Novo Espaço – Matemática A 12.º ano

Proposta de Teste de Avaliação [maio 2015]

Ano / Turma: _____ N.º: Data:

GRUPO I

- Os sete itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma está correta.
- Escreve na tua folha de respostas apenas o número de cada item e a letra correspondente à opção que selecionares para responder a esse item.
- Não apresentes cálculos, nem justificações.
- Se apresentares mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- 1. Numa empresa, a entrada numa zona de segurança é controlada através de um código pessoal, constituído por uma sequência de cinco elementos, duas letras e três algarismos.

A sequência começa e acaba numa letra.

As letras são distintas, escolhidas de entre os elementos do conjunto {F, P, M} e os algarismos podem ser repetidos, como, por exemplo, o código

F 0 5 5 P

- (A) 3000
- **(B)** 4320
- **(C)** 6000
- **(D)** 2160

2. Seja f a função, de domínio $]0, \pi[$, definida por:

$$f(x) = \ln(\sin x) - \ln(2x)$$

Podes concluir que $\lim_{x \to a} f(x)$ é igual a:

- **(A)** −∞
- **(B)** 0
- (C) $-\ln(2)$ (D) $-\frac{1}{2}$

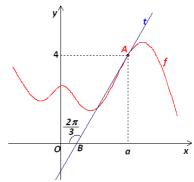
3. Na figura está representada, num referencial o.n. Oxy, parte do gráfico de uma função f, de domínio \mathbb{R} .

A reta t é tangente ao gráfico de f no ponto A de ordenada 4 e abcissa representada por a.

Sabe-se que a amplitude do ângulo *ABO*, em radianos, é $\frac{2\pi}{3}$.

Podes concluir que $\lim_{x\to a} \frac{f(x)-4}{x-a}$ é igual a:

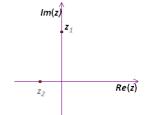
- (A) $\sqrt{3}$
- **(B)** 0
- (c) $\frac{\sqrt{3}}{3}$
- (D) 1



Proposta de Teste de Avaliação [maio 2015]

4. Na figura estão representados, no plano complexo, as imagens geométricas de dois números complexos z_1 e z_2 .

A imagem geométrica, no plano complexo, de $z = \frac{1}{z_1 + z_2}$ é um ponto que pertence ao:



- (A) 3.º quadrante
- (B) 1.º quadrante
- (C) 4.º quadrante
- (D) 2.º quadrante

5. Seja f uma função contínua de domínio $]1,+\infty[$.

Sabe-se que:

- as assíntotas do gráfico de f são as retas definidas pelas equações x=1 e y=-2x+3;
- $\lim_{x\to 1^+}\frac{x}{f(x)}=a$
- $\lim_{x\to\infty} (f(x)+2x)=b$

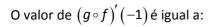
Podes concluir que a+b é igual a:

- (A) 0
- **(B)** 3
- (C) 1
- **(D)** -3

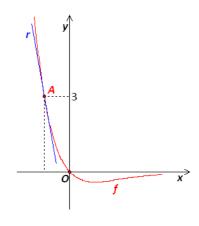
6. Sejam f e g duas funções de domínio $\mathbb R$.

No referencial da figura está representada parte do gráfico de f, sendo a reta r definida por y = -5x - 2 e tangente ao gráfico de f no ponto A de ordenada 3.

A função g é definida por $g(x) = \ln(x^2 + 1)$.



- (A) -3 (B) $\frac{9}{5}$ (C) $-\frac{5}{13}$ (D) -5

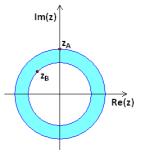


7. Seja f a função de domínio \mathbb{R}^+ definida por $f(x) = \log_2(x)$.

Considera a progressão geométrica (u_n) tal que $u_n = 2^{1-n}$. Sendo S_n a soma dos n primeiros termos da progressão geométrica, podes concluir que $\lim (f(S_n))$ é igual a:

- (A) $+\infty$
- **(B)** 1
- **(C)** 2
- **(D)** 0

8. Na figura está representado no plano complexo parte de uma coroa circular de centro no ponto que é imagem geométrica de 0. Sabe-se que os pontos A e B são, respetivamente, as imagens geométricas dos números complexos $z_A = 2i$ e $z_B = -1 + i$ Qual dos seguintes números complexos tem imagem geométrica pertencente à coroa circular?



