioning something that appears to be 
correct. (Stolzenberg, 1978) 

An act of acceptance as such is present if the perception of the 
respective reality appears to the perceiver automatically to coincide with 

reality itself. It is this type of belief that we call an intuition. As mathematical 
cognitions are essentially intuitive I think, contrary to Stolzenberg, that the 

kind of "overconfidence" (Fischbein) exhibited in an act of acceptance as 
such cannot be evaded by mathematical cognition. 

This whole argument may appear utterly strange to those who believe 

that science investigates ideas without regard for their origin. It is however 

very clear that knowledge demands elements that are transcendental with 
respect to the particular experience and that in many cases the social context 
provides these elements. Certain people are to be trusted on certain issues 
and the newcomer must accept whatever agreements they reach on those 

issues. 

The message of Stolzenberg's thought experiment is somewhat para

doxical because there seems to be a completely clear vision that is all of a 
sudden destroyed. If nobody could expect from another individual any in

sight into the matter, the statement of the "great authority" would not disturb 

us at all. What the thought experiment has told us can also be expressed in 
plain psychological language: 

The need for relying on apparently certain, credible representations and 
interpretations is, in our opinion, the main factor which explains the general 
tendency of people to be overconfident in their judgments. The need for 
certitude leads to this type of apparently very well -structured, self-consistent 
and apparently self-evident cognitions called intuitions. But overconfidence 
is an obstacle to self-control and consequently it may block the way to a 
significant improvement of the quality of reasoning. (Fischbein, 1987) 

Everybody has to believe in him or herself beyond the limits of a real-

istic evaluation of the situation. Being realistic would cause us very often to 

give up before we had really tried hard. But on the other hand, as Fischbein 
shows, the necessity of being overconfident is self-contradictory. 

Teachers in practice try to avoid the paradoxical features of the situa
tion by taking refuge in pedagogical formalism. School mathematics becomes 
an exercise in formal logic and correct phrasing and spelling. If we don't 
accept intuition as a cognitive basis, all our knowledge disintegrates or de
composes into linguistic or logical formalism on the one side and empirical 
guesswork on the other. We know from a number of empirical studies that 
teachers on the one hand endorse the value of geometry and on the other 
hand tend to dismiss it from their classes when pressed for time. 
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A historical example of the dilemma that we have described is provid

ed by the philosophy of Descartes. Descartes thought proof irrelevant to 

truth, basing that instead on the self-evidence of intuitive insight. Leibniz 

on the contrary thought that truth is constituted by proof. The Cartesian 

independence of truth from logical proof is illustrated by Descartes' unor

thodox views on the necessary truths of algebra and geometry. Even eternal 

truths are dependent on the will of God, according to Descartes. 

We owe to Leibniz the clear statement that if not-p entails a contradiction 
then p is necessary and indeed necessarily necessary. Descartes grants that it 
is unintelligible how p can entail a contradiction and still be true. But this 
unintelligibility shows the weakness of our minds. (Hacking, 1984) 

There can be no doubt that God is the great authority here, and God's 

intuition is obviously of such a kind that ours must be inferior. 

Like Descartes, Kant also believed that mathematics is based on 

intuitive truths. Nonetheless, Kantian intuition is different from Cartesian 

intuition. It did not strive to grasp the reality of a thing directly but adjusted 

itself to the conditions for constructing a mathematical truth. Our insight 

into mathematics arises, says Kant, because we construct mathematical truths 

according to conditions that we cannot escape and that are completely 

manifest to our intuition. The weakness of Cartesianism is to be seen in the 

lack of any transcendental reference that would transform a particular mental 
event into true knowledge. Leibniz attempted to make the real substance 

underlying such an event the criterion of truth by claiming that formal proof 

will inevitably and objectively lead to the real substance. Proofs that 

constitute substantial truths become however an infinite task able to be 

accomplished by God's infinite mind only. With respect to "infinite proofs", 

Kant's argument that "being is not a predicate" does not apply. 

How is it possible to combine transcendentalism with the finite and 

limited perspective of humans on reality? Such was Kant's problem and he 
took space and time to be those transcendental forms within which we have 

to realize mathematical knowledge. Only that which can be developed by 

means of our own constructions in space and time can lead to new mathe
matical insight. 

PART TWO 

Charles Peirce (1839-1914) ascribes to Kant the merit of having been 

the first in history to give the distinction between intuition and logic its 
proper weight. Kant saw, according to Peirce, far more clearly than any 
predecessor had done the whole philosophical import of this distinction. 

This was what emancipated him from Leibnizianism and at the same 
time turned him against sensationalism. It was also what enabled him to see 
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that no general description of existence is possible, which is perhaps the 

most valuable proposition that the Critique of pure reason contains. But he 

drew too hard a line between the operations of observation and of ratiocina

tion. (Peirce, 1.35). 

Not only is a general description of existence impossible because 

"being is evidently not a real predicate" (Kant Critique B 626), but quite a 

number of predicates cannot be linked to a concept without employing the 

concept as a rule of construction within the intuition of space and time. For 

instance the idea of a triangle does not analytically contain the fact that the 

sum of its angles amounts to two right angles. The philosopher would try, 

Kant writes, to analyze the concept of triangle, but 

He may analyze the conception of a right line, of an angle, or of the number 
three as long as he pleases, but he will not discover any properties not con
tained in these conceptions. But, if this question is proposed to a geometrician, 
he at once begins by constructing a triangle. He knows that two right angles 
are equal to the sum of all the contiguous angles which proceed from one 
point in a straight line; and he goes on to produce one side of his triangle, thus 
forming two adjacent angles which are together equal to two right angles. He 
then divides the exterior of these angles, by drawing a line parallel with the 
opposite side of the triangle, and immediately perceives that he has thus got 
an exterior adjacent angle which is equal to the interior. Proceeding in this 
way, through a chain of inferences, and always on the ground of intuition, he 
arrives at a clear and universally valid solution of the question. (A 716/B 744) 

We must intuit an object that we wish to know; hence the unknowability 

of the thing in itself, which is determined by the fact that we can have no 

immediate knowledge of it because it does not belong to space and time. 

That our mathematical knowledge, although based on intuition, may 
nonetheless be a priori (that is, general), is due to the fact that it is just a 

concrete instantiation of the general forms that constrain all our activity. 

Letus, in order to think of a particular example, reflect on the idea of 

a "general triangle". The problematic associated with such an idea was ex

pressed by Locke when he remarked that on the one hand the general idea of 

a triangle is imperfect, "for it must be neither oblique nor rectangle, neither 

equilateral nor scalene, but all and none of these at once." On the other hand 

we have need for such general ideas "for the convenience of communica

tion and enlargement of knowledge." (Locke, Essay concerning human 
understanding, book 4, chapter 7). 

The general triangle as presented in Figure 1 is not as general as it 
might be. If we wanted, for example, to derive what is called the cosine law 
we would have to distinguish two cases as in Figures 2.1 and 2.2. 
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A q 

We get: 

c 

c-q 

Figure 2.1 

Figure 1 

B 

a2 = b2 + c2 - 2cq and a2 = b2 + c2 + 2cq 

respectively, or in more familiar writing: 

a2 = b2 + c2 - 2bc cosA 

c 

Figure 2.2 

B 

The different values of the cosine function cover the different cases 

that are distinguished in the more elementary presentation above. 

A formula like A .. t b x h helps to compare all triangles whatever their 
form or size might be. The geometrical object as such, the general idea of 

triangle, disappears. A great deal of geometry has in this manner been 
replaced by algebra and function theory. The first presentation of the cosine 
law, although very elementary, nonetheless leads to the introduction of the 
new idea of a correlative system (Carnot, 1803). A correlative system in the 
sense of Carnot is a type of equivalence class. It is established completely 

intuitively, as in the example given. 

There could be nothing in common to all triangles (or some other point 
systems), but there is a chain of resemblances representing a law of conti

nuity. This idea led to new thinking about general terms. If two geometrical 
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systems are to be considered as intuitively equivalent then the formulas 

stating a certain property or law in the two cases differ at most with respect 

to the signs of certain of their terms. Carnot's ideas stimulated Poncelet to 

state his famous "law of continuity" that was fundamental in the estab

lishment of projective geometry. A general triangle has now become an 
equivalence class of particular concrete triangles. The essential differences 

between all the conceptions of geometry seem to be based on how the 

equivalence relation in question is selected. 

We could start thinking differently about the matter. We could, for 
example, state that what serves as a "general" idea in geometry should be 

interpreted in relation to the particular purpose at hand. If, for example, one 

wants to prove the theorem that the three medians of any triangle intersect 

at exactly one point (Figure 3), then an equilateral triangle serves perfectly 

well as an instance of a general triangle because the claim of the theorem 

mentions only concepts that are independent of distance and angle (one can 

define the area measure independently of the lengths and the sizes of the 

angles by means of a determinant function, and the definition of median is 
also independent of these concepts) or, to put it differently, the conditions 

of the theorem in question are invariant with respect to affine transfor

mations. 

Figure 3.1 Figure 3.2 

As early as 1710, Bishop Berkeley aimed what he himself called "the 

killing blow" at Locke's notion of general idea and asked the readers of 

Locke's to try to find out whether they could possibly have "an idea that 

shall correspond with the description here given of the general idea of a 
triangle-which is neither oblique nor rectangle, neither equilateral nor sca
lene, but all and none of these at once." (Berkeley 1737, 54). And to this 
logical impossibility he answered 

that though the idea I have in view whilst I make the demonstration be, for 
instance, that of an isosceles rectangular triangle whose sides are of a deter
minate length, I may nevertheless be certain it extends to all other rectilinear 
triangles, of what sort or bigness soever. And that because neither the right 
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angle, nor the equality, nor determinate lengths of the sides are at all con
cerned in the demonstration. It is true the diagram I have in view includes all 
these particulars, but then there is not the least mention made of them in the 
proof of the proposition. And for this reason it is that I conclude that to be true 
of any which I had demonstrated of a particular triangle and not because I 
demonstrated the proposition of the abstract idea of a triangle. (Berkeley, 173 7, 
56) 

There exist different proofs of the theorem about the medians. One 

might, for instance, start from the interpretation of the point of intersection 
as a center of gravity. This interpretation is suggested by the fact that the 

medians divide the area of the triangle in half. Such a proof, very different 

from the one using the symmetries of an equilateral triangle, leads to an 

interesting generalization. By imagining variable weights fixed to the vertices 

of the triangle we gain as a generalization a proof of the theorem of Ceva 

(1648-1734). The theorem of Ceva generalizes the situation for arbitrary 

points of intersection of three line segments joining the vertices of a triangle 
to points on the opposite sides. 

The theorem runs as follows: Given a triangle in the projective plane 

and a line through each of the vertices of the triangle, then the three lines 

are either parallel to each other (meet at infinity) or they meet at one regular 
point of intersection, if and only if the product of the ratios in which they 

divide the opposite sides of the triangle is unity. 

!2_ . !2. . .0_ = 1 
a2 b2 c2 

Figure 4 

There exist different proofs of the theorem of Ceva too. It can, for 
example, be derived from the theorem of Menelaos, or it can be proved very 
easily by means of a calculation in terms of projective coordinates. This 
latter proof gives an excellent illustration of Poncelet's law of continuity 
since the condition of the theorem can be expressed by an algebraic function. 
This condition in our case just says that a certain determinant is zero. 
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Carnot gains a generalization of Ceva's theorem from his principle of 
correlative systems. As the theorem can be stated in terms of an equality of 
two simple quantities and as a positive quantity cannot be equal to a negative 
one, the theorem must remain valid for all correlative systems, i.e. even 
when the point of intersection lies outside the triangle. 

From Ceva's theorem the proposition about the intersection of the three 
altitudes of the triangle can immediately be derived, by verifying that the 
condition of Ceva is fulfilled in this case also. This is remarkable because 
the notion of a perpendicular is obviously not a projective invariant. 

A 

Figure 5 

a1 = b cos X 

b1 = c cos a 

c1 =a cos� 

a2 = c cos� 

b2 =a cos x 

c2 = b cos a 

Bishop Berkeley wanted to argue that there are no general ideas and 
no intuitions directed towards them, but only linguistic and formal activi
ties. Kant in contrast stressed that to understand the true character of 
mathematics one has to observe its axioms (intuitions) and its applications 
rather than the deductive procedures employed in proving theorems. He 
accepted however the functional perspective on mathematical knowledge 
that is so clearly noticeable in Berkeley. "No image", Kant says, "could 
ever be adequate to the concept of a triangle in general. It would never 
attain the universality of the concept which renders it valid for all triangles, 
whether right-angled, obtuse-angled, or acute-angled; it would always be 
limited to a part only of this sphere." (B 180). The imaginative schema 
however, although it is in thought and not in the images, is not just a part of 
conceptual and propositional knowledge. It is necessary to get to the mean
ing of concepts. The imaginative schema as a "mediating representation 

281 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'JCME-7 

must be pure (without empirical content) and yet must on the one side be 
intellectual, on the other sensuous." (B 178). 

The most important aspect of cognition is continuity. For Kant the 

continuity of experience, or as he sometimes called it, its unity, is the most 

important hallmark of the objectivity of knowledge. What turns an individual 

mental event into an idea, what provides a particular image with meaning, 
is its connection with other such events, is its place within an unending 

series of the same kind. "Kant understood imagination as a capacity for 
organizing mental representations (especially images and percepts) into 

meaningful units that we can comprehend. Imagination generates much of 
the connecting structure by which we have coherent, significant experience, 

cognition and language." (Johnson, 1987). Thus Kant seems to aim at a sort 

of blending or amalgamation of the views of Descartes, Locke, and Berkeley. 
Berkeley considers mathematics analytically, Locke believes it. to be 

synthetic but a posteriori, and for Kant it is synthetic as well as a priori. 

Kant's work depends on the possibility of being able to operationalize 

the pure forms of the intuitions of space and time. Space and time were to 
be transformed into operative categories by means of which we should 
succeed in constructing our world. This is performed under the constraint 
of the system of tools and means available to the epistemic subject. Intuition 
is directed towards the overall context of mathematical activity in as much 
as the activity objectifies or realizes itself in the external forum of space 

and time by means of certain tools and artifacts. The complementarity of 
means and problems is what governs the evolution of our cognitions and of 

our intuitions in particular. Gregory Bateson has provided us with a very 

suggestive metaphor for the concept of evolution, presenting it not as a one
sided adjustment: 

Surely the grassy plains themselves were evolved pari passu with the evolution 
of the teeth and hooves of the horses and other ungulates, Turf was the evolving 
response to the evolution of the horse. It is the context which evolves. (Bateson, 
1973) 

In our research praxis the context of means or tools seems more pow
erful than the context of problems or objects. This observation can be 
reformulated by saying that the theoretical dynamic becomes a largely in
ternally driven process and theories get to be understood as realities of their 
own kind. At the beginning of the 19th century certain parts of mathematics 
formed a contextual notion of meaning by claiming, first, that a theory de
termines the intentions of its terms, and, second, that intentions determine 
extensions or referents. Even for Kant the comparison between empirical 
intuitions or perceptions and concepts was a difference in kind, whereas for 
classical rationalism it had been one of degree. Since mathematics, like 
science in general, is interested in objective knowledge, mathematicians 
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have to have other means of identifying the referents of its terms than the 

descriptions provided by the theory as intentions of its terms. The availabil

ity of other ways of accessing the referents establishes a practice in which 

theories are used in a twofold manner, attributively as well as referentially 
("A is B" vs. "A represents B"). 

My last thesis is as follows: The apparent mismatch between empirical 

observation and mathematical intuition, which is responsible for the neglect 

of the role of the latter, is due to a misunderstanding about the empirical 

sciences. 

The objects of ordinary perception are constituted or constructed rather 

than perceived as such, entirely spontaneously and naturally. Visual per

ception is a highly complex phenomenon which is strongly influenced by 

socio-cultural factors. Kant's idea of a schema of the imagination expresses 

these facts, and the philosophy of science speaks of the theory-ladenness of 

observation in this context. Physicists, as Steven Weinberg observes, are 

making abstract models of the universe to which they "give a higher degree 

of reality than they accord the ordinary world of sensations" (Weinberg 

1976, 28). The philosophy of mathematics has put forward an even stronger 

claim, to the effect that all objects are essentially abstract objects, or even 

mathematical objects (Tymoczko, 1991 ). 

This seems to bring back the time of 17th/18th century "idealism", 

when thought was a matter of ideas or of mental discourse and when there 

were no strong boundaries between things and ideas. These times, we recall 

from Peirce's statement at the beginning of this section, ended with the 

critical philosophy of Kant. From now on the question of the relationship 
between the concrete and the operative, or between the intuitive and the 

discursive, became of fundamental importance for any cognitive or episte
mological theory. 

The scholar who has most distinct! y expressed the constructive position 

of Kant in current mathematical education is Jean Piaget. A central concept 

of Piaget's epistemology is the discrimination between reflective abstraction, 

which proceeds from the actions and operations of the subject and is 

responsible for the construction of mathematical concepts, and empirical 

abstraction, which is directed at the objects of empirical reality. 

What is problematic in Piaget's conception is the fact that this 
differentiation between empirical and reflective abstraction becomes an 
immediate split as a result of his use of a concept of empirical abstraction 
that is too primitive. This cuts in two exactly that which Piaget considers 
the advantage of the operative approach, namely, the unity of subject and 
object when based on objective activity. If empirical abstraction is considered 
not to be constructive the tension between the two poles-the constructive 
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and the intuitive aspects of all cognition-is resolved and both aspects stand 
alongside one another as unrelated characteristics of two different classes 

of scientific concepts, rather than the two different sides of any concept. 
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DES NOMBRES RA TIONNELS 
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11 est rare de nos jours que l'on manie des grandeurs pour effectuer 
une mesure : on se contente de consulter des cadrans. Par ailleurs les 

grandeurs, si importantes chez Euclide, ont au xxe siecle disparu des 

mathematiques et quasiment disparu de l'enseignement. Or c'est Ia mesure 
des grandeurs qui, historiquement, a donne naissance aux nombres autres 

que naturels. 11 est done interessant de regarder comment, par quelles me
thodes diverses, on a enseigne les nombres depuis que les grandeurs se sont 

estompees. 

C'est ce que nous faisons ci-apres, d'ailleurs sans pretention d'epuiser 

le sujet. Ce regard critique debouchera sur Ia question : sachant comment 

on a enseigne les nombres dans le passe, comment pourrait-on faire a l'ave

nir? 

Le present article explicite et complete certains developpements de 

Rouche (1992a). II est une version abregee de Rouche (1992b). 

L'EVOLUTION HISTORIQUE DES MESURES 

Depuis que l'homme existe, il pen;oit et cherche a exprimer des 

quantites. II n'a pas cesse au cours des siecles de creer des moyens de plus 

en plus commodes, rapides et precis pour mesurer les grandeurs. Jetons un 
coup d'reil sur cette evolution millenaire. 

Les distances autrefois comptees en heures ou journees de marche sont 
aujourd'hui fournies automatiquement et directement dans le langage des 
chiffres par les compteurs kilometriques des automobiles. 

L'homme a d'abord mesure l'ecoulement du temps ala hauteur du soleil 
dans le ciel. II reconnaissait aussi les saisons au defile des constellations du 
zodiaque. Ensuite il a invente les cadrans solaires : le soleil, source premiere 
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des divisions du temps, precisait son message sur les heures et les saisons 

par le truchement de l'ombre d'un baton. Avec les clepsydres et les sabliers, 

l'homme a recouru a des mouvements artificiels pour mesurer le temps. 

Ensuite, il a invente les horloges mecaniques, bientot pourvues d'un 

balancier, puis les horloges a quartz avec encore un cadran a aiguilles et 
enfin les montres digitales. On per�oit !'evolution globale qui va d'un contact 

direct avec « Ia source principale du temps » (les mouvements du soleil), en 

passant par les cadrans a aiguilles qui, comme les astres, tournent d'un mou

vement uniforme, jusqu'aux montres digitales qui exhibent de purs symboles. 

Naguere encore la balance a fleau et le peson exhibaient les lois des 

leviers, tandis que la balance a ressort, tenue a Ia main, donnait a la fois Ia 

sensation du poids et la connaissance de son action sur le ressort. Les ba

lances digitales d'aujourd'hui ne fournissent que des chiffres. Et meme, en 

donnant directement le prix d'une marchandise achetee, elles evitent a 

l'utilisateur Ia fatigue d'un probleme de proportionnalite. 

De meme les mesures de capacite se font aujourd'hui sans qu'on ait a 

se servir des recipients-unites qui en donnaient une perception directe. Et 

l'essence d'auto se mesure autant sinon davantage en francs qu'en litres. 

Ainsi les manipulations de base des grandeurs (comparaisons, sommes, 
fractionnements, ... ) sont progressivement eliminees de Ia vie quotidienne. 

Chaque mesure est reduite « a Ia seule operation de lecture d'un nombre sur 

un cadran ». En liaison avec les progres de Ia technologie, plus les hommes 

utilisent des mesures et moins ils ont a executer des operations de mesure 

(voir Ia preface de Rouche, 1992a). 

LES GRANDEURS ONT DISPARU DES MATHEMATIQUES 

Si nous considerons maintenant l'histoire des mathematiques, nous y 

voyons en quelque sorte les nombres prendre la place des grandeurs. Jetons 

un regard sur cette evolution, elle aussi millenaire. 

La theorie des grandeurs du v• Livre d'Euclide, un des piliers prin

cipaux des mathematiques grecques, a ete enseignee jusque tard dans le 
xx• siecle, dans le cadre de la geometrie d'Euclide. II n'y etait question ni 
d'unites de mesure, ni de nombres (hormis les naturels) susceptibles d'ex
primer Ia mesure d'une grandeur dans une unite donnee. 

A cote de cette theorie des grandeurs s'est elabore, au cours des siecles, 
un systeme de nombres de plus en plus satisfaisant, aboutissant a notre corps 
des reels. Cette construction des nombres s'est appuyee essentiellement sur 
la mesure des grandeurs, comme l'histoire en temoigne abondamment. 

