Proposta de teste de avaliação Matemática A 12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:**

Grupo I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

1. Seleciona-se, ao acaso, uma letra de uma palavra.

Sejam A, I e V os seguintes acontecimentos:

- A: "A letra selecionada é a A."
- I: "A letra selecionada é o I."
- V: "A letra selecionada é uma vogal."

Em qual das seguintes palavras se verifica que $P[(A \cup I) | V] = \frac{1}{2}$?

- (A) CARNAVAL
- (B) PASCOA
- (C) JESUS
- (D) CONSOADA
- **2.** Seja nC_p um elemento de uma linha do Triângulo de Pascal, com $n, p \in \mathbb{N}_0$ e $n \ge p$.

Sabe-se que a soma dos elementos da linha é 64 e que ${}^nC_p + {}^nC_{n-p} = 12$. Então:

- **(A)** $p = 1 \lor p = 5$
- **(B)** $p = 1 \lor p = 6$
- (C) $p = 2 \lor p = 4$
- **(D)** $p = 1 \lor p = 4$
- 3. Sejam $a \in b$ dois números reais (com $a > 0 \in b > 1$) tais que $a \log_b a = 1$.

Qual é, para esses valores de a e b, o valor de $\log_b \left(\frac{1}{a^2}\right)$?

- (A) 2-a
- **(B)** -2a
- (C) $-\frac{2}{a}$
- **(D)** $2 \frac{1}{a}$

4. Considere a sucessão (u_n) definida por $u_n = \left(1 + \frac{1}{3n}\right)^n$.

Seja h uma função de domínio \mathbb{R}^+ .

Sabe-se que $\lim h(u_n) = 2$.

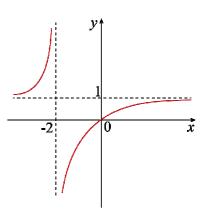
Qual das expressões seguintes pode definir a função h?

- **(A)** $1 3 \ln x$
- **(B)** $1 + 3 \ln x$
- (C) $x + 3 \ln x$
- **(D)** $x 3 \ln x$
- 5. Considere a função f , de domínio $\mathbb{R}\setminus\{-2\}$, representada graficamente abaixo.

O gráfico de f admite como assíntotas as retas de equações:

$$x = -2$$
 e $y = 1$

Qual é o valor de $\lim_{x \to +\infty} \frac{3 + e^{-x}}{1 - f(x)}$?



Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

- 1. O André tem no bolso seis moedas: duas de 1 euro e quatro de 50 cêntimos.
 - 1.1. O André retira, simultaneamente e ao acaso, três moedas do bolso.

Seja X a quantia, em euros, correspondente às moedas retiradas pelo André.

Construa a tabela de distribuição de probabilidades de \boldsymbol{X} , apresentando na forma de fração irredutível.

1.2. O tio do André deu-lhe quatro moedas de 1 euro. O André juntou estas moedas às que já tinha. Seguidamente, retira, sucessivamente e sem reposição, duas moedas do bolso.

Considere os acontecimentos:

A: "a moeda retirada em primeiro lugar é de 50 cêntimos"

B: "a moeda retirada em segundo é de 1 euro"

Calcule o valor da probabilidade P(A|B).

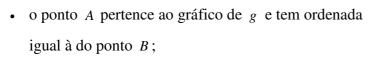
Apresente o resultado em percentagem arredondado às unidades.

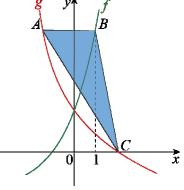
2. No referencial xOy da figura está representado um triângulo [ABC] e parte dos gráficos das funções $f \in g$.

Sabe-se que:

•
$$f(x) = 2^{1+x} - 1$$
 e $g(x) = 2 - \log_2(x+2)$

o ponto B pertence ao gráfico de f e tem abcissa igual
 a 1;





- o ponto C pertence ao gráfico de g e ao eixo Ox.
- **2.1.** Calcule a medida da área do triângulo [ABC].
- **2.2.** Determine, por processos analíticos, o conjunto-solução das condições:

2.2.1.
$$f(x)-2^{-x}=0$$

2.2.2.
$$\log_2(3-x) \le g(x)$$

2.3. Caracterize g^{-1} , função inversa da função g.

3. Num laboratório, duas substâncias *A* e *B* estão a uma temperatura controlada.

No dia um do corrente mês, a temperatura de cada uma dessas substâncias, em graus Celsius, t horas após as zero horas, era dada, para determinado valor de k, por:

$$A(t) = 30t^2 e^{-0.5t} + 5, t \in [0, 24]$$

$$B(t) = 19.2t^2e^{-kt} + 5, t \in [0, 24]$$

3.1. Sabe-se que às 4 horas desse dia a substância *A* atingiu a temperatura máxima e que a substância *B* atingiu a mesma temperatura uma hora depois.