- (A) $2-\sqrt{3}i$ (B) $\frac{2}{3}i$ (C) $1+\sqrt{5}i$ (D) $-\sqrt{2}-i$

GRUPO II

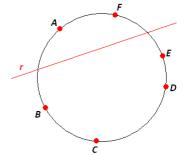
Nas respostas aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Na figura estão representadas uma circunferência e uma reta r.

Sobre a circunferência foram marcados seis pontos A, B, C, D, E e F, não pertencentes à reta r.

A reta *r* divide a circunferência em dois arcos. Os pontos *A* e *F* pertencem a um dos arcos e os restantes quatro pontos pertencem ao outro arco.



Dos seis pontos escolhem-se três ao acaso e constrói-se o triângulo com vértices nesses pontos.

Determina a probabilidade de:

- **1.1.** a reta *r* intersetar o triângulo construído;
- **1.2.** o ponto B ser um dos vértices do triângulo construído, sabendo que a reta r não interseta o triângulo.
- **2.** Em $\mathbb C$, conjunto dos números complexos, calcula o valor de $\overline z^2+4\overline z$, sabendo que z é solução da equação: $z^2+4z+16=0$
- **3.** Considera a função f de domínio $[0, 2\pi]$ definida por $f(x) = \sqrt{1 + \sin x} 1$.
- **3.1.** Por processos exclusivamente analíticos estuda a variação e os extremos da função f.
- **3.2.** Calcula $\lim_{x\to 0^+} \frac{f(x)}{x}$.
- **4.** Considera a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{e^{2x-\pi} - 1}{x - \frac{\pi}{2}} & \text{se } x < \frac{\pi}{2} \\ \sin^2 x - \cos(2x) & \text{se } x \ge \frac{\pi}{2} \end{cases}$$

- **4.1.** Mostra que a função f é contínua em $x = \frac{\pi}{2}$.
- **4.2.** Seja g a restrição de f ao intervalo $\left|\frac{\pi}{2}, 2\pi\right|$.

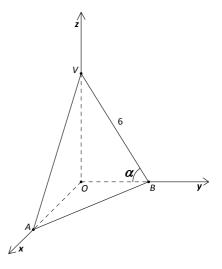
Determina as coordenadas de todos os pontos de inflexão do gráfico de g.

Novo Espaço - Matemática A 12.º ano

Proposta de Teste de Avaliação [maio 2015]

5. Na figura, em referencial o.n. *Oxyz*, está representada a pirâmide [*OABV*]. Sabe-se que:

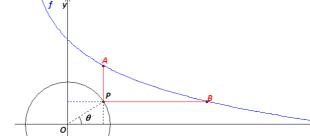
- o vértice A pertence ao semieixo positivo Ox;
- o vértice B pertence ao semieixo positivo Oy;
- o vértice V pertence ao semieixo positivo Oz;
- $\overline{BV} = 6$
- $\overline{OA} = 2\overline{OB}$
- a amplitude, em radianos, do ângulo *VBO* é representada por α , com $\alpha \in \left]0, \frac{\pi}{2}\right[$.



- **5.1.** Determina o volume da pirâmide se $\alpha = \frac{\pi}{4}$.
- **5.2.** Determina o valor exato de $\cos(2\alpha)$, no caso de o plano *ABV* ser definido pela equação $2x + 4y + \sqrt{2}z = 8$.
- **5.3.** O volume da pirâmide [*OABV*] é dado, em função de α , por uma função f de domínio $\left]0, \frac{\pi}{2}\right[$. Mostra que $f(\alpha) = 36\sin(2\alpha)\cos(\alpha)$.
- **6.** Seja f a função definida por $f(x) = 2 \ln(x+1)$.