Mais l'edifice des nombres a ete renverse dans la seconde moitie du 
xx• siecle. A cette epoque, pour donner aux reels un fondement logique 
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ferme, on a largue leurs amarres historiques a Ia mesure des grandeurs pour 

les rattacher a Ia seule theorie des nombres naturels (puis plus tard, a travers 

ceux-ci, a Ia theorie des ensembles). 

Ainsi les nombres reels, nes au cours des siecles de Ia geometrie et de 

Ia physique des grandeurs, ne leur devaient dorenavant plus rien. Et non 
seulement ils avaient conquis leur autonomie, mais encore, a travers Ia 

structure d'espace vectoriel, ils ont plus tard servi a (re )fonder Ia geometrie. 

Dans ce cadre nouveau, le corps des nombres est construit avant meme qu'on 

aborde Ia geometrie. Les premiers objets a mesurer, par exemple les segments 

sur un axe, sont en quelque sorte mesures d'avance. Toute Ia problematique 

de Ia mesure, issue des difficultes de manipulation des grandeurs les plus 

concretes, a proprement disparu, et les grandeurs se sont evanouies des 

mathematiques. 

Bien entendu, elles n'ont pas en meme temps disparu de Ia physique, 

dont elles sont le materiau meme. Ainsi au cours de Ia premiere moitie du 

xxe siecle, les mathematiques se sont eloignees de Ia physique dans Ia 

mesure sans doute oil elles avaient rompu leur tres ancien ancrage dans les 

grandeurs pour en etablir un nouveau dans Ia theorie abstraite des ensembles. 

LES GRANDEURS DANS L'ENSEIGNEMENT AUJOURD'HUI 

Voyons maintenant comment cette evolution s'est repercutee dans 

l'enseignement. 

Au niveau secondaire tout d'abord, Ia oil les enseignements de mathe

matiques et de physique sont le plus souvent separes, Ia situation est en gros 

Ia suivante. Les grandeurs sont traitees en physique. C'est Ia que l'on affronte 

l'impossibilite d'un rapport entre deux grandeurs d'especes differentes, les 

systemes d'unites, Ia possibilite d'un rapport entre les mesures de deux 

grandeurs d'especes differentes et Ia conceptualisation par ce biais de nou

velles grandeurs (vitesse, densite, ... ), les formules complexes associant 

toutes sortes de grandeurs et Ia theorie des « equations aux dimensions ». 

Toutes ces choses sont par contre ignorees dans le cours de mathema

tiques. Dans celui-ci, un mouvement est nne fonction de A dans A dont Ia 

vitesse est Ia derivee. Quelle difficulte y aurait-il a considerer le rapport 

d'un espace a un temps, puisque de toutes fac;ons espace et temps sont 
d'avance de meme nature : ce sont deux nombres reels ? II reste a ce stade 
comme une trace de Ia difficulte primitive a mettre en rapport une distance 
et un temps dans Ia remarque (eventuelle) que le graphe position-temps doit 
etre interprete en geometrie affine et non metrique. 

Beaucoup d'enseignants de mathematiques sont embarrasses lorsqu'ils 
butent sur un symbole de grandeur tel que kg on m (pour metre). Ces choses 
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ne sont pas prevues dans la theorie et ils ne savent qu'en faire. Nombre 
d'entre eux ont d'ailleurs une repugnance pour la physique. Mais ce n'est 

pas ici le lieu d'analyser plus en detail les raisons du veritable divorce entre 

les enseignements de matbematiques et physique a l'ecole secondaire. 

La situation est differente a l'ecole primaire. Ut, l'apprentissage des 

mathematiques est tellement proche de ses sources dans le monde familier 

qu'un divorce consomme entre physique et mathematiques y est impossible. 

Ce que l'on constate en gros, mais qui meriterait une confirmation attentive, 

c'est 

• que l'apprentissage des grandeurs a l'ecart des nombres done avant 

toute idee de mesure est assez peu developpe ; 

• que beaucoup de phenomenes qui ont pour vocation de conduire a la 

construction des fractions et des rationnels sont ignores dans l'ensei

gnement; 

• que les mesures d'aires et de volumes debouchent trop vite sur des 

formules, au detriment d'une construction des idees de mesure cor

respondantes ; 

• et enfin que sous le titre de grandeurs ne se retrouve dans le pro

gramme ·qu'une nomenclature du systeme decimal des poids et 

mesures, accompagnee de nombreux exercices de changement 

d'unites. 

Au total done, l'enseignement semble bien ne pas accorder beaucoup 

d'attention a Ia genese de l'idee de mesure, liee a l'apprentissage des nombres. 

QUELQUES PROPOSIDONS D'ENSEIGNEMENT AU xxe SIECLE 

La situation que nous venons de decrire au triple niveau de la vie quo

tidienne, de la science matbematique et de l'enseignement pose au moins 

deux questions. 

288 

1) Comment amener les enfants d'aujourd'hui, qui bien entendu auront 
acces aux chiffres et aux nombres d'une maniere ou d'une autre, a 

com prendre le sens des resultats de mesure, a savoir les decoder et 
les utiliser ? 

2) Plus generalement, les manipulations de base des grandeurs ayant 
constitue pour les hommes d'autrefois le contexte intuitif dans 
lequel les grandes structures numeriques prenaient racine, comment 
faut-il organiser l'apprentissage des mesures et des nombres pour 
les enfants d'aujourd'hui, compte tenu des evolutions respectives 
des mathematiques et de la civilisation technologique ? 
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Examinons certaines des reponses les plus significatives qui ont ete 
donnees a ces questions depuis quelques dizaines d'annees. 

Au debut du siecle deja, Weber et Wellstein d'une part, et Burkhardt 
de l'autre (cites par Klein, 1908) proposaient, chacun a leur fa<;on, de 
construire les nombres rationnels a partir de la seule connaissance des 
nombres naturels, et done sans s'appuyer sur les grandeurs et la mesure des 
grandeurs, quitte a s'occuper de ces dernieres apres. Klein s'oppose, dans 
les termes suivants, a une telle organisation de l'apprentissage (tous les 
passages soulignes le sont par Klein lui-meme): 

[ ... ] certainement Ia presentation moderne [celle des deux auteurs cites] est 
plus pure, mais par ailleurs elle est aussi pauvre [que la presentation habitue lie 
jusqu'alors]. De ce que l'etude traditionnelle offre comme un tout, elle ne donne 
en fait qu'une moitie: /'introduction abstraite et logiquement complete de 
certains concepts arithmetiques - nommes <<fractions » - et des operations 
qu'on leur applique. Mais alors une question totalement independante et non 
moins importante demeure pendante : peut-on aussi reellement appliquer la 
doctrine theorique ainsi deduite aux grandeurs mesurables qui se presentent 
evidemment a nous ? 

On pourrait de nouveau appeler cela un probleme de « mathematiques 
appliquees », pouvant faire l'objet d'un traitement entierement separe; mais 

il faut evidemment se demander en outre si une telle separation est aussi 
pedagogiquement opportune. 

Chez Weber-Wellstein, cette division du probleme en deux parties 
s'exprime d'ailleurs de fa<;on tres caracteristique : apres !'introduction 

abstraite du calcul des fractions, Ia seule dont nous ayons parle jusqu'ici, 
il consacre une section particuliere - intitulee « les proportions » - a Ia 
question de !'application effective des nombres rationnels au monde 
exterieur ; et Ia aussi sa presentation est assurement plus conceptuelle 
qu'intuitive. 

Tout autre est l'enseignement con<;u par Papy (1970) dans les annees 
soixante pour les eleves de douze a quatorze ans et dont il a puise !'inspiration 
theorique dans la Geometric algebra de Artin. Ce dernier avait bati axioma
tiquement la geometrie affine plane sans presupposer !'existence de nombres, 
mais au contraire en construisant le corps de la geometrie comme un corps 
d'objets geometriques (les transformations preservant la trace). Bien sur, ce 
corps s'avere isomorphe a celui des reels, mais il ne devient corps de nombre 
qu'a posteriori. A l'usage des classes cette fois, Papy construit lui aussi les 
reels en meme temps qu'une geometrie axiomatique du plan affine. Dans ce 
cadre, les droites du plan sont graduees et sous-graduees dans le systeme 
binaire, et les nombres reels representes par les nombres binaires illimites a 

virgule, sont associes bijectivement aux points de Ia droite. Les nombres 
decimaux sont introduits ensuite. L'addition des reels est definie a partir de 
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Ia somme des vecteurs paralleles, et le produit des reels est obtenu comme 

rapport de Ia composee de deux homotheties. 

Les rationnels comme classes d'equivalence de fractions n'apparaissent 

pas dans un tel expose. Mais le choix, de construire les reels dans un cadre 

geometrique, manifeste le souci de les associer intuitivement aux mesures 

de longueurs. Tel est aussi le souci de Lebesgue (1975), ouvrage important 

mais que nous ne mentionnons ici que pour memoire, car il ne vise pas l'en

seignement elementaire. 

Une autre conception interessante est celle de Steiner (1969), a peu pres 

contemporaine de celle de Papy. Mais alors que le texte de ce dernier s'a

dresse, comme nous l'avons dit, aux eleves de douze a quatorze ans, celui 

de Steiner est un texte mathematiquement dense proposant un fondement 

axiomatique pour soutenir l'apprentissage des nombres a partir du plus jeune 

age. II n'est done nullement destine aux eleves, mais aux responsables de 

l'enseignement elementaire. Dans Ia theorie de Steiner, les nombres naturels 

d'abord et les rationnels positifs ensuite sont engendres comme operateurs 

sur un domaine de grandeurs. L'addition de ces nombres est done interpretee 

comme addition d'operateurs, et le produit des nombres comme composition 

d'operateurs. Steiner exprime l'espoir que la connaissance d'un tel systeme 

conduira a trouver les moyens adequats pour enseigner ces matieres et rame

ner !'attention sur un point de vue neglige dans l'enseignement : Ia relation 

des nombres aux mesures et leur usage comme operateurs. 

Par-dela les differences relevees jusqu'ici entre les contributions de 

Weber-Wellstein, Burkhardt, Papy, Steiner et Kirsch, un caractere commun 

les rassemble, a savoir l'idee de mettre a Ia base de l'enseignement elemen

taire des nombres une theorie axiomatique. Et chaque auteur, en proposant 
Ia sienne, argumente selon les cas de sa purete, de sa clarte, de son rapport 

au vecu quotidien et a !'intuition. Mais dans tous les cas, ce dont il est 

question, c'est d'une conceptualisation au sens mathematique habitue!, 

debouchant (chez Papy) ou susceptible de debaucher (chez les autres) sur 

un enseignement effectif. 

Tout autre est, un peu plus tard, Ia demarche de Freudenthal dans sa 
Didactical phenomenology of mathematical structures (1983). L'ictee n'est 
plus ici de construire une structure mathematique deductive qui, represen
tant Ie mieux ou le moins mal possible la realite familiere, puisse inspirer 
un enseignement. Freudenthal cherche d'abord a identifier des phenomenes, 

c'est-a-dire des faits, des relations observes dans le quotidien ou les 
mathematiques, et qui provoquent la pensee mathematisante. Nous supposons 
le lecteur familier de cette notion de phenomene. 

Freudenthal inventorie une quantite extraordinaire de phenomenes 
divers. Plusieurs fois il s'exclame sur Ia difficulte d'y mettre de l'ordre : 
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« J'espere au moins, dit-il, que je ne me noierai pas dans cet ocean. » Cons

tatant l'absence de coherence globale d'un ensemble de phenomenes, par 

exemple celui qui se rapporte aux grandeurs et aux rationnels, il organise 

localement cet ensemble a l'aide d'objets mentaux. Un objet mental n'est 

pas un concept construit techniquement comme en mathematiques, avec des 

quantificateurs et d'autres symboles, et inscrit dans une structure deductive. 

C'est quelque chose de plus familier, qu'on pourrait aussi appeler notion, 

mais suffisamment elabore pour en faire precisement un instrument d'orga

nisation d'un champ de phenomenes. Les nombres de tout le monde ecrits 

dans le systeme decimal, les polygones les plus simples, les graphiques de 

fonctions sont trois exemples d'objets mentaux, parmi une foule d'autres. 

Freudenthal insiste, specialement a propos des fractions, pour que les 

phenomenes sous-jacents ayant ete organises localement et done sans qu'on 

y reconnaisse une coherence globale, on appuie l'enseignement sur leur 

ensemble et non sur une partie d'entre eux. L'insucces bien connu de l'appren

tissage des fractions pourrait, selon lui, etre dfi a une exploration trop 

incomplete par les eleves des phenomenes quelque peu heteroclites qui y 

conduisent. 

L'apprentissage des mathematiques selon Freudenthal do it commencer 

au niveau des objets mentaux, et non tout de suite a celui des concepts mathe

matiques formels, mais il a pourtant vocation de rejoindre ces derniers. Le 

but ultime de l'enseignement demeure bien d'enseigner les mathematiques 

telles qu'elles sont. Mais force est de reconnaitre que beaucoup d'eleves 

abandonnent l'etude des mathematiques en cours de route. Pour ceux-la, 

mieux vaut s'en aller avec le bagage sense des objets mentaux qu'avec le 

vide des concepts formels mal assimites et depourvus de contexte significatif. 

lei s'acheve notre examen de quelques propositions faites depuis 100 

ans pour l'enseignement des grandeurs et des nombres. Il y en a eu, cela va 

de soi, beaucoup d'autres. Mais celles que nous avons retenues suffisent, du 

mains nous l'esperons, a poser le probleme assez clairement. 

Repartons du constat de Freudenthal : il existe un vaste ensemble de 

phenomenes divers, impossibles a organiser globalement, mais qui taus 

conduisent d'une certaine fa�on aux grandeurs et aux nombres abstraits et 
en constituent des facettes concretes. Acceptons en outre l'idee que si dans 
l'enseignement on neglige une ou plusieurs parties importantes de cet 
ensemble de phenomenes, on aboutit a une connaissance des nombres a la
quelle manquent certains supports intuitifs et qui ne trouve que difficilement 
certains de ses points d'application dans la realite. 

Si on admet cela, il devient evident que tout enseignement inspire 
d'un expose axiomatique unique tels ceux de Weber-Wellstein, Papy ou 
Steiner sera phenomenologiquement trap pauvre, si on peut s'exprimer ainsi. 

291 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

Bien entendu, ces exposes sont tous ingenieux et interessants. Chacun, dans 

un registre theorique, organise et eclaire d'un jour qui lui est propre une 

partie des phenomenes en cause. Et a ce titre, ces contributions meritent 

d'etre connues des responsables de l'enseignement d'aujourd'hui. Mais force 

est de reconnaitre que tout tirer d'une source axiomatique unique aboutit a 

n'eclairer qu'une partie insuffisante de la realite familiere. 

11 faut done bien partir de Ia realite multiforme, celle des eleves, et 

l'organiser en structures locales, ce qui implique qu'on ne rassemble pas 

d'emblee ces structures en un tout coherent. 

CRITIQUE DE LA PHENOMENOLOGIE DE FREUDENTHAL 

Cela dit, tout reste a faire. 11 faudrait que les responsables de l'ensei

gnement mathematique elementaire abandonnent l'idee d'inculquer les 

mathematiques comme un produit theorique prepare en dehors d'eux. 11 

faudrait non seulement qu'ils prennent conscience de Ia necessite d'ancrer 

leur enseignement dans une realite phenomenologique qui detie tout essai 

sommaire de structuration globale, mais encore qu'ils se familiarisent avec 

cette realite, sa richesse et ses incoherences, les obstacles qu'elle oppose a 

la construction du savoir mathematique ordinaire. 

Une reponse d'apparence evidente serait : on n'a qu'a lire et appliquer 

ce que Freudenthal a ecrit, puisqu'il semble avoir vu si juste ! Essayons done 
maintenant, en approfondissant sa contribution, de voir ce qui, peut-etre, Ia 

rend difficile a saisir et a mettre en reuvre. 

D'abord, quelle que soit Ia question qu'il aborde, il identifie les phe

nomenes pour commencer dans un cadre mathematique et a un niveau 

susceptible de dissuader la plupart des lecteurs issus de l'enseignement ele

mentaire. Cela est tres clair dans Ia construction de son texte. Par exemple, 

au chapitre 1, le premier inventaire des phenomenes lies aux grandeurs est 

realise dans le cadre d'un expose axiomatique de ceux-ci. Autre exemple : au 

chapitre 5, une partie importante des phenomenes concernant les rationnels 

est relevee dans une presentation axiomatique partielle de ces nombres 
consideres comme operateurs sur un domaine de grandeurs. 

Ayant ainsi d'abord identifie les phenomenes mathematiques, il part a 

la recherche des phenomenes quotidiens qui ont vocation d'y conduire, de 
les eclairer, d'en etre des contreparties intuitives. Il decouvre ainsi quelques 
ensembles de phenomenes familiers, ayant chacun sa coherence propre. Mais 
ces ensembles sont en quelque sorte juxtaposes : le principal lien entre eux 
est qu'ils pretigurent, chacun partiellement, une meme theorie mathematique. 

Freudenthal releve que certains de ces ensembles ne se regroupent pas 
d'eux-memes pour constituer Ia theorie visee. Par exemple, ayant developpe 
les fractions comme « operateurs de fractionnement », ce qui conduit natu-
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rellement a leur multiplication, l'auteur ajoute : « !'addition manque », 

laissant entendre qu'il faudra aller Ia chercher ailleurs. Et il dit encore 
quelques pages plus loin : « dans cette structure [le produit des fractions vu 
comme composition d'operateurs de fractionnement] le modele du rectangle 
ne s'insere pas facilement. Ceci ne veut pas dire qu'il faille le negliger. » Le 
« modele du rectangle » c'est !'ensemble des phenomenes lies aux calculs 
d'aires de rectangle ayant pour cotes des fractions de l'unite de longueur. 

Dans cette optique, Ia realite familiere est pourvoyeuse de phenomenes 
illustrant les fractions et les rationnels. Elle n'est pas consideree d'abord, 

independamment des mathematiques auxquelles elle conduira plus tard, 
comme organisable localement a l'aide d'objets mentaux. On n'insiste pas 
sur le fait que les ensembles locaux de phenomenes structures sont impos

sibles, si on les prend tels quels, a organiser globalement en une theorie 
coherente. Certes, ces ensembles locaux coexistent parfaitement dans Ia 
realite et Ia pensee communes. Mais lorsqu'on insiste pour mettre en corres
pondance detaillee les grandeurs et Ies nombres, on se heurte a des difficultes 
importantes, des contradictions. Nous prenons ici le mot contradiction non 
au sens de Ia rencontre d'une proposition et de sa negation, mais au sens de 
difficulte essentielle, d'opposition fondamentale entre deux choses. Les 
contradictions dont nous parlons ainsi sont a Ia fois des incitants et des obs
tacles a !'abstraction, a Ia construction d'une theorie formelle. 

AFFRONTER LES CONTRADICTIONS 

Pour pouvoir avancer dans notre reflexion, donnons d'abord l'un ou 
l'autre exemple de ces structures incompatibles que I' on obtient en organisant 
localement Ia masse des phenomenes. 

Considerons d'abord }'ensemble des phenomenes lies a Ia comparaison 
(plus grand, plus petit) et a }'addition des grandeurs fractionnees. Cet en
semble forme un tout coherent, bien organise, ou l'on voit commencer a se 
construire Ia structure de champ. En particulier !'addition y est une operation 
binaire interne avec les bonnes proprietes. 

La nature des choses veut que cet ensemble ne soit pas muni d'une 
multiplication, operation binaire interne. Personne n'a jamais obtenu une 
longueur en multipliant deux longueurs, et jamais non plus une masse en 
multipliant deux masses. Par consequent, si on veut construire la structure 
multiplicative des rationnels, il faut chercher ailleurs. 

Mais les fractions (pas les grandeurs fractionnees) peuvent etre vues 
comme operateurs de fractionnement (de grandeurs). Ace titre, elles forment 
un tout autre ensemble, regroupant une foule de phenomenes familiers. Cet 
ensemble admet une structure multiplicative correspondant a Ia composition 
des operations de fractionnement, structure qui prefigure une autre facette 
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du champ des rationnels. En contrepartie, les operateurs de fractionnement 
ne se laissent doter d'une addition que moyennnant beaucoup d'artifices. 

Les choses rebondissent si on constate que les fractions peuvent aussi 

servir a mesurer des longueurs, des temps, des masses, etc. Or dans le cas 

des longueurs (et pas directement dans le cas des autres grandeurs), la mul

tiplication des mesures fractionnaires apparait bel et bien, mais non sous 

forme d'une operation interne. Multiplier des mesures de longueur donne 

des aires, des volumes ou des hypervolumes selon le nombre des facteurs. 

Cette multiplication s'execute d'un point de vue formel comme la multi

plication des fractions dans la theorie abstraite des rationnels (on multiplie 

les numerateurs entre eux et les denominateurs entre eux). Mais pour qu'elle 

prefigure la structure multiplicative des rationnels, il faut « oublier » qu'elle 

n'est pas interne. 11 faut abstraire la forme de !'operation de son contexte 

concret (les aires et volumes). 

Considerons, en guise de deuxieme exemple, les rapports entre gran

deurs, avec tous les phenomenes associes aux rapports et aux proportions. 

A l'interieur de chaque domaine de grandeurs ( c'est-a-dire so it les objets 

allonges, so it les temps, so it les objets pesants ... ), on trouve un rapport entre 

deux grandeurs quelconques, et l'on peut former librement des proportions 

entre grandeurs. Par contre, il n'y a pas de rapport entre deux grandeurs 

d'especes differentes, et si l'on veut former une proportion entre quatre 

grandeurs, il faut que les deux premieres soient de la meme espece, et les 

deux dernieres aussi. 

Cette circonstance empeche d'echanger les termes moyens dans une 

proportion ou sont engagees des grandeurs de deux especes distinctes. 
Correlativement, car c'est un autre aspect du meme phenomene, elle empeche 

l'existence d'un rapport externe dans une application lineaire d'un domaine 

de grandeurs dans un autre different. 

Pourtant, les nombres rationnels (et puis les reels) qui vont a terme 

remplacer les grandeurs, devront bien surmonter ces interdits. Au bout du 

compte, il faudra par le biais des nombres, donner existence a des rapports 
de grandeurs d'especes differentes comme on en voit dans les vitesses, les 
densites, et bien d'autres. Les incompatibilites de depart ne seront vaincues 
qu'au prix de difficultes supplementaires, en !'occurrence celles qui naissent 
du choix a priori arbitraire des unites de mesure et de la restriction a un 
systeme d'unites coherent. 

Ces deux exemples auront sans doute permis au lecteur de com prendre 
mieux ce que nous avons apppele structures partielles contradictoires. Ces 
contradictions sont fondamentales, elles tiennent a la nature des choses, 
elles font partie de la relation intime de l'homme avec la realite. A travers 
les operations de fractionnement et de mesure, l'homme cherche a mettre en 
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relation les grandeurs et les nombres. Les nombres naturels sont la, au depart, 

avec leurs proprietes operatoires. Tels quels, ils servent deja a operer sur 

les grandeurs et a les mesurer. Mais viennent ensuite les operateurs de frac

tionnement et les mesures fractionnaires. L'homme cherche a etendre a ces 

objets nouveaux les proprietes operatoires des nombres naturels. Mais cela 

ne va pas sans peine, sans contradictions, sans quelques ajustements cruciaux. 

Pour constituer les rationnels en structure abstraite, ii faut oublier les con

notations concretes de chaque structure partielle pour n'en retenir que les 

proprietes formelles, il faut abstraire. 

Une conclusion s'impose : Ies rationnels ne sont pas tout formes dans 

Ia nature. II ne suffit pas d'observer celle-ci, fut-ce minutieusement, pour 

Ies y decouvrir. Les rationnels ne sont pas naturels, il sont artificiels, ii sont 

Ie resultat d'une construction de l'esprit humain. 

Ce n'est d'ailleurs pas par hasard que trois mathematiciens ont affirme 

en echo repete a travers le XIXe siecle : 

• Le nombre est un pur produit de notre esprit (Gauss) ; 

• Dieu fit le nombre entier, le reste est l'ceuvre de l'homme (Kronecker); 

• Les nombres negatifs et fractionnaires ont ete crees par l'esprit humain 
(Dedekind). 

Et maintenant que conclure de Ia sur le plan de l'apprentissage et de 

l'enseignement ? II nous semble interessant d'aborder franchement dans Ies 

classes ce que nous avons appele ci-dessus Ies contradictions de Ia pensee 

commune dans sa premiere organisation. Ces contradictions vaincues don

nent son plein sens a la theorie abstraite et seule leur connaissance peut 

eclairer les limites d'applicabilite de celles-ci aux situations particulieres. 

Si l'on accepte cette conclusion, deux de ses consequences doivent 

etre envisagees. 

La premiere est qu'il faut renoncer a !'ambition genereuse des promo

teurs des mathematiques modernes d'enseigner d'emblee aux eleves des 

connaissances detinitives. Papy (1972) ecrivait: « il y a moyen d'aller 

directement de la connaissance commune aux structures et au point de vue 

moderne ». On peut croire au contraire que sur Ie chemin qui conduit aux 

grandes structures mathematiques se trouvent beaucoup d'obstacles signi
ficatifs qu'il vaut Ia peine d'affronter et de ranger dans sa memoire. 

La seconde est que, puisque les rationnels ne sont pas « dans la nature », 

ne sont prefigures dans Ia pensee commune que par morceaux incompatibles, 
il faut renoncer a une pratique assez frequente dans I'enseignement :presenter 
comme ayant une portee generale un modele particulier d'un concept abstrait. 

295 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

Par exemple, on pensera avoir montre vraiment ce qu'est i en identi

fiant cette fraction aux trois quarts d'un tout (une tarte, un baton, ... ). On 

oublie en ce faisant que i apparait aussi lorsqu'on partage 3 tartes entre 

4 am is. On oublie ( ou peut-etre, pour ne pas perturber les enfants, on s'efforce 
de le camoufler ... ) le fait qu'on ne peut pas multiplier deux fractions con

cretes de ce type : qui a jamais pu multiplier un morceau de tarte par un 

morceau de tarte ? On pourrait developper cet exemple et en donner beaucoup 

d'autres. Les contradictions forment obstacle a Ia construction des rationnels 

abstraits, mais on peut croire que ces obstacles sont bien plus pernicieux 

lorsqu'on les ignore. Car alors les eleves passent par des situations embar

rassantes, avec en plus le malaise de ne pas comprendre ce qui leur arrive et 

le risque de conclure que les mathematiques sont une science qui prend les 

libertes les plus etranges avec la realite, en somme une science arbitraire. 
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MATHEMATICS IS A LANGUAGE 

Fritz Schweiger 

Universitiit Salzburg, Austria 

MATHEMATICS AND lANGUAGE 

Recent years have seen considerable interest in the relationship be

tween language and mathematics. It is not possible to quote a representative 

sample of the relevant literature, but some cornerstones to be mentioned are 

the Nairobi Report (1974), the Seminar-cum-Workshop (1984), reports pre

sented at previous International Congresses on Mathematical Education 

(especially ICME-4, 1980), and the recent publication, Language issues in 

learning and teaching mathematics (Davis & Hunting, 1990). 

I will mention mathematical linguistics first: the attempt to apply 

mathematical methods to linguistic problems. Besides being of theoretical 

interest, this has been an important issue in machine translation, artificial 

intelligence, and so on. Investigations in syntax and semantics, which use 

the theory of formal languages and automata theory and programming lan

guages (such as BASIC, PASCAL, LOGO, C, ... ), can be seen as another 
bridge to mathematics. Surprisingly the findings of mathematical linguis

tics have not had much impact on mathematical education. 

Next the language of mathematics, the nowadays elaborated special 

language in which mathematical ideas, theories, and algorithms are ex
pressed, comes to mind. This language has developed a special written form 
which has turned out to be more influential than spoken mathematical lan
guage. 

Another issue is teaching mathematics in a language which for the 
learner is a first or second (or even third) language, especially in the case of 
ethnic minorities and indigenous groups. Mathematics in its written form 
seems to be only partially dependent on the (natural) language in which it is 
expressed. Plane figures like D, 0, .6., . .. can be understood worldwide. 
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The classical diagrams illustrating Pythagoras' theorem can be understood 

in the context of a textbook written in Japanese or German, Arabic or Tamil. 

This situation is somewhat similar to the almost universality of the pictorial 

codes used in airports and railway stations. 

At an advanced level (when memory has already stored suitable 

environments) a lot of meaning can be communicated "language-free" 

(without the need to know the words): 

dsinx = cosx r (J) = r dw dx 'JM J6A 

Anyone who has given a lecture in a foreign language knows the uneasy 

feeling when one is writing down some symbols but is unable to find the 

proper words. Expressing symbolic statements in oral language has an 

intrinsic complexity (which is comparable to the complexity experienced 

when one has to generate such a formula with a text editor on a computer). 

In the mother tongue one is not aware of this point but in a foreign language 

one feels it. Therefore it seems reasonable to ask: Is there a connection 

between learning mathematics and learning a foreign language? One probable 

difference comes to mind: Learning a second language seems to be closer to 

the acquisition of a first language and may be influenced by the experience 

of first language acquisition. 

Teaching and learning are parts of the general problem of mathematics 

and communication. Although language clearly plays a crucial role in all 

problems related to communication skills, classroom communication and 

reading mathematical texts, in considering mathematics I have to omit the 

important areas of research which center on social or psychological aspects. 

My point of view will be basically that of communicating through math
ematics, that is, the use of mathematics as a tool of communication. 

MATHEMATICS IS A LANGUAGE 

Metaphorical concepts provide us with a partial understanding and 

hide some other aspects. Therefore "Mathematics is a language" may be 
seen as a structural metaphor in the sense of Lakoff and Johnson (1980). 
Their definition states that one concept is metaphorically structured in terms 
of another. It is easy to find several quotations which express this idea. 
Mason (1985) says: "Algebra is firstly a language-a way of saying and 
communicating." Clearly in this quotation "algebra" may be replaced by 
"mathematics". 
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Also well known is Galileo Galilei's view: 

La filosofia e scritta in questo grandissimo libro che continuamente ci sta 
aperto innanzi a gli occhi (io dico l'universo) , rna non si puo intendere se 
prima non s'impara a intender la lingua, e conoscer i caratteri, ne' quali e 



ScHWEIGER 

scritto. Egli e scritto in lingua matematica, e i caratteri son triangoli, cerchi, 
ed altre figure geometriche, ... (Galilei, 1623, p. 631). [Philosophy is written 
in this grand book-/ mean universe-which stands continuously open to our 
gaze, but it cannot be understood unless one first learns to comprehend the 
language in which it is written. It is written in the language of mathematics, 
and its characters are triangles, circles and other geometrical figures, ... ] 

To put it in different terms: Galilei considers mathematics to be the 
way of communicating with nature. Since the days of Galilei the continuing 
interplay between observations, experiments, and theoretical models which 
are formulated in mathematical terms has not exhausted its usefulness. One 

might add: To some extent, mathematics is the language we use in commu

nicating about nature. 

What is mathematics? 

The statement "Mathematics is a language" invariably provokes two 
questions: What is mathematics? What is language? Neither question can 
be answered easily. I can assume that every mathematician, every mathe
matics educator, and every mathematics teacher has his or her own picture 
of mathematics. All these individual pictures obviously must have some

thing in common otherwise communication about mathematics would be 
impossible. It is a challenge for education to provide a common core of 
mathematical ideas which make it possible to appreciate the role of mathe
matics in our society and culture. 

I will take the broad view of mathematics as emphasized in the recent 

investigations called "ethnomathematics": Mathematics is a basic compe
tence of mankind. It starts with a whole range of abilities which some 

educators would call "pre-mathematical": counting and ordering, recognition 
of patterns and symmetries, generation of patterns and structures, use of re
cursive procedures (which is closely related to counting) and algorithms 

(repeated actions to achieve some goals), and the construction of models 
and their use. As far as we know, in all human cultures, back to the early 
Stone Age, we find traces of these abilities. There have been some statements 

that certain tribal communities lack an elaborated system of number words 

but closer investigation has shown that the matter is in fact more complicated: 
the skill ofrecursive procedures is present, as Watson (1990) has emphasized 
recently in the case of Australian aboriginal cultures. She refers to the gurrutu 

system of classification used in the Yolngu communities. And there is no 
doubt that geometry has accompanied humanity since its beginnings. Clearly 
this has something to do with a sense of beauty as well as being rooted in 
the intrinsic features of arts and crafts, like making weapons, baskets and 
shelters. 

Let's mention logic! Logical thinking seems to be a syntactical ab
straction of causal or temporal relations. Any myth tells us something about 
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the origin of certain peculiarities of our life: why there are both men and 
women, why we must face death, what are the origins of diseases, sin and 

evil. These narratives may have been told to help mankind to cope with an 

environment both friendly and hostile. Consider statements involving tem

poral chaining, such as: If the snow melts, then spring will come and then 

hunting will be easier, or some fish will show up, or fruit trees will blossom, 

and so on. The rhythms of sunrise and sunset, shorter and longer days, full 

and new moon were observed. Calendars were born. Probably the idea of 

applying the syntax of causal and temporal chaining to arithmetic and ge

ometry was the origin of mathematics as we know it. Logical thinking has 

been indispensable for the development of mathematics. In return mathe

matics has been applied to logic, giving birth to a new branch of mathematics: 

mathematical logic. 

Mathematics is present at various levels and in different environments. 
So is language. Language is a continuum, from baby talk to elaborated 

speech, and includes novels and poetry as well as scientific articles. A conver
sation in a cafeteria has something in common with a drama by Shakespeare. 

What is language? 

If I were writing this paper in French I would have a problem in 

translating its title. 

"Les mathematiques sont-elles un langage ou une langue?" In French 

"langue" means the idiom of a group of people like English, French, or 
Inuktitut. One also says "langue maternelle" for "mother tongue" (which is 

not so strange because "langue" originally means "tongue", an important 

part of our speech organ). Clearly mathematics is not a language like Eng

lish, French, or Inuktitut. One can convey and express mathematical ideas 

in these languages. The same mathematical content can be encoded in dif
ferent languages with the helpful addition of diagrams and symbols. 

One may replace the symbols as long as the decoder knows or can 

guess the encoding rules: The statement 

may also written as 

d�X =COSX 

sin'y=cosy 

The conventionality of signs is quite clear, but there are practical and 
educational limits to their proliferation. Communication needs memory ca

pacity. The need to change symbols is a burden. "Good" symbolism may 
even reveal striking similarities. Some of these similarities can nowadays 
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only be recovered by historical or linguistic considerations. Capital Greek 

2: (sigma) is related to sum, capital Greek 11 (pi) is reminiscent of product. 

The integral sign f is a fossilized form of an S for sum, the operator a is an 

old hand-written d, standing for derivation. This is similar to the use of 
letters in handling the menu of a computer. Very often C stands for "copy", 

F for "format", and so on. There has always been a claim that mathematical 
symbols are the last stage of a triad: rhetorical (expression in vernacular)

syncopated (use of abbreviations)-symbolistic (use of symbols). The 

evolution of mathematical symbolism is a fascinating topic of its own. 

In French "langue" also means a particular mode of expression, as one 

speaks of the "language of poets" ("la langue des poetes"). In the same 

sense, mathematics is obviously the language of mathematicians, and at 
least part of the language of physicists, engineers, and others. 

The other French word, "langage", also expresses a variety of mean

ings. Basically "langage" can be described as the ability of mankind to 

express ideas and to communicate. Bolinger and Sears (1981) stress the 

importance of language this way: "Whatever success a culture has is largely 

due to the understanding and cooperation that language makes possible." 
Langacker (1967) says, "Most human knowledge and culture is stored and 
transmitted in language." 

One may ask about the relationship between "langue" and "langage". 
Following Martinet (1970) one can say: Any language, in the sense of "lan
gue", is an expression of language, in the sense of "langage". Any (natural) 
language like English, French, or Inuktitut is a tool of communication, a 

special encoding of the human competence for expressing ideas, feelings, 
and thoughts. Therefore, basically, any (natural) language serves the same 

purpose. To some extent, switching from one code to another code, namely 
translation, is always possible. 

Natural languages can be very different and have changed dramatically 
throughout history. Language as a basic human competence has not changed 

so much. Mathematics can be seen as a powerful extension and refinement 

of this competence. 

SOUNDS, WORDS, SENTENCES, AND MEANINGS 

Sounds, letters, and symbols 

Linguistics traditionally distinguishes different levels of language 
activity: phonology, lexicon (words), syntax, and semantics. 

Obviously, in its oral form, mathematics has not added new sounds to 
languages generally. In linguistics it is generally accepted that sounds are 
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the basic units of any natural language. This priority does not change if one 

uses spoken language to express mathematical ideas, but the phonetic system 

of any language will not give insight into the specific role of mathematics. 

It is entirely different if we look at mathematics in its written form. 

Here, one basic property of the surface structure of natural languages can 

be questioned, namely their linearity. Speech sounds and words follow in a 

linear order due to their sequential realization in time. This principle is well 

observed in the more elaborated writing systems: alphabetic, syllabic or 

ideographic. Clearly there are some exceptions: in some Indian scripts like 

Devanagari (which runs from left to right) the sequence ki is written i + ka, 

but this can be seen as a special cluster. Mathematical texts normally follow 

the linearity of their contextual environment, but sometimes the order of 

reading or writing is just conventional and basically not linear, as in complex 

formulas and diagrams: 

1 

J x2dx ' 
0 

H 

The order of operators is conventional: compare x2 and sin x! If one 

uses a pocket calculator, in both cases one normally has to enter x first and 

then to press the appropriate function key. A top-down strategy would start 

with the functions "square" or "sine" first and then enter the argument x. 

The most obvious fact is that mathematics has introduced a symbolic 

notation (mostly on the basis of a Western heritage). It uses the letters of 

the Roman alphabet a,b,c, ... , x,y,z, in such a way that for the layman the 

use of letters has become almost synonymous with mathematics. Clearly 

other fonts (gothic, script, and so on) are often used freely (but are pro
nounced differently). Mathematics also uses Greek letters a, 13, y, ... and at 

least one Hebrew letter X (aleph) (for the cardinality of countable sets) and 
one Cyrillic letter III (for the Shafareviz group in algebraic number theory). 
But there are also subscripts, superscripts, and diacritics like -,',-, and *. 

Furthermore think of a,J, U, n, � . . . . ! The knowledge of a certain number 

of these symbols and their correct contextual interpretation is necessary to 
appreciate the communicative power of mathematics. The use of symbols 
is nowadays a characteristic of mathematical texts. The statement of 
Pythagoras' theorem in classical Greek contains fewer symbols than the 
statement of the same theorem in a modern textbook: 
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Ev TOL<; op{}o'YWVLOL<; TPL'YWVOL<; To <l1TO TTJ<; TTJV op-3TJV -ywvLetv 
U1TOTELVOU<TTJ<; 1TAEUp<l<; TETPIX'YWVOV L<TOV E<TTL TOL<; <l1TO TWV TTJV op-3TJV 
'YWVL<lV 1TEpLexouawv 1TAEupwv TETpcx-ywvOL<;. EaTw TpL-ywvov opuo-ywvwv 
TO ABr op-3TJV exov TTJV U1TO BAr 'YWVL<lV AE'YW OTL TO Ct1TO TTJ<; Br 
TETpcx-ywvov L<Tov E<TTL TOL<; a1To Twv BA, Af TETpcx-ywvoL<;. [Liber I, 47. 
Quotation from Euclidis Elementa (Eukleides, 1969)]. 

It is especially interesting that the familiar form a2 + b2 = c2 is not 

given. But in this more compact version one has to know the meaning of the 

letters a, b, and c in this context as well as the fact that a2 stands for a·a 
Definitions are condensed to a single letter or to a small string of letters and 

their combinations are used to create new meanings, which has serious im

plications for the use of short term and long term memory. 

A comparison with musical notation comes to mind. Musical notes 
can be read and understood (linearity also breaks down here), but to get the 

full picture-active decoding by playing a passage on the piano, for exam

ple-is very often necessary. Understanding derived from the pictorial 

representation very often needs active reinvention in both music and math

ematics. Mathematics may be seen to be easier in this respect. One may 

proceed "allegro" or "andante" according to ability. Teachers should give 

students more freedom in this respect. 

Words 

There is no doubt that mathematics has developed a special vocabulary 

of its own. One can distinguish the following basic processes: 

• The use of words with a specialized meaning, different from their 

meaning in everyday language : vector, angle, set, function ... 

• The use of words in a metaphoric sense: space, collection, normal, 

regular ... 

• Words arrived at by translating words from other languages: "field" 

(French "champ"). 

Word building processes: 

• Compounds: 

type A: Abelian group (An Abelian group is a special type of group.), 
complete metric space (A complete metric space is a special 
type of metric space.) 

type B: complex number (There is no received definition of number 
such that complex number is a special type of number. Com
plex number obviously is a structural metaphor in the sense 
of Lakoff and Johnson (1980). Historically complex numbers 
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were seen as new numbers. The notion of number provides a 
partial understanding only.), metric space, vector space. 

• Derivations: to rectify, to zornify (i.e., to apply Zorn's lemma). 

• Neologisms: homomorphism, homeomorphism, morphism(!). 

There are also prefixes and suffixes like co- and contra- or hyper-. 
The word "million" is derived from Italian "miglione", a great thousand by 

the use of the magnifying suffix "one". A reanalysis then led to billion, 
trillion, etc. A recent formation is fractal, derived from fractional: "bro
ken"! 

Clearly my comments here are restricted mainly to English. Similar 
observations could be made for French, Italian, Spanish, or other languages. 
One wonders how languages of quite different types, such as Arabic, 
Japanese, or Hindi, deal with the growing amount of mathematical vocabu
lary (See e.g., Seminar-cum-Workshop, 1984). Outsiders may think that all 
mathematical terms are coined as descriptive terms like injective, or 
coproduct (from product). But very often, at least at the time when these 
words were coined, emotions or affects or humor played a role: the classi
fication of finite simple groups includes a group called a "monster" and 
another one is called "baby monster". Transcendental numbers had at least 
some metaphysical flavor. The term "square root" is a metaphor from botany. 
The words "square" and "cube" for a2 and a3 reflect the use of geometric in
tuition in ancient mathematics. Clearly this belongs more to semantics than 
to (formal) derivational processes. 

Syntax 

At first glance it seems there should be no special syntax of mathe
matics since a mathematics book written in Japanese belongs to the corpus 
of Japanese texts. A speech delivered in French clearly uses the devices of 
French syntax, and so on. A second look reveals that mathematical texts 

(more than oral utterances dealing with mathematics) employ a restricted 
syntax. Certain sentence types prevail in mathematical texts: equational 
statements or conditional chains. It has been observed that nominalizations 
and the passive voice are used much more than in everyday language (See 
e.g., Laborde, 1990). At least in the Western European languages the sub
junctive mood is employed frequently: "Let us assume ... IR denote the field 
of rational numbers ... G be an Abelian group ... ". Mathematical texts are 
the literature of mathematics. English texts belong to English language in 
so far as they say something about the structure of the English language! A 
third look shows that mathematics has already developed some syntactical 
structures of its own. The syntagma a + b = c is well formed but ab + c = is 
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not well formed (as a complete sentence in every day arithmetic). The 

formula 

is well formed (and correct). 

The formula 

is less well formed. A basic rule of mathematical syntax is violated, namely 

the anaphoric use of the same letter, although as in ordinary language some 

errors do not impede the communicative power. 