Na figura estão representados o círculo trigonométrico e parte do gráfico da função f. Sabe-se que:

• o ponto *P* pertence à circunferência que limita o círculo trigonométrico, sendo $x\hat{O}P = \theta$, com $0 < \theta < \frac{\pi}{2}$;



- o ponto A pertence ao gráfico de f e a reta PA é paralela a Oy;
- o ponto *B* pertence ao gráfico de *f* e a reta *PB* é paralela a *Ox*.
- **6.1.** Se $\theta = \frac{\pi}{3}$, mostra que as coordenadas do ponto A são $\left(\frac{1}{2}, \ln\left(\frac{2e^2}{3}\right)\right)$.
- **6.2.** Recorrendo à calculadora gráfica, determina o valor de θ , arredondado às centésimas para o qual a distância de P a B é mínima.

Na resposta deves incluir:

- a expressão que representa \overline{PB} , em função de θ .
- a reprodução num referencial da função que a cada valor de $\, heta\,$ faz corresponder $\,\overline{\it PB}\,.$
- assinalar o ponto e a respetiva abcissa com arredondamento às centésimas à qual corresponde a distância mínima de *P* a *B*.

FIM

Cotações													Total
Grupo I	1.	2.	3.	4.	5.	6.	7.	8.					
	5	5	5	5	5	5	5	5					40
Grupo II	1.1	1.2	2.	3.1	3.2	4.1	4.2	5.1	5.2	5.3	6.1	6.2	
	10	12	20	15	12	12	15	12	15	12	10	15	160
													200

Porto Editora

FORMULÁRIO

GEOMETRIA

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Polígono regular: Semiperímetro × Apótema

Setor circular: $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos,

do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone: $\pi r g$ (r – raio da base; g – geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r-raio)

Volumes

Pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Esfera: $\frac{4}{3} \pi r^3 (r - raio)$

PROGRESSÕES

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

TRIGONOMETRIA

 $\sin (a+b) = \sin a \cos b + \sin b \cos a$ $\cos (a+b) = \cos a \cos b - \sin a \sin b$

 $tg (a+b) = \frac{tg a + tg b}{1-tg a tg b}$

COMPLEXOS

$$\begin{split} \left(\rho \, \operatorname{cis} \, \theta\right)^n &= \, \rho^n \, \operatorname{cis} \, \left(n\theta\right) \\ \sqrt[n]{\rho \, \operatorname{cis} \, \theta} &= \sqrt[n]{\rho} \, \operatorname{cis} \, \frac{\theta + 2k\pi}{n} \\ \left(k \in \left\{0 \, , \, \ldots \, , \, \, n-1\right\} \, \, \, \mathbf{e} \, \, n \in \mathbb{N}\right) \end{split}$$

PROBABILIDADES

 $\mu = \boldsymbol{p}_1 \ \boldsymbol{x}_1 + \ldots + \boldsymbol{p}_n \ \boldsymbol{x}_n$

$$\sigma = \sqrt{p_1 \left(x_1 - \mu\right)^2 + \ldots + p_n \left(x_n - \mu\right)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0,6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

REGRAS DE DERIVAÇÃO

$$(u+v)'=u'+v'$$

$$(u v)'=u' v+u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \ v - u \ v'}{v^2}$$

$$(u^n)'=n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\sin u)'=u'\cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)'=u'e^u$$

$$(a^u)'=u' \ a^u \ \text{In } a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

LIMITES NOTÁVEIS

$$\lim \left(1 + \frac{1}{n}\right)^n = e \qquad \left(n \in \mathbb{N}\right)$$

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x\to 0} \frac{\ln (x+1)}{x} = 1$$

$$\lim_{x\to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{\mathbf{e}^x}{\mathbf{x}^p} = +\infty \quad \left(p \in \mathbb{R} \right)$$