Finally, mathematical language has not developed word classes (such 

as nouns, verbs, adjectives ... ) of its own with the notable exception of 

number words and quantifiers that are fundamental to mathematics. It is 

worth mentioning that these word classes display remarkable syntactical 

diversity in the languages of the world. Number words sometimes behave 
like adjectives, but also like nouns. In a number of languages, mainly found 
in Asia, the choice of number words depends on the noun to be quantified. 

There are no grammatical categories (like person, gender, number, tense, 

mood, or aspect) which are specific to mathematics. Again mathematical 

texts use the devices given by the "matrix language". It is well known that 

the different organization of natural languages causes considerable problems 

in understanding mathematical texts which may also be of importance for 

teaching and learning (e.g., devices for quantification or negation). 

Semantics 

The semantics of mathematics is what makes mathematics a powerful 

language. The dialogue with nature, as Galilei metaphorically says, is only 

possible if mathematical language transports meaning. The symbols and 

words may be exchangeable and may vary considerably from language to 

language (according to the language in which a mathematical text is written 

or spoken). 

The communicative power lies in the semantics. An expression like 
z = xy can communicate an infinite set of meanings. Basically it can be 
interpreted as follows: The quantity z depends linearly on both the quanti
ties x andy. It is the prototype of a bilinear map. Very often substitution of 
special symbols, depending on the context, is used: 

U = iR, s = ct, T=pV, 
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The exponential function t � e-l.t is the vehicle of communication 
about various problems of decay (radioactivity, atmospheric pressure, 
dampening ... ). For measurements mathematics provides prototypes: 71., 

discrete and linear; 7l. mod m (equivalently: any cyclic group of order m), 
discrete and cyclic; IR, continuous and linear; S1 (the unit circle), continuous 
and cyclic. The real line IR is used as the mathematical model for time which 
flows from - oo to + oo. Everyday language structures time as an object 
which moves in the opposite direction: the coming weeks, the preceding 
years, time has passed ... . 

Shapes are classified roughly as triangles, squares, rectangles ... in 
the plane, as parallelepipeds, pyramids, cylinders, cones, spheres ... in space. 

Recently the dialect of fractals was added to the mathematical toolkit. 
I am not sure if it is Nature's preferred dialect, as Voss (1988) claims since 
coming generations may recognize other dialects which are still unknown 
to us. 

Bolinger and Sears ( 1981) characterize the linguistic aspects of 
mathematics as follows: 

Another specialized language is mathematics ... Its specialty is making pre
cise the way we deal with things in space-amorphous space, where we group 
things together by addition and multiplication, separate them by subtraction 
and division, and compare them for equality and inequality, and structured 
space, where we locate them in geometrical ways. Mathematics is less lan
guage-dependent than logic is; in fact, it is an alternate route to a special part 
of the real world. 

Centuries of research have enriched the meaning of mathematical 
concepts. The classification of crystallographic groups reveals facts about 
the possible arrangements of molecules; the existence and uniqueness 
theorems for functional equations and differential equations govern the 
outcome of models. More or less any application of mathematics is based 
on the meaningfulness of mathematical concepts. There has been some 
argument that not only mathematical language, but mathematics itself, has 
been strongly influenced by the structure of Indo-European languages. 
Especially with a side view on logic and foundations it was said "If Aristotle 
had spoken Chinese or Dakota, his logic and his categories would have been 
different." (Quoted in Bolinger & Sears, 1981, p. 139). Clearly there is some 
truth in such a statement; but, on the other hand, mathematics seems to be 
built on a bundle of human abilities which are universal. Every culture has 
contributed, to some extent, to the variety of mathematically-based arts and 
crafts. This has been documented by the recent emphasis on ethnomath
ematics and ethnogeometry. Furthermore linguistic research has hinted at 
the existence of language universals, which is not just an empirical fact but 
seems to point at deeper rooted structures of linguistic competence. 
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ACQUISITION OF MATHEMATICS AND LANGUAGE 

When I say, "Mathematics is a language", I am considering language 

as an instrument of communication. Mathematics is an extension of the 

communicative power of any natural language like English, French, Cree or 

Tamil. The acquisition of writing, the knowledge of literature, and learning 

a foreign language are important extensions too. 

The capacity for acquiring a language as a first language is in fact 

remarkable. It has often been observed that adults are not capable of learn

ing a language in the natural, spontaneous way that children do. If one keeps 

in mind the complexity of the grammars of natural languages this is really 

astonishing. It seems clear that mathematics is not learned in the way chil

dren acquire their mother tongue. But wait! This is not entirely true. The 

basic competencies, like counting, ordering, recognizing patterns and struc

tures, the use of recursive processes, are acquired in a similar way. We 

know from language acquisition that linguistic input is necessary for chil

dren to build up their own competence. Such an input is clearly also crucial 

for counting, ordering, designing, recognition of patterns, and so on. Writ

ing and reading are normally taught in a controlled way and are seen 

nowadays as an obvious extension of linguistic capacity. The interesting 

question about the extent to which "natural" mathematical learning is pos

sible is discussed in Robinson (1990). 

Foreign languages can be learned in two ways: in a "natural" way or 

by controlled instruction. In both cases, age is very often claimed to be a 

crucial factor: learning from simple exposure seems to be more successful 

for young children only. For the other age groups controlled instruction 

works much better. A critical account of the evidence supporting or ques

tioning an age factor in language acquisition is given in Singleton (1989). 

Obviously the situation for learning mathematics can be compared with learn

ing how to read and write, with learning a musical instrument, or with 

learning a foreign language. It is much easier to build up mathematical com

petence at an early age. 

Current linguistic theories claim that language acquisition can be 

described as setting parameters in a language module (Roeper, 1988). So, 

learning a second language essentially means resetting the parameters (Flynn, 
1988). I would hypothesize the existence of a mathematics module which 
interacts with the language module. Metaphorically speaking, it is a device 
which enables the growing learner to decode and encode mathematical 
messages. I do not know of any empirical investigations into a fact which I 

have observed in university studies: anyone who is interested to begin 
studying arts or humanities in his or her older years can successfully do so. 
The only senior citizens I have met who were students of mathematics were 
former engineers or mathematics teachers, which means they were already 
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exposed to mathematical subject matter in their youth. People who have 
successfully mastered a second language normally do quite well learning a 

third or even a fourth language. (In the framework of the linguistic theories 
mentioned before, resetting parameters is easier.) People who play a musical 

instrument very easily adapt to an additional instrument. I have the feeling 

that there are devices that are better installed at early ages: an interpreter 

for foreign languages, a driver for musical performance, and last, but not 
least, an interpreter for mathematics. (I do not claim that human thinking is 
closely related to the way a computer works, but the metalanguage I use 
uses ideas from computers as metaphors.) Clearly it should be possible for 

highly motivated students to master mathematics at older ages too. 

This hypothesis has an immediate consequence for mathematical 
education. Mathematics is a basic educational component, not only due to 

its importance for understanding and controlling our culture, but because a 

lack of mathematical education could be a serious hindrance to continuing 

tertiary education in natural sciences, or to entering a profession which needs 
mathematics. 
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MOVING FROM RHETORIC TO REALITY 

Edward A. Silver 
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The theme of "mathematics for all students" is not a new one. It has its 

roots in compulsory education movements in many countries over 100 years 
ago, and the writings of Dewey in the early part of the twentieth century 

were influential internationally in focusing attention on universal access to 
quality education (Ernest, 1991). Despite indications of historical interest 
in the teaching of mathematics to all students, and despite the fact that 
mathematics is often viewed favorably by a large portion of society in the 
recreational contexts of games and puzzles (de Guzman, 1990; Howson & 

Kahane, 1990), even a cursory review of the history of mathematics education 
reveals that most students have definitely not found mathematics to be a 
safe haven in their educational world. Throughout the world, mathematics 

is the school subject most likely to be taught and learned poorly. Although 
mathematics is taught for extensive periods of time in formal schooling, it 
is often taught as if the primary instructional goal were to teach students to 
dislike it and to fail rather than to grow in affection and continue to pursue 
it. 

Conventional instructional practices in mathematics have been so 
effective in "weeding out" those who are not exceptionally mathematically 
talented that too few students reach the end of the "pipeline" and enter 
mathematical or scientific careers in many countries. In the United States, 
this trend-which is dysfunctional for the growth of the academic discipline 
of mathematics-has led in recent years to a serious re-examination of 
mathematics education (National Research Council, 1989). As a result, there 
is currently a great deal of reform rhetoric built around the possibility that 
new forms of instruction can be invented to transform the current situation, 
in which we have "mathematics for the few", into a new one in which we 
have "mathematics for all." 
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In general, previous attempts to provide universal access to math
ematics have resulted in the creation of two forms of mathematics education: 
one for social and economic elites, emphasizing thinking, reasoning, and 
higher forms of mathematical content, and another for the rest of society, 
emphasizing basic computation (Resnick, 1987). More recent discussions 
of mathematics for all students (Boero, 1989; Freudenthal, 1991) have tended 
to stress the need for all students to experience the more thoughtful aspects 
of mathematics (e.g., reflective thinking, reasoning, problem solving), and 
it is this version that is at the heart of this paper. The major goal of this 
paper is to begin the process of connecting the rhetoric of "mathematics for 
all" to unifying themes, to samples of promising practice, and to theoretical 
formulations that may help advance our thinking as we continue school 
reform efforts. The paper begins with a fairly brief review of the current 
situation in the United States with respect to mathematical performance and 
participation. Next a vision is sketched of some forms of instructional 
practice that hold promise as purveyors of the new goals for mathematical 
thinking and reasoning for all students. Finally, the implications for teacher 
development are considered. The themes of communication, culture, and 
community are stressed throughout as an argument is made for the building 
of communities of collaborative, reflective practice both for students and 
for teachers. 

MATHEMATICAL THINKING AND REASONING 

FOR ALL STUDENTS: THE CURRENT RHETORIC 

AND REALITY IN THE UNITED STATES 

Mathematics education in the United States finds itself in a state of 
crisis related both to a low rate of student participation and to inadequate 
student performance in mathematics. With respect to participation, data 
available from recent national mathematics assessments (Dossey, Mullis, 
Lindquist, & Chambers, 1988; Mullis, Dossey, Owen, & Phillips, 1991) 
indicate that only nine of every one hundred graduating high school stu
dents completes four years of college preparatory mathematics. With respect 
to mathematics performance, results of national and international assess
ments (e.g., NAEP, SIMS, IAEP) provide sobering statistics regarding the 
impoverished state of American students' mathematical proficiency, espe
cially with respect to complex tasks and problem solving. 

For those the educational system now serves least well, especially 
females, the poor, and members of ethnic and language minority groups, 
the situation is considerably worse.1 For example, in urban schools serving 
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economically disadvantaged communities, four of five students take no 

mathematics beyond the minimum required for graduation. Further, NAEP 

data indicate that less than half the students in urban schools take any 
mathematics beyond one year of algebra, and one in five do not study algebra 
at all. As far as performance is concerned, white males and some white 

females from affluent families are the most likely to perform at high levels 
in mathematics, while the vast majority of students are achieving at levels 
substantially below international standards. Although mathematics achieve
ment differences between majority and minority students have decreased 
during the past two decades (Mullis, Owen, & Phillips, 1990), substantial 

gaps still remain. 

Many worry that the gaps in participation and achievement between 
majority and minority segments of society pose a serious threat to the 
economic and social well-being of the United States. This warning was 
sounded by the National Research Council in Everybody counts, a report to 

the nation on the state of mathematics education: 

Because mathematics holds the key to leadership in our information-based 
society, the widening gap between those who are mathematically literate and 
those who are not coincides, to a frightening degree, with racial and economic 
categories. We are at risk of becoming a divided nation in which knowledge 
of mathematics supports a productive, technologically powerful elite while a 
dependent, semiliterate majority, disproportionately Hispanic and Black, find 
economic and political power beyond reach. Unless corrected, innumeracy 
and illiteracy will drive America apart. (1989, p. 14) 

There is a compelling need to improve mathematics course enrollment 
and mathematics achievement for all American students, with special 
attention to students in poor communities, and at all grade levels, since the 
trajectory for high school participation and performance in mathematics is 
set well before ninth grade (Oakes, 1990). 

Although recently promulgated in the United States as a national 
education goal, increasing mathematics participation and improving the 
quality of performance of all American students is a formidable challenge. 

Adding to the challenge is the need to address the matters of participation 
and performance in a manner consistent with the spirit of the more general 
mathematics education reform efforts, which have been stimulated by NCTM's 
publication of the Curriculum and evaluation standards for school mathe
matics (1989) and the Professional standards for teaching mathematics 

(1991). These reform-oriented reports paint a portrait of school mathematics 
with textures and hues that emphasize thinking, reasoning, problem solving, 
and communication rather than memorization and repetition. The complex 
challenge before us is to move forward with an agenda simultaneously aimed 
at achieving equity and access to good mathematics instruction, and 
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reconceptualizing such instruction around mathematical thinking and 

reasoning rather than memory and imitation. 

Some have argued that what is needed is a new form of education 

emphasizing higher forms of literacy for all students (e.g., Brown, 1991; 

Resnick, 1987). Such an education would ensure that students would not 

only be able to read, write, and perform basic arithmetic procedures, but 

also would know when and why to apply those procedures, would be able to 

make sense out of complicated situations, and would be able to develop 

strategies for formulating and then solving complex problems. 

The complexity of providing high-literacy education for all students 

can be appreciated by considering some of the pernicious legacies of con

ventional school mathematics instruction. Consider, for example, reports 

by researchers (e.g., Resnick, 1988; Baranes, Perry, & Stigler, 1989; 

Schoenfeld, 1991) that many children come to see school mathematics as a 

domain which is disconnected from sense making and the world of every

day experience. One specific example of this dissociation comes from a 

series of studies that my colleagues and I have conducted over several years 

(Silver & Shapiro, 1993), in which we have examined children's difficul

ties in solving story problems involving division with remainders, such as 

the following problem that appeared on a national assessment and was suc

cessfully answered by only 24% of 13-year-old students: "An army bus holds 

36 soldiers. If 1,128 soldiers are being bused to their training site, how 

many buses are needed?" (National Assessment of Educational Progress, 

1983). 

In one recent investigation (Silver, Shapiro, & Deutsch, in press), we 

asked students to answer a problem similar to the one asked by NAEP, and 

to provide an explanation for or an interpretation of their answer. We found 

that students' interpretations of their answers dealt more with technical 

mathematical concerns than with sense making. Thus, for example, many 

students were content to propose answers that involved a fraction of a bus, 

even though they knew that buses do not have fractional parts, because the 
technical process of computation produced such a fractional answer. The 
observation that most children divorced sense making from mathematical 
activity was clear not only from the answers they gave but also from the 
explanations they did not give. Reports from their teachers, who discussed 

the problem with children after they handed in their papers, suggested that 
some children appeared to be capable of more sense making than was evi
dent in their written responses to questions, but that they did not see their 
"sensible" answers (e.g., arguments based on assuming that some travellers 
would be absent, or that people could be arranged to accommodate larger 
numbers on a bus, or that a mini-bus or van could be used as the "fractional 
part" of a full bus) as having any validity in the context of responding to a 
mathematical problem. 
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Student performance was clearly adversely affected by the dissociation 

of sense-making from school mathematics, which points to the need for 

more instructional attention to sense-making as a part of instruction, but the 

results of our investigation identified another issue that must also be 

addressed in order to improve student performance. Specifically, students 

had great difficulty in providing written explanations of their reasoning or 

justifications for their answers. Although some students may have been 

somewhat more capable of explaining their thinking and reasoning orally, 

the finding suggests the need for explanations, especially written ex

planations, to become a more prevalent feature of school mathematics 

instruction. Unless and until solution explanations and interpretations 

become a regular item on the menu of instructional activities in mathematics 

classrooms, it is unlikely that many students will spontaneously engage in 

such activity when it is appropriate to do so. And if students continue to 

dissociate thoughtfulness from the solution of problems, there can be little 

hope of substantially improving the poor mathematics performance of 

American students. 

Another challenge to providing a high-level mathematics education to 

all students relates to the forms of instructional practice that currently domi

nate school mathematics. As many studies have suggested (e.g., Stodolsky, 

1988), conventional mathematics instruction emphasizes students learning 

alone, producing stylized responses to narrowly prescribed questions for 
which there is a single answer, which is already known by the teacher and 

which can and will be validated only by teacher approval. At all educational 

levels, drill-to-kill or assembly-line instruction, consisting of repetitive drill 

and practice on basic computation and other routine procedures, has char

acterized school mathematics, especially in impoverished urban and rural 

schools. Although minority students have made achievement gains over the 

past two decades, the gains have generally come from improved perform

ance on those portions of tests related to factual knowledge and basic 
calculation skills. Despite the positive trend in reducing intergroup per

formance differences, data regarding instructional practices suggests that 

students assigned to the lower tracks of many high schools (predominantly 

ethnic minority and poor students) tend to receive less actual mathematics 

instruction, less homework, and more drill and practice of low-level factual 

knowledge and computational skill than students assigned to middle and 
higher tracks (Oakes, 1985). Although these instructional practices may be 
sufficient to support the narrowing of performance differences on tasks re
quiring only basic factual knowledge or on routine computational skills, 
they are unlikely to lead to improved performance on more complex tasks 
requiring mathematical reasoning and problem solving. 

An effective response to this current situation will require solid com
mitment to a revolutionary invention and implementation of new forms of 
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educational practice-classrooms as communities of collaborative, reflec
tive practice-in which students are challenged to think deeply about and to 
participate actively in engaging the mathematics they are learning. In such 
communities, students not only listen but also speak mathematics them
selves-discussing observations, explanations, verifications, reasons, and 
generalizations. In such classrooms, students have opportunities to see, hear, 
debate, and evaluate mathematical explanations and justifications. The class
room becomes a place in which the emphasis is less on memorizing 
procedures and producing answers and more on analyzing, reasoning and 
becoming convinced. Surely, some exceptional examples of such classrooms 

exist today in the United States and in many other countries, but our chal
lenge is to make these kinds of classrooms the norm rather than the 

exception. 2 

CLASSROOMS AS COMMUNITIES OF COLLABORATIVE, 

REFLECTIVE MATHEMATICAL PRACTICE 

In the book, Thinking through mathematics (1990), Jeremy Kilpatrick, 
Beth Schlesinger, and I sketched a picture of mathematical classrooms as 
places rich in communication of and about mathematical ideas, places in 
which justification and verification were emphasized, and places in which 
teachers and students engaged in authentic forms of mathematical practice. 
In short, we attempted to portray a vision of mathematics classrooms as 
communities in which students were engaged in collaborative, mathematical 
practice-sometimes working collaboratively with each other in overt ways, 
and always working collaboratively with peers and with the teacher in a 

sense of shared community and shared norms for the practice of mathematical 
thinking and reasoning. 

Agreeing with Bishop (1988), we took classrooms to be arenas in which 
students develop their own interpretation of mathematical culture and values, 
and we argued that if school mathematics is to become more authentic in its 

2 It is not assumed that the entire solution is contained in the educational propos
als advanced in this paper. For example, there are closely related issues of 
knowledge ownership and cultural identification that are not addressed herein. 
Moreover, there are important, interrelated social and economic issues that must 
also be addressed in order to attain a truly equitable solution. For example, 
urban and poor schools are more likely to serve populations whose needs are not 
being met in the areas of health care, housing, transportation, and economic and 
personal security. As a consequence, poor urban students are less likely than 
their more affluent suburban counterparts to attend school regularly, to have 
available energy and attentiveness to focus squarely on an academic agenda, 
and to be sufficiently free of family and other responsibilities to study well at 
home. Although it is not possible to deal with these issues in this paper, their 
absence should not be construed as being due to ignorance of their importance. 
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relationship to the culture of mathematical practice, then mathematics 

education will need to pay more attention to the social nature of mathematical 

knowing, and that classrooms will need to be viewed as communities of 
mathematical thinkers. Rather than giving a myopic, naively romantic 

portrait of classrooms as places inhabited by little mathematicians, however, 

we tried to depict these classrooms simply as places where mathematics 
was connected in fundamental ways to important cognitive activities that 

have validity from a disciplinary perspective. As the title of the book implies, 

the central message was that mathematics classrooms should become places 

in which students regularly engaged in thinking. Since more than half of 

American students assert the belief that learning mathematics is mostly 

memorization (Mullis, Dossey, Owen, & Phillips, 1991), a shift in pedagog

ical emphasis more fundamentally toward thinking rather than memorizing 
would be quite revolutionary. 

The view of mathematical knowing as a practice (not in the sense of 
drill-and-practice but rather in the sense of professional practice) is supported 

by recent trends in the philosophy of mathematics. In particular, Lakatos 
(1976) has portrayed a social process of debate to illustrate the nuances of 
mathematical discourse and culture, and Kitcher (1984) has developed an 

epistemology of mathematics based on the importance of shared meanings 

and not simply shared results. This work suggests the view, that to understand 
what mathematics is, one needs to understand the activities or practices of 
persons who are makers or users of mathematics. This deviates from the 
more conventional view that understanding mathematics is equivalent to 
understanding the structure of concepts and principles in the domain. 

For many purposes, it has been and will continue to be valuable to 

think of mathematical knowing in terms of the acquisition of cognitive struc

tures and procedures, but this view provides an incomplete account of 
mathematical experience, and it fails to provide an adequate theoretical base 

for new forms of pedagogy. The complementary view, emphasizing math
ematical practice, clearly links to current calls for changes in pedagogy, 
which emphasize reasoning, problem solving, and communication, since it 
suggests that one should focus on the activities in which students engage in 
mathematics classrooms as well as the relationship between those activities 
and the characteristic practices within communities that make or use math
ematics. Combining these views, the goal of school mathematics would be 
the development of a richly textured knowledge base, in which knowing is 
connected to important intellectual tasks and activities, rather than the com
munication of decontextualized and abstract skills and concepts. 

Viewing mathematics as a practice as well as a knowledge domain 
challenges us to examine and accept social and cultural aspects of mathemat
ics and mathematics education that have been largely ignored in the United 
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States.3 The popular image of a mathematician is someone isolated in a 

paper-strewn study, but sociocultural perspectives suggest that mathematical 
knowledge is as much socially constructed as it is individually constructed, 
and that the practice of mathematics is fundamentally a social practice. In 

brief, the argument is that mathematics is created using socially appropriated 

tools and conventions and that ideas attain validity only when they are 
accepted within the mathematical community (Tymoczko, 1986). The 
controversy and disagreement over the acceptability of the computer-based 

solution for the famous, and long-unsolved "Four Color Problem" (Appel & 

Haken, 1977) provides a contemporary illustration of this process (Peterson, 

1988). The history of mathematics teaches us that communication and social 
interaction have played fundamental roles in the development of mathemat

ical ideas. 

Although conventional mathematical pedagogy has generally ignored 
the role of communication in learning mathematics, except in the sense of 

providing technical vocabulary and symbolism as components of a language 

of mathematics, there is an increasing awareness of the centrality of 

communication and discourse in mathematics education (Barnes, 1976; The 
Mathematical Association (UK), 1987; NCTM, 1991). As was noted above, 
students need opportunities not simply to give answers, but also to explain 
their thinking-to discuss what they have observed, why procedures appear 
to work, or why they think their solutions are correct. Within mathematical 

communities, communication in the form of verification and justification is 
natural. When students are challenged to think and reason about mathematics 
and to communicate the results of their thinking to others orally or in writing, 

they are faced with the need to state their ideas clearly and convincingly. 

Thus, communication lies at the heart of activities that have mutual benefits 
for the individual student and for the community to which the student 

belongs. Moreover, the act of communicating one's ideas within the cultural 
norms of mathematical practice provides both need and value for mathe

matical reasoning, as classrooms are transformed into arenas in which 

convincing and justifying become for students a central focus of attention 
rather than a peripheral matter. In such classrooms one would expect to see 
communication fostered through the use of open-ended problems, which 
lead to discussions of multiple interpretations and multiple solution methods; 
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the use of journals, which allow students to communicate their reflections 

on their mathematical activity; and work in pairs or small groups, which 

provide contexts that promote communication and collaboration. 

Other authors (e.g., Lampert, 1987; Greeno, 1988; Lave, Smith, & 

Butler, 1988; Cobb, Wood, & Yackel, 1993) have also provided interesting 

visions of what a more social view of mathematics classrooms might look 

like. One general, unifying feature of these accounts is the view of mathe
matics classrooms as places where students, under the careful tutelage of 

their mathematics teacher, engage in doing mathematics rather than having 

it done to them. As Schoenfeld (1991) has argued, school mathematics has 

suffered from its inability to provide students with experience in and an 

appetite for collaborative mathematical thinking. 

There are important consequences for teachers in the emerging view 

of mathematics classrooms as environments for collaborative mathematical 
thinking. Not only will teachers need to be skillful in orchestrating the 

dynamics of such classrooms but they will also need to be deeply knowl

edgeable about the mathematics they are helping children learn and capable 

of modeling reasonably good mathematical thinking and reasoning. These 

increased requirements for teachers represent a major challenge for reform 

efforts in mathematics education. 

In order to realize a vision of mathematics classrooms as communities 

of collaborative, reflective practice for students, teachers will need to become 
more confident and competent in their own ways of knowing and doing 

mathematics. To orchestrate a group engaged in mathematical discourse, or 
to help individuals or groups formulate and revise learning goals or problem

solving approaches, a teacher must possess broad, deep, flexible knowledge 
of content and pedagogical alternatives. Without such knowledge of content 
and pedagogy, teachers will be unable to quickly reformulate goals and relate 

students' conceptions to the characteristic intellectual activities, knowledge 

structures, and cultural norms shared within the larger mathematical commu

nity. Unfortunately, teachers in the elementary and middle grades, though 

often quite flexible and child-centered in their pedagogy, usually possess 

quite limited knowledge of mathematics; and secondary school mathematics 

teachers, although generally more knowledgeable about mathematics, often 

possess only a limited array of conventional pedagogical practices and tend 
to resist change. 

Among the many distinctive features of professional practice identified 
in the Professional standards for teaching mathematics (NCTM, 1991, 
p. 168), are "experimenting thoughtfully with alternative approaches and 
strategies in the classroom"; "reflecting on learning and teaching individually 
and with colleagues"; and "participating actively in the professional 
community of mathematics educators." The current situation is typically 
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quite different-teachers working in isolation and with little or no motivation 
to change. For example, a recent survey of mathematics teachers found that 
only about half of the teachers at all grade levels saw their colleagues as a 

source of information on new teaching ideas and even fewer saw professional 
meetings as a source of such ideas (NCTM, 1992). 

What mechanisms might be needed to assist teachers as they assume 

more complex roles and responsibilities? As was the case when we ana

lyzed the situation for students, the answer is likely to be found in a form of 

education that is different from what currently exists. In the conventional 

practice of teacher education and teacher development, the three major re

sources and activity structures are (a) preservice teacher preparation in 

content (which is typically quite meager for elementary and middle school 

teachers and which is often disconnected and decontextualized for second

ary school teachers) and pedagogy (which is usually quite limited for teachers 

at all levels); (b) inservice staff development sessions, which are typically 

single-session encounters with little or no support for implementation; and 

(c) university-based, graduate degree programs, which often have an aca

demic rather than an applied focus, or which are quite general. These 

resources provide some support for teachers, but they are unlikely to be 

sufficient in these times of shifting pedagogical emphases and increasing 
intellectual demands in teaching. Helping teachers move beyond a pedago

gy of isolation and recitation is likely to require new forms of assistance. 

BUILDING COMMUNITIES OF COLLABORATIVE, 

REFLECTIVE PRACTICE FOR TEACHERS 

What is needed is a new way to think about teacher education and 

teacher development as the building of communities of collaborative, re

flective practice. In this view, teachers would come to see themselves as 

being joined with colleagues within their school in an effort to provide quality 

mathematical experiences for their students. Teachers would plan together, 

discuss each other's teaching practice, develop consensus on ways to eval

uate their students' thinking, and support each other through difficult points 
in the change process. A simple version was provided in Thinking through 

mathematics (Silver, Kilpatrick, & Schlesinger, 1990) in the story of Mrs. 
Holmes, whose entry into new forms of pedagogical practice was closely 
associated with the formation of community, first with a single colleague, 
Mr. Jarvis, and then with a larger group of teachers at her school. Within 
this community, Mrs. Holmes was able to discuss and reflect on her peda
gogical practices in ways that both enhanced and supported her efforts to 
improve her teaching. 

Moving beyond the school, teachers would also see themselves as 
members of collaborative, reflective communities involving teachers outside 
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their building-such as other teachers within the same school district or 

even at the state or national level-and they would see themselves as 

members of a larger, more extended community of educators trying to create 

new forms of practice in mathematics education. This latter community 

would include university teacher educators or researchers, curriculum 

supervisors, and others who might not have classroom teaching responsi

bilities but who could be available as intellectual partners and collaborators. 

In these larger communities, teachers would actively reflect on issues and 

contribute their individual and collective experiences. 

The kinds of communities to which I refer do not simply involve mem

bership in professional organizations, although such organizations can 

provide a support base for the formation of real communities of practice, 

especially since their communication mechanisms, such as meetings, jour

nals and other publications, and newsletters, establish opportunities for 

discourse among members. Beyond group membership, however, I am sug

gesting a view of collegiality that is both reflective and supportive, in which 

the activity of central concern is the social construction of new forms of 

pedagogical knowledge and practice. In these communities, teachers would 

be challenged to think deeply about and to participate actively in engaging 

the mathematics they are teaching. In such communities teachers would not 

only teach within their individual classrooms but also participate in larger 

forums of discussion about pedagogical practice and student performance. 

As with student communities of practice, the discourse in these teacher com

munities would be filled with observations, explanations, verifications, 

reasons, and generalizations. Moreover, in such communities, teachers would 

have opportunities to see, hear, debate, and evaluate mathematical explana

tions and justifications as well as mathematical pedagogical practice. 

Although it is not possible to give many details in this paper, it is 

important to stress that this vision of reflective communities of practice for 

teachers is not some romantic fantasy with little connection to reality. In 
fact, there is emerging both a theoretical foundation and an empirical 

evidence base to support our thinking about the construction of communities 

of collaborative, reflective practice for mathematics teachers. As far as 

empirical evidence is concerned, the experiences of teachers working within 

school districts associated with the Urban Mathematics Collaboratives 
(Webb, Pittelman, Romberg, Pitman, Middleton, Fadell, & Sapienza, 1990) 

illustrates, the power of teachers joining as collaborators to induce some 
forms of institutional change. In the QUASAR project (Silver, 1991), many 
examples can be found of teachers and resource partners (usually university 
teacher educators) creating communities of reflective collaboration as they 
develop new forms of instructional practice in middle schools serving 
economically disadvantaged neighborhoods. At QUASAR schools, teachers 
and resource partners have used common meeting time to plan instruction, 
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to visit each other's classes or to watch videotapes of each other's teaching, 
to reflect on their individual and collective pedagogical practices, and to 

discuss the work of their students. Moreover, they have made time to explore 

and examine foundational mathematical concepts and principles, thereby 

enhancing individually and collectively their mathematical content knowl
edge and identifying areas in which further assistance is needed. As a result 

of these interactions, they have begun to challenge conventional, externally 

mandated testing and to build alternative assessment systems; to design ways 

of integrating and supporting the entry of new teachers into the culture of 
the program; and they have begun to shape the use of staff development 

time to suit the needs of their own mathematical development and those of 

their instructional program (Smith, Stein, & Seeley, 1992). In general, 

teachers and resource partners in these settings have come to see mathematics 

instruction as a collaborative practice, which is improved through commu

nication and discourse with colleagues, and by capitalizing on the distributed 

network of expertise within the community, in which the resource partners 
are seen as playing a vital role rather than being viewed as "outsiders" in 

the school community. 

As far as theory is concerned, theories of distributed cognition 

(Salomon, 1993) appear to hold promise for describing the ways in which 
expertise and knowledge are held and accessed in these communities. 

Individual students in the classrooms and teachers in the schools come to be 
seen as sources of particular forms of expertise that they share within the 

community. 

New theories about the nature of pedagogy, such as the notion of 

teaching as "assisted performance" provided by Tharp and Gallimore (1988) 
may help us to think about the activities needed to build communities of 
collaborative, reflective practice both for students and for teachers. Accord

ing to Tharp and Gallimore, who have extended and applied Vygotskian 
theory to innovative educational practice, assisted performance refers to 

what a person can do with the help of a supportive environment. The gap 

between the person's individual capacity and the capacity to perform with 
assistance is taken to be their version of the Zone of Proximal Development 
(ZPD), originally defined by Vygotsky (1978) as "the distance between the 
actual developmental level as determined by individual problem solving 
and the level of potential development as determined through problem 
solving under adult guidance or in collaboration with more capable peers" 
(p. 86). The first of several stages of passage through the ZPD, according to 
Tharp and Gallimore, involves performance assisted by capable others. This 
form of assisted performance, which is sometimes called scaffolding, is 
precisely the kind of assistance that a skilled teacher may provide to indi
viduals or groups of students as they struggle to understand complex 
mathematical ideas, and it is also descriptive of the forms of support provided 
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by members of a community of teachers who model lessons for each other, 

explain mathematical ideas to one another, or provide other forms of advice 

and support. 

As far as membership in the larger communities of educational prac

tice-those that spread beyond the boundaries of school and local 

community-and in thinking of how newcomers enter the communities of 

practice established at a particular school, Lave and Wenger's (1991) notion 
of "legitimate peripheral participation" seems helpful. They use the term to 

refer to their observation, drawn from ethnographic work on apprenticeship 

and other work on the sociocultural basis of learning, that learners participate 

in communities of practice and that mastery of know ledge and skill requires 

that newcomers move toward fuller participation in the practices of that 
community. Applied to the issues discussed in this paper, we can think of 

individual teachers, like those in the QUASAR project, as moving themselves 
and their students toward fuller participation in the community of math
ematics education reform and in the culture of mathematical practice. In 

fact, Forman (1992) has analyzed aspects of classroom activity in one 
QUASAR teacher's classroom and used the notion of legitimate peripheral 

participation to describe that teacher's functioning within a larger community 
of mathematics education reform. Furthermore, she suggested the applica

bility of this concept in describing how students in this teacher's classroom 

gradually became integrated into the cultural norms and practices (shared 

with the larger community of mathematics education reform) that the teacher 

was attempting to establish. Thus, the theoretical notions of distributed cog
nition, of teaching as assisted performance and of legitimate peripheral 
participation appear to be applicable at all levels of the process of building 
communities of reflective practice in classrooms, in schools, and in more 

extended communities. 

It should be emphasized that attaining the goal of mathematical think

ing and reasoning for all students promises to be difficult work. It would be 
naive to assume that schools can be easily transformed into learning com

munities for students and for teachers. Yet, this paper has not only argued 

the urgent need to do so but also hinted at some forms in which the goal 

might be accomplished. What is abundantly clear is that attainment of this 
goal requires that the themes of communication, culture, and community 
must become more common topics of both conversation and action within 
the community of collaborative, reflective practice that we call mathemat
ics education. 
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HUMANISTIC AND UTILITARIAN 

ASPECTS OF MATHEMATICS 

Thomas Tymoczko 

Smith College, United States of America 

Philosophers of mathematics and mathematics educators did not 
always have much to say to one another. Philosophers dealt with the more 
abstract aspects of mathematics, attempting to provide foundations for 
mathematics and to place it in a general context of human activity. Educators 
dealt with the more concrete aspects of mathematics, attempting to convey 
the details and to instill the techniques in students who might range from 
elementary school to college. In recent times the philosopher (and educator) 
Ludwig Wittgenstein decried this separation. He emphasized the interplay 
between philosophy analysis and pedagogy.1 The questions, "But how do 
we teach this concept? How do we convey it to a pupil?" mark a constant 
theme of his philosophy. 

After Wittgenstein, there were many others who developed the 
previously ignored connection between philosophy and pedagogy in math
ematics. 2 In this essay, I join the attempt to further dialogue between 
philosophers and educators by suggesting that we can learn from each other. 
In particular, I suggest we can correct a reciprocal misreading of math
ematics. My twin claims are that philosophers cause themselves problems 
by focusing their attention on pure mathematics while ignoring applied 
mathematics, and that educators cause themselves problems by focusing 
their attention on applied mathematics while ignoring pure mathematics. 

2 

See Wittgenstein (1953, 1967). For an account of Wittgenstein's mixed career 
as an educator, see Monk. 

From the mathematical side, George Polya deserves special mention as an early 
pioneer. For references to his and other more recent work, see the anthology 
Tymoczko (1985). 
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My essay is theoretical. Sadly, I must ignore the social and political 
influences on educators that leave them so little room for educated experi
mentation in the classroom.3 

This essay is divided into three main parts. The first addresses the 
current state of philosophy of mathematics. I suggest that philosophers have 
created a pseudo-problem for themselves by refusing to recognize the real 
world basis for mathematics. Traditional problems of mathematical existence 
can be answered by recognizing mathematics as an integral part of common 
sense and science. 

The second part of the essay asks whether the preceding pragmatic 
account can answer all philosophical questions about mathematics. It answers 
that an essential ingredient-"human interest"-has been left out of account. 

Finally, the third part of the essay tries to show how the ingredient of 
human interest must influence mathematical pedagogy. It is not always the 
utility of mathematics that should matter in the classroom, it is often the 
mathematical beauty that is at stake. 

A year ago, when predicting the contents of this essay, I said that a 
crucial topic would be the role of the community in mathematics. Only by 
regarding mathematics as the practice of a community of mathematicians, 
and not as the product of an isolated mathematical geniuses, can we arrive 
at an educationally sound philosophy of mathematics, or so I believe. The 
community still figures in the present essay, but in a somewhat disguised 
form. What I call "humanistic mathematics" or "the discipline of pure math
ematics" is essentially tied to a community of practitioners. Ultimately, 
humanistic mathematics is no more and no less than the general practices of 
a mathematical community. 

UTILITARIAN ASPECTS OF MATHEMATICS 

By and large Western philosophy has regarded pure mathematics as 
the essence of mathematics. That is, pure mathematics is regarded as a 
discipline that could exist in and of itself; pure mathematics is thought to be 
logically, metaphysically and epistemologically prior to any applications 
of it.4 Moreover, it is pure mathematics that is assumed to manifest the 
philosophically interesting traits of mathematics-knowledge of it is a priori, 
certain, absolute, eternal. 

4 
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I believe that this focus on pure mathematics has distorted philo

sophical perspectives on mathematics. That there is a distortion is 

immediately felt by both mathematicians and mathematical educators. Typ

ical philosophical questions about mathematics seem very remote from the 

business of creating new mathematics and of teaching old mathematics. 

Nowhere is this distance between those who do and teach mathematics and 

those who philosphize about it more pronounced than it is over the question 

of mathematical existence. Philosophers seem obsessed with the question 

of whether we should assert or deny that mathematical objects exist. A large 

portion of current research papers in the philosophy of mathematics is de

voted to this question. 

Ordinarily the existence of a given subject matter is of critical 

importance. It matters that there is no phlogiston, no ether and no ghosts. 

We should discourage any student who wished to study how ghosts moved 

by pointing out that there are no ghosts and never were any ghosts. 

Alternatively, we should encourage anyone who wanted to study inherited 

traits by observing the demonstrated existence of an inherited trait carrier, 

namely DNA. 

But it is obvious that the debate about mathematical existence shares 

few features with serious debates about existence. The discipline of mathe

matics is well established and will continue to flourish-or not-quite 

independently of the final philosophical word on mathematical existence. 

The philosophers' mistake, or so I claim, is their focus on pure 

mathematics, in isolation from practical applications. This focus mystifies 

mathematics. Indeed, I'm not content to simply reverse the polarity and to 

elevate applied mathematics above pure mathematics because the very notion 

of applied mathematics, the application of some mathematical theory to some 

independent non-mathematical area, should be challenged. At the very least, 

what we call applied mathematics is better called "utilitarian mathematics" 

or even "extracted mathematics", the result of extracting a mathematical 

component from an already existing fundamental human activity of which 

it is an essential ingredient. Among fundamental human activities I would 

count business, trade, farming, warfare, navigation and science, to name a 

few. 

My view is that these activities or institutions are possible only be
cause they have an essential mathematical component from the beginning. 
In just the same way these activities are possible only because they have a 
linguistic component. If human beings could not speak then they could not 
conduct business or wars, and if they could not "do mathematics", then they 
could not conduct business or wars. Look more closely at the example of 
warfare. To be sure, animals and insects can kill and fight each other, occa
sionally even in groups. So I do not deny that inarticulate, unmathematical 

329 



ICME-7 SELECTED LECTURES I CHOIX DE CONFERENCES D'ICME-7 

human groups could throw stones at one another. But without some mathe
matics, they could come no nearer to warfare than they could without speech. 
Warfare requires planning, for example, and planning would be impossible 
without speech and without mathematics. 

Let me make the same point with respect to economic activity or 
business. Business does not just apply various already existing mathematical 
theories to facilitate an activity that is, in principle, independent from such 

mathematical applications (although it can do that). Business could not exist 
in anything like its historical form without some mathematics. Certainly we 
cannot imagine a modern economy struggling along without mathematics 

then suddenly becoming more efficient because of the introduction of 
mathematics! No mathematics, no economy: even primitive business needs 

some form of accounting. 

So mathematics is not just applied to human activities: sometimes it 

makes those activities possible in the first place, just as language does. 
Indeed, we do not speak of applied language, as if there could be some 
original pure language independent of any use to which humans put it. It is 
for this reason that I speak of extracting mathematics from forms of life that 
we humans engage in; the practice is not there before the mathematics. After 

the fact, by an effort of abstraction, we extract "the mathematical component" 
from the human practice. But we are misled if we think we can imagine that 
practice without its mathematical component. There is no version of the 
institution without mathematics. That's why I hesitate to call this mathe
matics "applied mathematics", a term which suggests we got the mathematics 
from somewhere else and applied it to ongoing human concerns. No, what I 
call utilitarian mathematics is part of our heritage as human beings, much 

as speech is. 

If we turn to science we find the same phenomenon writ large. The 
truism that mathematics is the language of science applies to classical physics 
and the calculus and even more to quantum physics and its various math

ematical theories. (Can we even describe the subject matter of quantum 
physics without mathematics?) The view I challenge is the view that there 
are, in principle, two independent areas. According to this view, physics 
makes a major advance when physicists realize that they can apply math
ematics to their subject matter. In my view, it makes no sense to try to 
imagine classical physics without mathematics, specifically the calculus. 
Indeed, I claim, we actually have to work to extract something specifically 
mathematical from classical physics. Both Newton and Kant regarded 
fundamental mathematical concepts as simultaneously fundamental physical 
concepts: mathematical quantities were generated by temporal processes or 
continual motions. Time, space and motion were the common province of 
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mathematics and physics. Kant subsumed the calculus under his general 
discussion of physics as the a priori study of motion.5 

So far, then, I have advanced two variations on a theme. The theme is 
that mathematics springs from human institutions, ancient ones like trade 
and warfare, and more modern ones like science. Utilitarian mathematics is 
a constituent of these institutions and practices. Pure mathematics, of which 
we shall speak more shortly, is parasitic on the utilitarian aspects. Pure 
mathematics is not merely historically dependent on utilitarian mathemat
ics, it is logically dependent. Moreover, this shift in perspectives has 
philosophical consequences. The hitherto vexing question of mathematical 
existence now can get the same kinds of answer that the less vexing ques
tion of scientific existence and the hardly vexing question of common sense 
existence get. Things like numbers, atoms and dogs exist because the very 
best theories describing and predicting our experience in the world assert 
the existence of (or quantify over) numbers, atoms and dogs. I've defended 
this answer in considerable detail elsewhere (Tymoczko, 1991) but here I 
should acknowledge that the basic idea is due to Willard Quine. It was his 
idea that we ought to admit that x's exist whenever our best theory of the 
world and of our experience in it quantifies over x's. (Intuitively, Quine's is 
a "no-double-talk" theory-if one insists on saying that there are x's, then 
one ought to admit that x's exist. See Quine (1961) for his account of onto
logical commitment.) Thus Quine would say that we are as deeply committed 
to functions and derivatives as we are to velocities and accelations, to num
bers as we are to regiments and francs. 

Thus from our new radical point of view, we can answer the oldest 
problem of the philosophy of mathematics: Do mathematical objects exist? 
Our answer is a simple yes, mathematical objects exist in the same way that 
scientific objects (atoms) do and ordinary objects (dogs and dollars) do. We 
can answer thusly because we regard mathematics as an essential part of 
human activities which we cannot give up. Note that this answer is not 
available to those who begin by considering a pure mathematics that is 
essentially independent of human activities in the real world. 

See Friedman for a detailed discussion. To be sure Newton did not mention the 
calculus in his Principia (although he may have used calculus to discover his 
principles). But that hardly effects the point that mathematics and physics are 
essentially intertwined. At worst, the mathematical concept of functions sup
plemented by the classical method of exhaustion would be the basis of physics. 
More seriously, physics as we teach it today, is impossible without the special 
features of calculus (try to imagine physics without differential equations!). 
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IS UTILITARIAN MATHEMATICS ENOUGH? 

Have we found, then, a happy home for mathematics as a part of 

science, perhaps as experimentation lives as a part of science? Not for 

mathematics as we know it; so far we have left pure mathematics totally out 

of account. Just how this pure mathematics arises out of its utilitarian 
underpinnings is the question to which we now turn (note the inversion
philosophy traditionally asked how pure mathematics could be applied!). 

Let us begin by trying to imagine what a culture would be like with 

just utilitarian mathematics. In a sense, this is not difficult, possibly the 

ancient Babylonian and Egyptian cultures had only utilitarian mathematics. 

I conjecture that even a very advanced modern culture could exist with only 

utilitarian mathematics. But it would differ from ours not merely by lacking 

pure mathematics, but perhaps by lacking the very idea of mathematics. My 

reason is that although we can imagine a culture with lots of mathematical 
techniques and sophistication, but there seems no reason to imagine these 

as forming a unity, we do not have to imagine these techniques as forming 
a unity for the culture. Instead, there might be just analogous parts of various 
human endeavors-science, business, industry, etc. In analogous fashion, 
the experimental aspect of science, the totality of experiments including 
trial and error, seems to lack any intrinsic unity. 

There is an interesting quote by C.H. Edwards, Jr., in his account of 

the history of the calculus that bears on this: 

It is arguable that, had all succeeding generations [after the Greeks] also refused 
to use real numbers and limits until they fully understood them, the calculus 
might never have been developed, and mathematics might now be a dead and 
forgotten science. (Edwards, 1979, p. 79) 

What a provocative idea-"mathematics might now be a dead and 
forgotten science"! Surely what Edwards means is not that, without calculus, 

people would forget how to count, measure plots of land, etc. What would 
die and be forgotten is a separate discipline of mathematics, a subject that is 

internally coherent and worth pursuing for its own sake. What would die is 
what is traditionally called pure mathematics, and what I call humanistic 
mathematics, though Edwards himself calls it a science. 

Utilitarian mathematics, or applied mathematics, is unified by its 
connections to pure mathematics. In pure mathematics, the distinctively 
mathematical concepts, objects and techniques are recognized-recognized 
by their very inclusion in pure mathematics. (In short, what belongs to 
mathematics is what mathematicians say belongs to mathematics! In ways 
such as this the mathematical community makes its presence known.) 

But what is pure mathematics? This is the question that challenged 
traditional philosophy. We, on the other hand, ask it in a different context. 
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We ask it after we have made a place for utilitarian mathematics; we ask it 
after we have established the existence of mathematical objects. Indeed, 
perhaps we have already answered the question: pure mathematics is just 
the dispassionate study of mathematical objects, pure mathematics is just 
the science of mathematical objects as physics is the science of mass and 
energy, space and time. However, there is a decisive objection to this answer. 
The problem is that there are too many mathematical objects and they are 
too varied. 

For the sake of argument, let us restrict ourselves to the domain of 
natural numbers and their accessories, such as functions on the natural 
numbers and sets of natural numbers. It is rather tempting to think that 
number theory is just the study of numbers and their properties and functions. 
The trouble is that from an objective point of view, there are far too many 
properties and functions. Besides the primes, for example, there are such 
properties as the odd primes, the primes greater than 3, the primes greater 
than 5, etc., not to mention the primes but including 4, the primes but also 4 

and 6, etc. In other words, there are a whole lot of number theoretical concepts 
out there for mathematicians to study-why focus on some concepts instead 
of others? A similar question could be raised with regard to arithmetic 
functions like successor, plus and times. The problem is that the objective 
mathematical universe (as well as the formalists' or the constructivists' 
universes) is filled with many variants of what we take to be the basic 
concepts of mathematics and many other plain monstrosities. My worry is 
that the study of variant concepts and functions is not mathematics, but it is 
part of the study of mathematical objects. Studying arbitrary mathematical 
objects permits too much (see Tymoczko, 1986, for more on this argument). 

Exactly the same point can be made with respect to formal theories 
of mathematics. While it might be tempting to define pure arithmetic as the 
set of theorems of formal Peano arithmetic, my objection is that if this def
inition were correct, then random computations would count as doing 
arithmetic, as would the proof of arbitrary formulas. But we-mathemati
cians, educators, and philosophers-would not count such things as doing 
mathematics. If someone insisted on filling notebooks with pointless calcu
lations we would call him a crank if not just crazy. The point is that proving 
theorems is not mathematics-at best, proving relevant theorems is. Our 
earlier point was that studying mathematical objects is not mathematics, at 
best, studying interesting objects is. 

So we must abandon the trivial answer to the question: What is pure 
mathematics? It's not just the study of arbitrary mathematical objects or the 
production of arbitrary proofs and computations. I suggest we can understand 
what pure mathematics is only if we abandon the claim that mathematics is 
simply the study of the mathematical universe and embrace the thesis that 
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mathematics is interest relative-that is, what counts in mathematics is only 
what counts to mathematicians (eg., humans) at a given time in mathematical 
history. Mathematics is not just a universe of mathematical objects or 
formalisms or constructions; at the very least it includes a point of view on 
that universe. This is the essence of humanistic mathematics-mathematics 
requires a perspective and a human perspective is the only perspective we 
can get!6 

Several years ago, Alvin White of Harvey Mudd College in the United 
States began a campaign for what he called "humanistic mathematics".7 
While I admired the pedagogical reforms that issued from White's 
campaign-he wanted mathematics taught in a humane way-I failed to 
appreciate the significance of humanistic mathematics. To be sure, it was 
interesting to consider teaching mathematics as if it were one of the 
humanities, but what made mathematics one of the humanities? Certainly 
not the mere fact that humans did it; humans do science too. In writing this 
essay, I have rediscovered White's point. Pure mathematics is ultimately 
humanistic mathematics, one of the humanities, because it is an intellectual 
discipline with a human perspective and a history that matters. There is no 
answer to the question: What is important in mathematics, once and for all? 
We can only ask what is important in mathematics to human beings, with 
given abilities and limitations at a given point in their mathematical 
development. The discipline of pure mathematics is much more like 
geography than it is like physics. That is why I want to rename it "humanistic 
mathematics". 

If, for the sake of argument, you grant my conclusions so far, then we 
can turn to the topic of how mathematics might be taught in a way that 
reveals its humanistic side. 

HUMANISTIC MATHEMATICS 

Earlier, I accused philosophers and mathematicians of making recip
rocal mistakes. Philosophers have ignored utilitarian mathematics and 
thereby created for themselves the problem of mathematical existence. But 
educators, I claim, are prone to make the opposite mistake. In teaching 

6 A case in point might be the rise of complexity theory and the resurgence of 
interest in discrete mathematics. My intuition is that in recursion theory, all 
finite sets are trivially recursive and so uninteresting. But the development of 
computer technology has enabled us to raise interesting questions about distinc
tions in the finite realm, eg., the P = NP problem. 

7 Further information on White's project is available in the Newsletter on Hu
manistic Mathematics, published by White at Harvey Mudd College, Claremont, 
CA. 
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mathematics, they insist on stressing its utility, even when it has none. As a 

result, they often hide from their students the excitement and intrinsic inter

est of mathematics: they hide it behind a facade of supposed utility. It's 

rather like trying to awaken someone to the joys of mountain climbing by 

trying to convince her that someday she might need to climb a mountain (as 

if cars and buses would not be able to satify any practical need). 

Let me try to explain my view of humanistic mathematics in two 

ways. The first is by means of a concrete example concerning the teaching 

of quadratic equations in secondary schools in the United States. The second 

is with a more global metaphor for humanistic mathematics. 

In my experience there is a "standard" way of teaching quadratic 

equations. It is organized according to utilitarian mathematics. The motiva

tion is supplied, supposedly, by practical needs expressed in word problems. 

For example, suppose you have a rectangular plot of land and you want to 

build a sidewalk one metre wide around it, etc., etc. The student is led through 

hundreds of execises involving various techniques of factorization. Finally 

the quadratic formula is derived (thus rendering otiose the effort that the 

student put into earlier attempts to factor or to complete the square). This 

project easily consumes half of a school year. 

Now, if the educators' aim is to teach applied or utilitarian mathe

matics, perhaps this approach is all right-although it's unethical, from a 

utiliarian point of view, to delay the quadratic formula for so long. But, 

before committing yourself to the utilitarian viewpoint, you might try to 

remember the last time that you needed to solve a quadratic outside of a 

classroom, and you might try to explain why a computer program (or calcu

lator) is not a better way to solve such problems. Be that as it may, the 

standard approach is not introducing students to the discipline of mathe

matics or to humanistic mathematics as I conceive it. 

To introduce students to humanistic mathematics is to introduce them 

to a human adventure, an adventure that humans have actually partaken of 

in history. The story of quadratics is part of a more general story of 

investigating equations: linear, quadratic, cubic, biquadratic, etc. These form 

"a natural class" of problems to us humans and the quadratic equations are 

a piece of this richer puzzle. This puzzle is challenging to human mathema

ticians for the same reason that mountains are challenging to human mountain 
climbers: because the puzzles and the mountains are there for us. 

By the time that they approach quadratics, students will find linear 
equations easy. But do students realize what a significant thing it is to find 
linear equations easy? The Greeks did not recognize negative solutions to 
linear equations, and even 16th century mathematicians classified quadratics 
into various subclasses because of their suspicion of negative numbers. It 
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took human beings thousands of years to progress to the mathematical level 

of today's high school students, and perhaps teachers should mention this 

to students. 

I was saying that humanistic mathematics tells the human story of 
mathematics. It puts the discussion of quadratics into the human-mathemat

ical context that gives the mathematical topic its sense and its beauty. The 

general story of quadratics provides an opportunity to discuss Arabian math

ematics and the mathematician al-Khowarizmi who preserved and developed 

the partial Greek solutions to the quadratic (of course the words "algebra" 

and "algorithm" are derived from him and his work). Moreover, and this is 

the surprise, the investigation of quadratics could be put into perspective by 

spending just a week or two on cubic equations. 

For starters, one could use the story of the cubic to expose students to 

the very different mathematical culture of Renaisannce Italy, where math
ematicians challenged each other like gun fighters in modern spaghetti 

Westerns. According to William Dunham's book Journey through genius, 

from which I get my story, one Antonio Fior was bequeathed the solution to 

so-called "depressed cubics" by his teacher. 8 Fior immediately challenged 

Niccolo Fontana, known as Tartaglia (the Stammerer), to a mathematical 
contest. Fontana proposed 30 problems, each asking for the solution to a 

depressed cubic equation! Tartaglia knew what was going on, and by working 

night and day found the general solution in time to thoroughly humiliate 

Fontana, who did not know much besides the formula for the depressed 

cubic. In the next twist of fate, that most bizarre, if not lunatic mathematician, 

Cardano extracted from Tartaglia his solution of a particular form of cubic 
equation. The price he paid was a solemn oath to Tartaglia "by the Sacred 
Gospel, and on my faith as a gentleman, not only never to publish your 
discoveries if you tell them to me ... " Cardano went on to use Tartaglia's 

discovery to solve the general cubic and his student Ferrari, exploited it to 

solve the biquadratic. 9 

My idea is that Cardano's analysis is well within the reach of 

secondary students; essentially, it applies the quadratic formula to cleverly 
contrived cases of the cubic. And my suggestion is that the teaching of 
quadratic equations could be far more exciting if teachers used the quadratic 
solution to derive the solution of the cubic-as opposed to those endless 
and boring word problems. By highlighting the similarities and differences 

9 
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between the quadratic solution and the cubic solution, the comparison can 
give the student a deeper appreciation and understanding of mathematics 
for its own sake. Moreover, even less than bright students would rather 
listen to the story of Carda no, no doubt, than do a hundred so-called practical 
problems about quadratics. 

Thus I suggest that some discussion of the cubic should be an essential 
part of the teaching of quadratic equations: not because it is useful, but 
because it makes sense. It puts the quadratic in its proper mathematical 
perspective. By comparing and contrasting the quadratic and the cubic, a 
student can begin to see the overall shape of the forest instead of just hundreds 
of trees.10 

Moreover, if I were inculcating the discipline of mathematics
humanistic mathematics-I would not finish quadratics without mention of 
the work of the Norwegian Abel who showed that quintic equations were 
not solvable by radicals. This should generate an interesting class discussion. 
How can a mathematician show that a mathematical problem is unsolvable 
as opposed to merely failing to solve it? And of course, it would be sinful 
not to mention the Frenchman Galois who explained why equations to the 
4th degree were solvable and why none higher were. This might even provide 
an opportunity to mention the concept of "group"-as well as ending the 
story where it began, with a "dueling mathematician"! 

Let me briefly summarize. Standard approaches to the quadratic 
formula embed the quadratic formula in purely utilitarian mathematics. They 
suppress the aesthetical, the historical, and the purely mathematical aspects 
of this mathematical problem in favor of touting the practical significance 
of answering various canned word problems. Students spend half a year 
mastering a variety of techniques leading up to a general solution which 
eliminates the need for their mastery of those techniques. But they are never 
told why anyone would think a general solution was intrinsically interesting 
for its own sake. 

Humanistic mathematics can give quadratic equations their rightful 
mathematical significance by placing them in a context of pure mathematics, 
more particularly, by placing them in the context of historical progress toward 
answering a natural mathematical question. This is a history of approaches 
and conquests that stretches millennia from the halting efforts of the Greeks 
to the final summation of Galois. The general solution to quadratic equations 

10 By the way, a natural human interest story arises here: how could Cardano and 
Ferrari reconcile the oath to Tartaglia with their desire to publish perhaps the 
most important mathematical discovery of the 16th century? Since we are inter
ested in pure mathematics, I won't distract you by discussing their solution, but 
Dunham explains it in his lovely book. 
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is but one piece of this history. Humanistic mathematics is not just "friendly" 

mathematics or "touchy feely" mathematics . It is mathematics with a human 

face because there is no mathematical discipline without a human face. 

Stories of mathematicians are "color". It is interesting that Tartaglia was a 

stammerer who extracted a promise from Cardano. But stories about what 

historical individuals saw when they looked on the mathematical universe 

at historical points in time are not color. They are mathematics. No one can 

learn mathematics, without being inculcated into this tradition. 

CONCLUSION 

In conclusion, I want to sketch an analogy between humanistic 

mathematics and another human endeavor, the practice of mountain climbing. 

Neither humanistic mathematics nor mountain climbing are practical 

human concerns; but both of them are rooted in practical concerns, for 

example, both have a foot in business and trade. 

Neither humanistic mathematics nor mountain climbing are sciences; 

but both are bounded by objective constraints, mathematical facts and 

geological facts. 

Both humanistic mathematics and mountain climbing fail as sciences 

for the same reason-each depends on the contingencies of the human 

condition. Mountain climbing is what it is because human beings are what 

we are; we have such and such size, such and such natural abilities, can do 

this easily and that with practice. Exactly the same applies to humanistic 

mathematics. It is shaped by human abilities and limitations, because we 

can do some things easily, others only with difficulty. God's mathematics 

would be very different from ours-as would a beetle's conception of 

"mountain climbing" differ from ours. 

Moreover, as with other humanistic disciplines, mountain climbing 

and humanistic mathematics both have a history. What is difficult at one 

period, becomes easy at another. The historical context of a given period 

sets the goals of that period. If no one has solved the general cubic or climbed 
that particular mountain, then those are the goals of the day. Later, such 
goals might become exercises for apprentices. Furthermore, technology is 
especially important. It alters what can be done and our evaluations of various 
achievements. (Solving particular quadratic equations is not too impressive 
to one who has seen the formula for general solutions.) 

In the end, humanistic mathematics and mountain climbing are both 

driven by a fundamental human characteristic: the ability to take joy in 

complex endeavors. In both cases we find activities or processes driven by 
goals or achievements. Without the results, the theorems or the mountains 

climbed, we would not have the activity, but it is the journey to the results-
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the actual doing of mathematics and the actual climbing of mathematics

that provides the day-to-day gratification that keeps these practices alive. 

Perhaps I could press the analogy between mathematics and mountain 

climbing even further, but rather than press my luck, I will spend a final 

minute in recapitulation. 

The point of the analogy between mathematics and mountain climbing 

is to exhibit a critical human, or subjective, component of mathematics. 

This human component is not a frill that might make teaching mathematics 

more enjoyable to the mathematically handicapped. This human component 

is a sine qua non of a separate discipline of pure mathematics. In a nutshell, 

the human component imposes sense or intelligibility on mathematics. It 

imposes a human perspective on the arbitrary complexities of the mathe

matical universe, exactly as our human perspective shapes a coherent practice 

of mountain climbing on otherwise unwieldy mountains. 

Educators ignore humanistic mathematics to their peril. Without it, 

educators may teach students to compute and to solve, just as they can teach 

students to read and to write. But without it, educators can't teach students 

to love, to appreciate, or even to understand mathematics. 
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FROM "MATHEMATICS FOR SOME" 

TO "MATHEMATICS FORALL"1 

Zalman Usiskin 

University of Chicago, United States of America 

There have been in this century two major developments in mathe

matics education. The first of these, a movement that is several centuries 

old, is the teaching of more and more mathematics to more and more peo

ple. For instance, the study of algebra and geometry, which even a century 

ago was reserved for a small percentage of the population even in the most 

technological of our societies, is now a part of the core curriculum for all 
students in many countries. The second development, only within the past 

30 years or so, has been the emergence of computer technology, which en
ables much mathematics to be done more easily than ever before, and enables 

some mathematics to be done that could not be done at all previously. As a 

result, more and more people are encountering and doing far more mathe

matics than ever before, and there is great pressure nowadays to teach a 

great deal of mathematics to all people. This is the origin of the title "From 

'Mathematics for Some' to 'Mathematics for All"'. 

In this paper, I wish to place these developments in an even longer 

historical framework than this century, and use that framework as well as 

some recent work to suggest directions in which mathematics in school and 

society may be moving and should be moving. 

DEFINITIONS OF TERMS 

The word "all" in the title of this paper refers to all of the population 
except the mentally disabled, which means at least 95% of any age cohort. 

The talk as given was almost twice the length of this paper and contained many 
examples not presented here. The longer version may be obtained from the au
thor at the University of Chicago School Mathematics Project, 5835 S. Kimbark 
Avenue, Chicago, IL 60637 USA. 
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In the United States, it is reported that about 75% of 18-year-olds graduate 
from high school with their age cohort, and about 10% more earn their high 
school diplomas later. So for the United States, my "all" constitutes a 
population larger than those who finish high school. In contrast, in Japan, 
95% is almost the percentage of students who graduate from high school. 

On the other hand, here the phrase "mathematics" for all refers to school 

mathematics for all, and so these remarks are not meant to apply in those 
places where children do not attend school, or cannot attend school, or choose 
not to attend. Mathematics for all refers at different times in this paper to 
the mathematics that has been learned by all, that is being learned by all, 
that could be learned by all, that should be learned by all, or that will be 

learned by all. 

The content of school mathematics is broad, and includes: skills and 
algorithms; properties and proofs; uses and mathematical models; and 
representations of many kinds. In the UCSMP secondary materials these 
are termed the SPUR (S =skills, P =properties, U =uses, R =representations) 
dimensions of mathematics2• 

THE CURRENT STATE OF MATHEMATICS FOR ALL 

In most of the world, all students are expected to learn a considerable 
amount of arithmetic. Until recently, because one needed to know paper
and-pencil skills in order to use arithmetic, the Skills dimension was the 
most emphasized everywhere. Because of the emergence of calculators, at 
the present time in some countries there is a decrease in the attention given 
to the Skill dimension, and a corresponding increase in attention to both the 
Uses and Representation dimensions. Yet I think it is fair to say that in most 
classrooms in the world, the teaching of paper-and-pencil skills still domi
nates class time. 

Some elementary school teachers are fearful of the calculator for they 
know that it can do all of the arithmetic they have been teaching. They 
understand that arithmetic is important for every child to know, but when 
the calculator comes in these teachers do not know what to teach and they 
may stop teaching arithmetic entirely. This is not just a view of ignorant 
teachers; there have been recommendations by some science educators in 
the United States that much of the time spent on mathematics in the elemen
tary school can now be spent on science because the content that has been 

2 
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taught is no longer needed. So we must be careful to explain the breadth of 
arithmetic to those outside of mathematics or we will lose the time that is 
devoted to mathematics in the elementary school. Thus though it would 
seem that "arithmetic for all" is so ingrained in schooling that it will not 
leave, I believe we should not be complacent. 

Obviously, as zealots for mathematics education, there are many of us 
who might wish as much mathematics as possible to be learned by everyone. 
But there are zealots in all fields, who wish the same for their fields. 
Furthermore, children these days need also to know more about other subjects 
than they have hitherto been expected to know. Thus we cannot simply dictate 
that more and more mathematics be learned by all; we must have the strength 
to take out old content as well as put in new content. 

It is already the case that, in some countries, some of the more com
plicated arithmetic algorithms, such as long division, are not being taught 
to all students and are not being tested. It is a case of "arithmetic for all" 
becoming "arithmetic for some". 

Despite the fact that some mathematics is becoming obsolete, more 
and more mathematics is entering the curriculum. As an example, in the 
United States only a generation ago, most students encountered not one day 
of probability and the only statistics taught was how to calculate the average 
of a set of numbers. A national report in 1959 recommended merely that an 
optional course in probability and statistics be available to 12th grade 
students.3 By 1975, only 16 years later, there was quite a change: a report 
recommended that statistics be taught at all levels of the curriculum, a 
recommendation that has been repeated many times.4 

Similar increases in the mathematics all students are expected to learn 
has happened in all countries. For example, students in almost all countries 
today are expected to know a great deal more about measurement than they 
used to know. In some countries, all students are expected to know some 
algebra and some geometry, and this algebra is quickly becoming quite graph
ical with an earlier study of functions. There are trends that indicate the 
geometry is becoming quite a bit more visually sophisticated, with the in
creasing use of coordinates, isometries and other transformations, and 
continuous deformations. 

3 

4 

College Entrance Examination Board Commission on Mathematics. Program 
for College Preparatory Mathematics. New York: CEEB, 1959. 

National Advisory Committee on Mathematical Education (NACOME) . Over
view and analysis of school mathematics: Grades K-12. Reston, VA: National 
Council of Teachers of Mathematics, 1975. 
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FROM ARITHMETIC FOR SOME TO ARITHMETIC FOR ALL 

To obtain guidance regarding what may happen or, what should be 
our policies towards these changes, it is useful to ask if there has ever 
previously been a time like ours, when there was such a revolution in the 
amount of mathematics which the average citizen was expected to know. 
From a Western perspective, a corresponding revolution began in the 15th 
century. 

Compared with the situation today, in the 15th century very little 
mathematics-only counting and the simplest of addition-was known to 
all people even in the most advanced of countries. Nowhere near 95% of 
children went to school, and arithmetic was one of the liberal arts, taught in 
colleges which few attended. We might say that in the 15th century all math
ematics was for some. Tobias Dantzig tells a story that supposedly took 
place in the first half of the 15th century of a trader in Germany who wanted 
his son to get the best mathematics education he could. He consulted a pro
fessor at a German university who advised him that his son could learn to 
add and subtract at his university, but if he wanted to learn to multiply and 
divide, then he should go to Italy, where they were more advanced in such 
matters.5 Yet 500 years later, by the end of the last century, whenever there 
was compulsory schooling arithmetic was present, and the expectations for 
arithmetic were quite formidable, the complexity of the problems being 
enough to challenge any of us today. 

Three fundamental developments changed the situation. The first was 
the increased amount and sophistication of trade between peoples. These 
increased the need for accurate records that were understandable to traders 
and to those who benefited from the trade: manufacturers of goods, owners 
of land from whom farmstuffs and minerals were obtained, and all others in 
the marketplace. Great numbers of people were engaged in these activities 
and so the increasing need for mathematical knowhow in the marketplace 
was no small influence on the amount of mathematics known to the average 
citizen. 

The second development was mathematical: the invention of algorithms 
that made it easier to do arithmetic than had previously been the case. Roman 
numerals were not well suited to computation beyond addition and subtrac
tion, and algorithms for multiplication and division were in their infancy in 
the 15th century. At the end of the 16th century when Simon Stevin first 
considered decimal places to the right of the unit's place, one of the main 
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arguments he put forth for using them was that there existed algorithms for 
multiplication and division that could be applied to what he called "decimal 
fractions", and thus computation would be simplified. Within 30 years of 
Stevin's invention of decimals, logarithms had been invented and decimals 
were established as the preeminent way to represent numbers. 

The third development that enabled the expectation for competence in 
arithmetic to become universal was the invention of printing. Arithmetic 
skills are not easily learned; certainly they are not usually learned merely 
from one or two books that might be community property. Thus in order for 
competence in arithmetic to become universal there had to be enough books 
to enable all students to have their own books. Printing made it possible to 
have enough books. Printing also helped to standardize the language of arith
metic throughout the western world. Today's differences in notation 
throughout the world are minor: numerals and other symbols are the same, 
enabling traders world-wide to use the same arithmetic language. 

Thus between 1400 and 1900, "arithmetic for some" became "arith
metic for all", and necessary for this were three developments: a societal 
need for the competence, the mathematical language and tools that made 
this competence a reasonable expectation, and technology that made it pos
sible for this competence to be realized. At the same time that arithmetic 
changed from being for some to for all, so did reading, and for the same 
reasons. An enlightened citizenry and an intelligent work force came to 
require both the ability to read and the ability to compute and apply arith
metic. 

FROM ARITHMETIC FOR ALL TO 

ARITHMETIC AS A PART OF LITERACY 

One need only examine a daily newspaper to get an idea of the extent 
to which arithmetic is ingrained in our cultures and has become a necessary 
part of communication, indeed, a part of literacy. In various countries 
I have invariably found the median number of numbers on a newspaper 
page is somewhere between 120 and 150. The mean number of numbers is 
far higher-the last time I calculated it for a Chicago newspaper, the mean 
number of numbers on a page was over 500, due to sports pages, want ads, 
the weather page, and the business pages. 

These numbers are used in many ways: as counts, often large, and, 
with a wide variety of counting units as measures; in scales of various kinds; 
as ratios; both interval and single number estimates and exact values. There 
are various kinds of graphs, sometimes daily analyses of lotteries, results of 
polls, many stock averages, and sports statistics, all of which could be 
simplified at times if algebraic formulas were used. There are advertisements 
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with discounts given as percents, annual percentage rates for investments, 

dimensions of the articles being offered, computer specifications, powers 

of zoom lenses, and other technical information. 

An exhaustive listing of numbers in the newspaper is not needed to 

make the point that to read a newspaper today requires that the reader be 

able to process mathematical information to an extent far beyond that re

quired even one generation ago. It is often said that we are in an information 

age; it is the case that much of that information is numerical or pictorial, 

and thus is mathematical. 

Concomitant with the evolution of arithmetic as a part of literacy is a 

major change in the views of society toward who can be competent in these 

things. No longer is arithmetic seen as the province of a few. In places 

where arithmetic is a part of literacy, no longer is it seen as a subject that is 

so abstract that only a few can learn it. In most places, no longer is a special 

degree of competence in arithmetic skills viewed as an indicator of intelli
gence. 

THECURRENT STATEOFALGEBRA 

AS A PART OF LITERACY 

Could we replace "arithmetic" in this summary by any mathematics 

other than arithmetic? A reasonable first candidate is algebra since in some 

countries algebra is already taught to all. But algebra does not have any

thing near the stature that arithmetic has in society. Many well educated 

people ask why algebra was taught to them in school; they would never ask 

that about arithmetic. Many people have been taught algebraic skills and, 

perhaps, algebraic properties; and they may have even been taught some 
graphical representations. But they never were taught the uses, and they do 

not see the societal need for all to learn algebra. Algebra is viewed by many 

people as so abstract that it really does not have uses of its own. 

If we view the newspaper as signalling what mathematics is needed 

by society, then we see how far we have to go before algebra becomes viewed 
as a part of literacy. There may be thousands of numbers, tables, graphs, 
and charts in newspapers; but it is seldom that one finds any algebra. It is 
unusual to find one overt example of algebra in a newspaper despite the fact 
that there are simple formulas underlying many of the sports statistics, 
discounts, and business data. So if algebra becomes a part of literacy, I do 
not think it will be the algebra that is now being taught. 

Indeed, whereas the level of political analysis one finds in newspapers 
is often quite deep and requires a thorough knowledge of a nation's 
governmental system, even the simplest algebra-even though it may be 
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studied by the vast majority of people in a nation-is taboo. When such 

mathematics is presented it is often preceded by cautionary statements, such 

as "For those who understand such things ... "Unlike arithmetic, algebra is 

still viewed as a sign of intelligence by those who do not use it. 

WILL ALGEBRA FOR SOME 

BECOME ALGEBRA FOR ALL? 

It is appropriate to ask whether we can ever expect algebra to become 

as much a part of literacy for future generations as arithmetic is now. Will 

algebra ever be as universal as arithmetic? 

Following the clue provided by the history of arithmetic, the first com

ponent in the question of algebra for all would have to be a perceived need 

by society for that algebra. I believe the general view of the nonmathemat

ical public is that algebra is certainly required if you wish to be an engineer 

or scientist of any sort; or if you wish to work with computers, statistics, 

economics, or any field that seems dependent on numbers; or if you are in a 

field that uses science, such as medicine. The general public might also 

realize that the building trades, such as carpentry or plumbing, use algebra

ic formulas. It may well be that this is enough to insure that algebra should 

be and will be taught to all. 

In the policy arenas of the advanced industrialized countries, the 

arguments for major attention to algebra and higher mathematics for the 

entire populace go somewhat as follows. The economic well-being of a 

country must be based on having jobs for its people. The new jobs in the 
21st century will be based on achievements in sectors such as biotechnology, 

telecommunications, computers and software, robotics and machine tools, 

and microelectronics. Better products in these areas require statistical quality 

control. To have statistical quality control workers need to understand it, 

which requires that they have studied statistics and operations research, and 

for these a person needs a considerable amount of mathematics. 

For a couple of hundred years there have existed the mathematical 

language and tools that make competence in algebra a reasonable expecta

tion. World-wide we use the Latin alphabet in elementary algebra; we use 
coordinate graphs to picture functions. The big change-within the past 

five years-is that there now exists technology that makes the graphing of 
functions and data, and even curve-fitting and data analysis, accessible to 
all, that can be taken anywhere one has a pocket, and which is user-friendly 
enough so that one does not need to know huge amounts of mathematics in 
order to use it. Not only is algebra more accessible, but so is elementary 
analysis. 
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The widely available technology does not yet cover all of algebra. 
I am waiting for the symbolic algebra calculator that is easy to use and 
cheap. I want it to be able to solve literal equations as well as numerical 

ones. I want a simpler form of Derive or Mathematica or Maple on my 

calculator for under $100. This technology seems certain to come. 

For this reason, I believe that algebra will become a subject for all, 

though not the same algebra that we now teach, and with it will come many 

of the concepts of elementary analysis and calculus. 

WILL ALGEBRA FOR ALL 

BECOME ALGEBRA FOR SOME? 

As with arithmetic the technology does not necessarily suggest an in

creased emphasis on algebra in schools. Because the purpose of technology 

is to avoid work, to make it possible for us to direct machines to do tasks 

even when we do not understand how the machines work, the same techno
logical advances that have made it possible to do great amounts of algebra 

easily may also make it less necessary for people to learn certain parts of 

algebra. 

For example, suppose we wished to predict future population from 

recent data and an exponential model. The data can be plotted without know

ing algebra. Transforming the variable p to log p can be done simply by 
writing a formula if one is using a spreadsheet, or by pressing a button if 
one is using a calculator, and then the points on the second graph can be 

found. The line of best fit can be found without any algebra: simply press 
another few buttons. This line can be used for predicting the population 

from the graph. Thus an activity that in the past might have required a con

siderable amount of algebraic skill can now be done with none of the 

traditional skills. Instead, what are needed are the facility of graphing func

tions using an automatic grapher and knowledge of the inverse relationship 

between the exponential and logarithmic functions. 

On the most recent graphing calculators there is a key that solves any 
type of a large number of equations arithmetically by successive approxi
mation methods hidden from the user. A student who has this calculator 
does not need to know the quadratic formula in order to obtain the solutions 
to a quadratic equation to the nearest thousandth, nor does the student need 
to know the inverse trigonometric functions in order to solve a trigonomet
ric equation. 

We make the assumption, because we are in mathematics, use mathe
matics, and love mathematics, that an increasingly technological world 
requires more and more mathematics for all. However, what may be the 
case is that such a technological world requires more and more mathematics 
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for some but less for all due to the advances that those few make. Just as we 

use algebra to solve problems which the ancient Greeks solved or attempted 

to solve geometrically, and many of us in mathematics have never learned 

exactly how they did that, it is possible that future generations will learn 

how to use the latest technology to solve our algebra problems and never 

learn how we solved them using algebra. 

The situation is made more interesting by spreadsheets, which have 

their own algebra. Possibly in the near future the language of spreadsheets 

will become the most commonly used algebraic language. So we may think 

we have the mathematical language and tools for algebra for everyone, but 

when everyone comes to learn an algebraic language it may be a different 

one than the one we have been teaching. The difference between algebra in 

school and algebra in the real world is akin to the difference between arith

metic in school and arithmetic in the newspaper. In school the tendency in 

almost all countries is to concentrate on the Skills and Properties of alge

bra, while in the world at large the Uses predominate, with Representations 

also being quite important. 

The same technology that enables algebra questions to be treated 

without algebra also enables calculus questions to be treated without calculus. 

The very same software programs and calculator technology that enable 

one to avoid symbolic algebra also make it possible to avoid the symbolic 

manipulations of calculus and statistics. It is possible today to answer max

min problems without having to resort to derivatives; to obtain areas under 

curves without integrals. In many places we have justified algebra not on its 

own merits but on its importance in the more advanced mathematics of 

calculus and differential equations. But with technology these subjects, too, 

are not so advanced. We must be careful that, despite its importance, we do 

not lose algebra in school because of the other means we now have for 

tackling problems that used to require algebra. 

CAN ALGEBRA AND CALCULUS CONCEPTS 

BE LEARNED BY ALL? 

There are many countries in which the national curriculum includes a 

study of algebra for everyone. Within the United States there is a trend to 

attempt to teach algebra to all. Yet I know of few algebra teachers in any 
country who believe algebra can be learned by all; and as for calculus, that 

is out of the question: the subject matter itself is beyond the students, or so 
the teachers think. 

If these subjects remain unchanged both in the classroom and in the 
society at large, I agree with this point of view. But all of the current devel
opments suggest that "algebra for all" will be quite different from the 
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traditional algebra that we have been teaching, and I believe that it will 
include calculus. 

The reason for my optimism can be found in any country where our 

language is not the mother tongue. In the United States we tend to teach 
foreign languages in senior high school, so the students study that language 

at about the same time that they take algebra through calculus. Many Amer

ican students have a great deal of trouble learning languages. Their accents 

are atrocious, it seems as if the language is beyond them, and only a small 

percentage seem to do well in their language study. Yet in the countries 

where the language is spoken, even small children know it. Are these chil

dren all brilliant? 

Of course their proficiency in their mother tongue is not due to any 

special brilliance, but because they are immersed in it and so become fluent 

in it. With instruction virtually all of them learn to decode the incredibly 

complex combinations of letters and other symbols that constitute their own 

written language. It is difficult to believe that any person who can learn to 
read and write and comprehend his or her native language does not possess 

the ability to read and write and comprehend algebraic symbolism, part of 

the language of mathematics. 

What makes it possible for children in foreign countries is an envi

ronment in which these languages appear in context. Thus, in the United 
States, the effective teacher of French tries to make the classroom into a bit 

of Montreal or Paris or Grenoble. The movements within mathematics 
education to put context into the mathematics, to utilize applications of 

mathematics in everyday teaching, and to engage students in classroom 
discussions can be seen as an attempt to speak the language of mathematics 
in the classroom. Because mathematics beyond arithmetic is not yet com
monplace outside the classroom, this is a necessary move within the 

classroom if we are to achieve higher levels of mathematics for all. 

Because mathematics is so much a language, there are many aspects 

of it that are better learned when the child is younger than when the child is 
older. Part of the reason for the difficulty of calculus is certainly that ideas 
are often first encountered at the ages of 17-20, quite late for one to learn a 

language. 

FROM ALGEBRA/CALCULUS FOR SOME 

TO ALGEBRA/CALCULUS FOR ALL 

In the future the algebra-calculus sequence will give less attention to 
algebraic techniques for solving problems, because these will be solved by 
preprogrammed software. But the sequence will need to place increased 
emphasis on two aspects of algebra: the uses to which algebra, functions, 
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and calculus can be put; and the importance of algebra as a language for 

communicating generalizations and functional relationships. Both of these 

aspects increase in importance because of computers. In the parlance of the 

SPUR characterization, algebra of the future will undoubtedly contain less 

of the Skills dimension and more of the Uses and Representations dimen
sions. As for the Properties dimension, due to the importance of the language 

of algebra, it ought to maintain its role in the curriculum. In particular, the 

broad properties of functions, of matrices, and of vectors will probably en

ter the domain of mathematics for all. 

Critical in all this is that we encourage the use of algebra as a lan

guage of communication. In addition to our current emphasis on variables 

in formulas and variables as unknowns, we must place greater emphasis on 

the uses of variables to generalize patterns, the use of variables as indicat

ing places in spreadsheets or computer storage, the use of variables as 
arguments in functions. Here are some ways in which this could be done: 

(1) emphasize how much easier it is in many circumstances to apply a for

mula rather than read a table; (2) demonstrate how the language of algebra, 

functions, matrices and vectors makes it easier to handle certain problems; 

(3) show how some patterns and trends can be described algebraically more 

compactly than with graphs; ( 4) show the power of functions to predict, and 

how picking the wrong function can lead to errors. 

GEOMETRY 

The world is geometric. Although in school geometry students are 

taught as if the only planar shapes are polygonal or circular, and the only 3-
dimensional shapes are spherical, cylindrical, or conical, every object in 

the world, from the chair you are sitting on to the leaves of a tree considered 

individually or as a set, has a shape and a size. Computer graphics have 

greatly increased our ability to draw pictures to represent this world and to 

examine those pictures. They have made the Skills and Uses of geometry 

more accessible; and, as mentioned earlier, they have increased the impor

tance of geometrical Representations of functions. So I believe that sets of 

points will play an ever increasing role in the curriculum, but these may not 
be the traditional sets of points, but more ordered pairs and triples, graphs 

of functions and relations, representations of graphs and networks. The 
importance of coordinates and transformations will certainly increase, and 
the traditional work with polygons and circles is likely to decrease or be 
encountered by students earlier in their mathematics experience. It is likely 
that experiences with all these topics will be encountered by all students. 
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MATHEMATICAL SYSTEMS 

The traditional role of geometry as a vehicle for displaying a mathe

matical system is already gone from many countries, and I do not see much 

call for its return where it has left. Moreover, it does not seem that other 

parts of mathematics have picked up this loss. Less and less formal deduc

tion is being taught in schools. 

Here computers present particular problems. Because of their ability 

to display example after example they encourage induction as a valid meth

od of argument. Picture a triangle with its medians drawn. A student who is 

able to deform this triangle continuously on a screen, and who sees that the 

medians are still concurrent, will surely be less likely to think that a proof 

of the concurrency is needed. Similarly, a student who can zoom in on the 

graph of a function to determine its maximum value to virtually any desired 

accuracy is not likely to see calculus as powerful as previous generations 

saw it. For this reason, the current condition, in which deduction is taught 

only to some, is not likely to change. Formal deduction may even be taught 

to fewer students in the future, but I hope I am wrong. The requirement that 

results be deduced in order to be valid is one of the fundamental character

istics of mathematical thought; it is too important not to be taught to all. 

SUMMARY 

We are in an extraordinary time for mathematics, a time unlike any 

that has been seen for perhaps 400-500 years. The accessibility of mathe

matics for the population at large has increased dramatically due to advances 

in technology. These advances make it likely that more mathematics than 

ever before will become part of the fabric of everyone's education and eve

ryday literacy. But the mathematics will not be a superset of what is taught 

today for those things that can be done quickly and easily by computers are 

very likely to disappear from the curriculum. What will remain is a more 

conceptual, more applied, and more visual mathematics. The result-if his

tory repeats-will be a field of mathematics which will be even more exciting 
than our wonderful field is today. 6 

6 I would like to thank my wife Karen for her help in organizing this talk, Ed 
Zegray and the son of Bernard Hodgson for helping translate many of my trans
parencies into French, and Ed Jacobsen of UNESCO for his introduction. 
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When a theorem has been taught, students are expected to understand 

it and to know a proof. They should be able to reproduce the theorem and its 

proof, and to apply the theorem correctly. But for a real understanding they 

need to know something about the historical background of the theorem, 

about its place within the theory, and its relevance for applications. There

fore students should learn not only theorems but also the importance of 

these theorems. This can only be accomplished by teachers who have learned 

to appreciate theorems adequately. Therefore, an important part of teacher 

education must be concerned with the interpretation, discussion, and evalu

ation of theorems. 

DISCUSSING THE PYTHAGOREAN THEOREM 

At the beginning of my geometry lecture for future teachers I usually 

ask them which theorems they remember from their school geometry. Most 

years, the best-remembered theorem is the Pythagorean theorem. After I 

tell them that this is almost always the one selected by students, we try to 

find out why this theorem is so prominent. Typical comments by the students 

include the following: 

This theorem is interesting (important, beautiful, highly regarded, 
surprising, central). 

It has a simple (beautiful, impressive, suggestive, meaningful) formula. 

The theorem concerns an important geometric figure, the right triangle. 

These are very general judgments. In further discussion, more specific 
answers are given: 
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The Pythagorean theorem 

• reveals a relationship between the sides of a right triangle. 

• helps to express one side of a right triangle in terms of the other two 

sides. 

• is a special case of the law of cosines. 

• is an inference from the theorem: a2 = p·c; b2 = q·c. 

• shows how to transform two squares into one square. 

This theorem 

• is named for Pythagoras, the Greek philosopher and mathematician. 

• was known to the ancient Egyptians. 

• has been discovered in most cultures. 

There are more than 200 proofs of the theorem, including one by 

Garfield, who became president of the United States. 

To summarize, there are four general types of response: 

• affective: beautiful, interesting, surprising; 

• cognitive: special case, inference, reveals a relationship; 

• instrumental: useful, applicable, helpful; 

• cultural: known by Pythagoras, and the ancient Egyptians. 

What are the origins of the students' appreciation for this theorem? 

We can presume that the most important source for their views is personal 

experience, gained by studying the theorem, its proofs and its applications. 

However, it seems likely that judgments by teachers have some influence as 

well. 

But how can teachers teach adequate views of theorems? How effective 
are their methods? 

APPRECIATION OF THEOREMS IN 

MATHEMATICS INSTRUCTION 

It is helpful to understand how teachers can express their appreciation 
of a theorem to their students, either explicitly or implicitly. 

Explicitly expressed appreciation of a theorem 

It is traditional in mathematics to give hints about the importance of a 
proposition by identifying it as a lemma, corollary, theorem, or fundamental 
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theorem. These assessments are handed down from generation to generation. 

They often have their origin in papers or books of the mathematicians who 

discovered the propositions. Well known examples include Gauss' Theorema 

Egregium or Sperner's Lemma. In the latter case, the lemma has become 

more famous than a normal theorem. 

The teacher can give explicit expression to the appreciation of a 

theorem by comments such as: 

• This is an important theorem. 

(which is a bland statement! ) or by a more specific comment: 

• This theorem is very useful for calculations concerning triangles. 

In the second comment, assessment is directed to the use of the theorem, 

whereas the following example expresses an appreciation for the knowledge 

gained by the theorem: 

• The theorem expresses a relationship among the three sides of a 

right triangle. 

An assessment about a theorem can also include a kind of reasoning 

about its importance: 

• There are more than 200 proofs for the Pythagorean theorem. It is 

therefore one of the most prominent theorems in mathematics. 

Sometimes the estimation of the importance of a theorem changes. A 

well known example is the "fundamental theorem of algebra" which is cur

rently referred to as the "so-called fundamental theorem of algebra" in 

modern books on algebra. This makes clear that one should not overesti

mate these qualifications. But in both cases they express estimations 

explicitly. 

In my personal experience, an explicitly expressed appreciation of a 

theorem is only impressive if it is specific, and based on reasons, knowledge, 

and experience. 

Implicitly expressed appreciation of a theorem 

In the name "Pythagorean theorem" special prominence is given to 
this theorem. The reference to a famous mathematician suggests that he 
discovered the theorem, though it is well known that this is often not true, 

as indeed it is not true for the Pythagorean theorem. Perhaps more impor
tantly, the names of theorems can differ from country to country with a 
national identification. The name of a theorem can also refer to its contents, 
for example "mean value theorem", or "prime number theorem". In all these 
cases teachers can implicitly express their appreciation of the theorem. 
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But the way in which teachers deal with a theorem also reveals their 

appreciation of it. By starting with an interesting problem, discussing as

sumptions, giving different proofs, studying applications, or making remarks 

about its history, the teacher can bring the students to think: "This must be 

an important theorem because there is so much ado about it." 

There is a strong conviction among mathematicians that the importance 

of a theorem is evident when it is really understood. Many mathematicians 

therefore avoid speaking or writing about their estimation of a theorem. For 

experts, their "hidden appreciation of a theorem" is recognizable in several 

ways. The position of a theorem within the theory, the numbers of references 

to a theorem, and the consequences drawn from a theorem all indicate 

appreciation. 

Unfortunately many students feel lost when they are asked to express 

their estimation of a theorem because they have not received clear hints that 

are relevant for judging it. Implicitly expressed appreciation of a theorem 

allows students a free hand to make their own judgments, but they must 

learn to interpret the teacher's behavior correctly. 

Comparing explicit and implicit judgments can be summarized as 

follows. Explicit judgments of theorems are recognizable by the students. 

They reveal the personal preferences of teachers and ask for agreement, but 

can also invoke opposition. Above all, explicit judgments demand reasons. 
Implicit judgments allow students more freedom for their own assessment, 

but the students can also be misled by or misinterpret their teacher's behavior. 

THE PROBLEM OF JUSTIFICATION 

A proposition is called a theorem if it is true relative to a system of 

axioms. The statement that a proposition is a theorem belongs to meta

language, and can also be true or false. But what about the statement: 

The theorem is important with respect to mathematical knowledge. 

One may agree or disagree either on a rational or an emotional basis. 

Some typical situations in which mathematicians are asked to evalu-

ate theorems include theorems in a doctoral dissertation, theorems in a paper 

presented to a journal, theorems in a paper under review, comparing the 
"value" of a theorem in an award, or deciding which theorems shall be se
lected for a report in an encyclopedia. 

There are not many statements by mathematicians about their stand
ards. Let me give one example: Behnke (1966) wrote about the procedure 

for judging a research paper for a journal. Novelty and correctness of the 

results are necessary but not sufficient merits for publication. Criteria for 
the significance of a paper include: 
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• elegance of the presentation, 

• ingenuity of the proofs, 

• fertility of the considerations, 

• adequacy of the resources, 

• suitability of the reasoning. 

But obviously each criterion is as vague as the quality which it is 

expected to judge. When Behnke characterized the qualified mathematician 

by the ability to apply these criteria correctly, the result was a circle be

tween the judgment and qualification of a mathematician. After all, the 
community of mathematicians sets the values, and it is also responsible for 

the justification of the decisions. But the community pretends a harmony 

which is not always present. 

Recent discussion about the status of the mean value theorem of 

calculus will illustrate the discord. Van der Waerden (1980) and Laugwitz 

(1990) judged the mean value theorem as: 

• historically unimportant, 

• clear by intuition, 

• rather useful because of the conventions used in its proof, 

• only interesting in its systematic aspects. 

They concluded that the mean value theorem is rather unimportant. 

Schweiger (1987) and Winter (1988), reviewing the same theorem, 
emphasized: 

tant. 

• it expresses practical intuitions from physics and economy, 

• it opens a field of discoveries, 

• it expresses the fundamental completeness of the real number system, 

• it is important for approximations, 

• it is a bridge from local to global changes, 

• it is a paradox that the mean value theorem is equivalent to both a 
more special theorem (Rolle) and a more general theorem (Taylor), 

• it is an example for a non-constructive theorem. 

On this basis, they decided that the mean value theorem is very impor-
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Perhaps you will think that it is not so important whether the theorem 
is confirmed to be important as to know it. But from a didactic point of view 
this was a rather important discussion. The background was the question of 
the role the mean value theorem should play in a calculus course. The ex
perts were mathematicians and didacticians who were influenced by their 
knowledge and experience, but also by their personal preference and taste. 
Their argumentation was impressive, though their emotions were rather ir
ritating. 

In my opinion there was not just one winner of this discussion. We all 
profited from it because we learned a lot about this theorem which we would 

not have found in textbooks. Perhaps teachers feel lost. What should they 
tell their students about the value of this theorem when the experts do not 

agree? But is it not an advantage to take part in an open discussion? It protects 
us from handling judgments of theorems dogmatically. The reasons given 
in arriving at the judgment help teachers in curriculum decisions, but they 
also reveal aspects for their own estimation of the theorem's importance. 

DEVELOPING ADEQUATE ESTIMATIONS 

IN STUDENT TEACHERS 

Mathematics books which are used at the university for the mathematics 
education of future teachers rarely comment on the assessment of theorems. 
While lectures are used to give more comments, in my experience students 
tend to relax during such commentaries. My remarks are often not seen as 
relevant for the examination, even though an important task of courses in 
the didactics of mathematics is to discuss theorems which the students already 
know from their mathematics lectures, under the aspect of evaluation. Again, 
I demand that the students get the chance to reflect on their experiences, to 
listen to other students' judgments, and to consider them carefully. Usually 
it is very surprising for the students to realize that people can have different 
opinions about mathematical facts! 

I would like to invite mathematicians, when they are writing books 
for future teachers, to comment more about theorems from different points 
of view, and on specific ways of reasoning. My request of the didacticians 
is that they discuss questions of evaluation in an open way without being 
dogmatic. 

As we have seen, the appreciation of a theorem refers to four aspects: 
knowledge, usage, culture, and beauty. It is rather easy for the students to 
judge the efficiency of a theorem because they have only to remember their 
own use of the theorem. Therefore it is not surprising that the assessments 
of student teachers are mainly directed to usage. 
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Students are able to discover the knowledge provided by a theorem by 

reflecting on it for a while. It is well known that consideration of the problem 

context which led to the discovery of a theorem enables student teachers to 

appreciate the theorem in the context of a culture. But the realization often 

seems to be not worth the effort for the students. 

Questions about the beauty of a theorem are sometimes irritating to 

student teachers, though my students were very interested in David Wells' 

(1988, 1990) investigation about the evaluation of theorems by the readers 

of The Mathematical Intelligencer. Each of 24 prominent theorems had to 

be given a score for beauty. The winner was Euler's identity. Teachers should 

be aware that there are many books and papers about the beauty of mathe

matics which can stimulate students and teachers. 

In summary, student teachers need explicit comments and discussions 
about the aspects of knowledge, usage, beauty, and culture to develop ade

quate estimations of theorems. 

APPRECIATION OF THEOREMS BY STUDENTS 

When theorems are taught at the gymnasium, teachers are used to dis

cussing them. We were interested in the student assessments of theorems 

that resulted from this. We interviewed students from Grade 8 and Grade 10 

about their estimations of geometry theorems, and students from Grade 13 
about calculus theorems. For the 8th graders Thales' theorem-The angle 

in a semicircle is a right angle-and the congruence theorems for triangles 

were the most prominent. Thales' theorem was interes!ing to them because 

of its use in constructions. The congruence theorems were seen as impor

tant for proofs, and as a basis for the construction of triangles. 

The lOth graders appreciated the Pythagorean theorem and Thales' 

theorem most. They reasoned that they are logical, easy to understand, often 

used in tests, and used in constructions. The appreciation of the Pythagorean 

theorem resulted from tests, the great numbers of problems solved in 

connection with this theorem, the great variety of examples, and the impres

sive formula. 

In our interviews with the 13th graders we asked them and their teacher 

about their appreciation of the calculus theorems. The most important 
theorems for these students were the theorems about minima and maxima, 
L'Hopital's rule, and the theorems of limits. 

The most important theorem for the teacher was the fundamental the
orem of calculus. The differences of the assessments between students and 

teacher resulted from their different viewpoints. The students' interest was 
more directed to usage while the teacher's interest was more directed to 

knowledge. 
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Such differences can appear quite dramatically. I remember a classroom 

situation from my own teaching in Grade 7. When I became very enthusiastic 

about a theorem, a girl jumped up and cried: "This is all rubbish!" This was 

an evaluation too! 

Our appreciation of theorems may provoke our students to protest. 

And their rejection can be a provocation for the teacher. How should we 

react adequately? I think we can agree that it is useless trying to convince 

the students about the importance of a theorem. Why not let the students 

know that they are allowed to have different views? Perhaps they will dis

cover the importance of the theorem by themselves. On the other hand, it is 

also true that many students like mathematics because of its objectivity. 

They get the chance to appreciate mathematics based on their own criteria 

and decisions. 

In summary, in working with an important theorem, teachers should 

try to balance the different aspects of knowledge, usage, beauty, culture. 

They should become aware of the students' appreciations and should accept 

them as expressions of their personality. But they also should give their 

students a chance to make adequate estimations of theorems by reasoning 

without being dogmatic or autocratic. 

BALANCED TEACHING 

When I recently asked my students about their appreciation of theo

rems from their school mathematics, one student said (and many agreed): 

"Mathematics instruction was not theorems. It had more to do with tech

niques." They therefore felt rather lost at my question about their appreciation 

of theorems. It seems to be more important for students, and perhaps for 

their teachers too, that a method works, rather than to know why the method 

works. It is more comfortable, and with respect to tests and examinations 

more effective. But the result is unbalanced teaching. 

We emphasized different aspects of significance. Obviously these as

pects have to be balanced in mathematics education. There must be a balance 
between knowledge and usage, theory and practice, beauty and rigor, cul

ture and technique. One-sided assessments can reveal unbalanced teaching. 
But it is also true that balanced estimations of theorems can help to balance 
different aspects of teaching. They can help the students to gain a valid 
impression of mathematics. Thus, balanced assessments play a key role in 

teaching. 

But is it not a question of the subject matter? In a geometry course, 
there are many theorems which express knowledge and a few concerning 

techniques. But in an algebra course in secondary schools there are usually 
"laws", and "formulas" and, above all, techniques for transforming expres-
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sions and solving equations; but only a very few "theorems" , such as the 

binomial theorem, or Vieta's theorem (about the relationship between the 
roots and the coefficients of a quadratic equation). 

There are different traditions of teaching geometry and teaching algebra 
with respect to theory. This is also true for the history of mathematics. 
Axiomatic presentations of arithmetic and algebra appeared rather late. 
Hilbert's Foundations of geometry and Landau's Foundations of calculus 

can be seen as the culmination of this development, offering equivalent 
presentations in geometry and arithmetic. From Landau's book one learns 
that a large number of propositions in arithmetic can be treated as theorems, 
which is not common in mathematics instruction. To better balance geometry 

and algebra teaching I suggest writing, for example, the law of commutativity 
of multiplication, or the rule for adding fractions, or the formula for the 
solution of a quadratic equation as theorems. 

Above all, properties which are fundamental for the understanding of 
arithmetic and algebra should be pointed out as theorems. As illustrations, 
consider: 

• Natural numbers can be presented as sums of units. 

• Real numbers can be presented as the limits of sequences of rational 
numbers. 

• The square of a real number cannot be negative. 

Students can only develop a valid impression of mathematics if they 
receive a balanced teaching in which they can appreciate theorems as a dis
tillate of knowledge and potential. 

ACCENTUATED TEACHING 

We started with an outstanding theorem. But every theorem can be ap
preciated with respect to cognition, usage, culture, and appearance. To some 
extent each theorem is important. If a certain theorem were omitted in an 
axiomatic theory it could be critical for the whole theory. However, if teach

ers call every proposition an important theorem, this is not credible. It would 
have the same effect as underlining every word in a book (as some readers 
appear to do). "If everything is important, then nothing is important." (Shen
itzer, 1986). 

Nevertheless, to illustrate properties by appropriate theorems helps 
students in several ways. They become aware of what is noteworthy, find 
out what they are expected to know, and develop a basis to which they can 
refer when they are trying to prove a statement. However, it is also necessary 
to differentiate between theorems so that students can recognize the structure 
of a subject area, become aware of the key properties, and develop standards. 
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To give special prominence to a theorem, say by referencing it to a 
mathematician, helps students appreciate the achievement of mathemati
cians and understand their contributions to culture. Emphasizing the 
importance of theorems may help students to appreciate that mathematics is 

something important for culture and for themselves. 

As a consequence, students need a kind of teaching in which they get 

a chance to distinguish between important and less important facts. They 

can only develop standards when they become acquainted with the really 

outstanding results of mathematics. 

STEPS TOWARDS ADEQUATE 

ESTIMATIONS OF THEOREMS 

We understand the appreciation of a theorem as a part of the meta
knowledge that we want students to develop in mathematics education. 

Students learn to reflect upon theorems by asking questions such as: 

• What does the theorem represent? 

• What is the essential point of the theorem? 

• What consequences does this theorem have? 

• What problems can be solved with this theorem? 

Students can initiate their assessments of a theorem by tasks such as: 

• Trying to formulate the theorem in your own words. 

• Giving a descriptive title for the theorem. 

• Trying to find a suitable name for the theorem. 

Mathematical knowledge is often tested through problem solving. For 

testing students' meta-knowledge it seems to be more convenient to let the 

students write an essay about the theorem. This is not very common in 

mathematics instruction. Writing mathematical essays was recommended 
in Germany by M. Wagenschein, but students are rarely asked to do so. 
Problem solving is still predominant in German schools. 

Finally, I think it is very important that students have a chance to 
discuss their assessments of theorems with other students and with their 
teacher. They should be willing to listen to other students' reasons, to give 
reasons for their appreciation of a theorem, and be prepared perhaps to change 
a personal assessment during discussion. 

Discussing assessments of theorems is a training method and a test for 
scientific culture. It can be seen as a contribution to "mathematical encul
turation" (Bishop, 1988). 
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GEOMETRY AS AN ELEMENT OF CULTURE1 

Alexandr D. Alexandrov 

St. Petersburg Department of the Steklov Mathematical Institute, Russia 

Geometry (elementary Euclidean geometry) occupies a specific posi

tion among other branches of mathematics and among all other disciplines 

because of its unique character, consisting of the union of logic, imagina

tion and practice. Geometry in its essence is this union. 

Practice is the origin and the purpose of every science; one may say 

that, in its beginning, geometry is one of the natural, technical sciences. 

Every one of its concepts must be demonstrated and understood in material 

form as a reflection of reality not merely drawn on paper or a blackboard, 

but rather seen somewhere in the surrounding world. This will broaden the 

mental horizons of all students. 

In fact Euclid's initial constructions and proofs are nothing but 

descriptions, mental images of practically possible operations. For instance, 

the proof of the congruence of triangles by means of superposition is a mental 

experiment: an image of a real, possible operation. The clearest proof of 

Pythagoras' theorem by means of shifting figures is another such experiment. 

The construction of regular systems of figures, of ornaments, where geometry 

unites with art, is another example of practical operations in geometry. 

Geometric intuition grows in this fertile soil. The essence of geometry 

is the organic union of intuition-a vivid visual imagination-on the one 

hand, and strict logic on the other; they interrelate, interpenetrate, and guide 

each other. 

Therein lies the importance of a geometry course being taught in all 
secondary schools. 

Professor Alexandrov was unable to travel to Quebec City to deliver his lecture. 
A short version of it is given here. 
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Geometry can, of course, be reduced to the application of algebraic 
methods, but this entails the liquidation of the specific importance of geom
etry as a subject and as a component of culture. 

Strict logic is a characteristic of mathematics while vivid imagination 
belongs rather to the realm of art, which obviously appears to be the exact 

antithesis of logic. Nevertheless, their union and interaction produce the 

essence of geometry. 

One of the greatest architects of our century, Le Corbusier, wrote, 

"Geometry provides a means whereby we perceive the environment and 

express ourselves. Geometry is a basis. Moreover it is a material realization 
of symbols which express everything that is perfect and sublime. It gives us 

great satisfaction through its mathematical precision." 

Visual imagination provides a direct perception of geometric facts and 
suggests to logic how to express and prove them, while logic provides im
agination with precision and guides it in building images which reveal 

essential logical connections. 

Imagination is a very important facility for man; and geometry, espe

cially solid geometry, develops it, lends it precision and subtlety. The objects 

of solid geometry cannot be depicted as simply as the objects of plane ge
ometry and they demand the use of visual imagination. 

Geometrical method deals with images. In teaching geometry one must 

ensure that students perceive every concept and every theorem in its intui

tive visual content, which is more important than its formal expression. The 
latter has no geometric meaning without the former. The true geometrical 

method demands that the proof of a theorem be made as intuitively evident 

as possible. One is allowed to sacrifice some strictness for the sake of an 

evident, graphic clarity. Thus geometric reasoning develops not only the 

visual perception of geometric facts but also spatial intuitive thinking. 

Along with the development of spatial imagination, geometry sharp

ens our perception of the world surrounding us and brings structure into our 
perception of its forms. 

There is a saying that the general culture of a person is whatever re
mains when all that was ever learned has been forgotten. Someone may 
forget geometry as such, but its traces in spatial perception and imagination 
will remain. 

Geometric intuition plays an important role beyond geometry itself: 

we mention only its fundamental role in mathematics. Starting with the con
cept of continuity, which is based on the intuition of the continuity of a line, 
one recalls the presentation of functions by means of curves, the complex 
plane, etc. Although functional analysis lies far beyond the domain of school 
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mathematics, it is worthwhile to observe the fundamental role played by 

geometric intuition in the spaces that have been developed out of the three

dimensional intuition of ordinary geometry. Beyond pure mathematics we 
can mention relativity theory, of which we now have a deeper and, I dare 

say, a truer understanding through the geometric presentation given to it by 

Minkowski. 

The other component of the spirit of geometry, its logic, is represent

ed in particular by its characteristic construction, springing from Euclid: a 
sequence of theorems with their proofs. It tells us first of all that whatever 

is stated has to be proved. Here geometry militates against the immorality 

implicit in the comparatively common habit of making statements without 

any proof. 

In teaching geometry it must be forbidden to affirm and accept anything 

except axioms without proof. It is not, of course, forbidden to communicate 

interesting geometric facts without proofs, but these cannot enter into the 

chain of deductions and proofs. 

Geometry is a chain where every link is formed by a theorem and its 

proof. The sequence of these links represents a brilliant product of the hu

man spirit: we watch a theory as it unfolds. When all the theorems and 
proofs have been forgotten, the idea of a proof, the idea that proof is essen
tial, as well as the image of a consistent theory, will persist. 

The logical component of geometry has its strongest realization in 

the axiomatic method. The construction of Euclid's Elements has served as 

a pattern of strict exposition for ages (remember, for instance, Spinoza's 

Ethics). Moreover, the analysis of geometric axioms plays an important part 

in the elaboration of the modern axiomatic method. 

The general idea of establishing an axiomatic basis for any sphere of 

intellectual activity, such as ethics, is popular in our culture and has one of 

its sources in geometry. 

The task of axiomatics in geometry consists in absorbing intuition by 

logic, to get rid of its embrace, as in the problem of the fifth postulate. The 

problem consisted in the impossibility of imagining the consequences of 
the denial of the postulate. 

Lobachevski (as well as Bolyai) had the courage to accept these con
sequences as the facts of a logically possible geometry. But neither 
Lobachevski nor Bolyai could see the possible real or intuitive meaning of 
their geometry. This was discovered much later ( 40 years after the first 
publication by Lobachevski); and, strangely enough, the intuitive presenta
tion of Lobachevski's geometry proved to be simpler than the Cayley-Klein 
and Poincare models, each of which has its own advantages. 
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Thus the union of intuition and logic-broken by Lobachevski's course 

of action-was restored on a higher level. 

Lobachevskian geometry can hardly be included in secondary school 

curricula, but it seems essential to give pupils an idea of it and to show them 

the greatness of the human spirit, capable of creating unimaginable concepts 

and theories which, in the course of time, proved to be comprehensible and 

fruitful. 
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