Determine o valor de k.

3.2. Considere k = 0, 4.

Houve um instante, depois das zeros horas, em que as duas substâncias estiveram à mesma temperatura. Determine esse instante e apresente o resultado em horas e minutos com os minutos arredondados às unidades.

4. Considere a função f, de domínio \mathbb{R}^+ , definida por:

$$f(x) = \begin{cases} \frac{3x - 15}{\sqrt{x} - \sqrt{5}} & \text{se } 0 < x < 5\\ \frac{\frac{k}{2}}{2} & \text{se } x = 5\\ \frac{\ln(x - 4)}{10 - 2x} & \text{se } x > 5 \end{cases}$$

4.1. Para um certo valor de k sabe-se que $\lim_{x\to 5^-} f(x) = f(5)$.

Mostre que $k = \ln(180)$.

- **4.2.** Determine $\lim_{x \to 5^+} f(x)$.
- **4.3.** Considere a sucessão (w_n) definida por $w_n = \frac{1+3n}{n^2}$.

Qual é o valor de $\lim f(w_n)$?

FIM

Cotações

Grupo I

1.	2.	3.	4.	5.	Total	
8	8	8	8	8	40	

Grupo II

1.1.	1.2.	2.1.	2.2.1.	2.2.2.	2.3.	3.1.	3.2.	4.1.	4.2.	4.3.	Total
12	10	18	10	16	14	18	18	14	15	15	160

Proposta de resolução

Grupo I

1. CARNAVAL
$$\rightarrow P[(A \cup I) | V] = \frac{3}{3} = 1$$
 Falso

$$PASCOA \rightarrow P[(A \cup I) | V] = \frac{2}{3}$$
 Falso

JESUS
$$\rightarrow P[(A \cup I) | V] = \frac{0}{2}$$
 Falso

CONSOADA
$$\rightarrow P[(A \cup I) | V] = \frac{2}{4} = \frac{1}{2}$$
 Verdadeiro

Resposta: (D)

2. A soma dos elementos da linha de ordem $n \in 2^n$.

$$2^n = 64 \Leftrightarrow 2^n = 2^6 \Leftrightarrow n = 6$$

Como
$${}^{n}C_{p} + {}^{n}C_{n-p} = 12$$
, vem, para $n = 6$:

$${}^{6}C_{n} + {}^{6}C_{6-n} = 12 \Leftrightarrow 2{}^{6}C_{n} = 12 \Leftrightarrow$$

$$\left({}^{6}C_{n} = {}^{6}C_{6-n} \right)$$

$$\Leftrightarrow$$
 ${}^{6}C_{p} = \frac{12}{2} \Leftrightarrow {}^{6}C_{p} = 6$

$${}^{6}C_{p} = 6 \Leftrightarrow p = 1 \vee 6 - p = 1 \Leftrightarrow p = 1 \vee p = 5$$

Resposta: (A)

3.
$$a \log_b a = 1 \Leftrightarrow \log_b a = \frac{1}{a}$$

$$\log_b \frac{1}{a^2} = \log_b a^{-2} = -2\log_b a = -2 \times \frac{1}{a} = -\frac{2}{a}$$

Resposta: (C)

4.
$$u_n = \left(1 + \frac{1}{3n}\right)^n$$
; $\lim h(u_n) = 2$

$$\lim u_n = \lim \left(1 + \frac{1}{3n}\right)^n = \lim \left(1 + \frac{\frac{1}{3}}{n}\right)^n = e^{\frac{1}{3}}$$

Se
$$h(x) = 1 + 3 \ln x$$
, então $h(u_n) = 1 + 3 \ln(u_n)$.

$$\lim h(u_n) = \lim (1+3\ln(u_n)) = 1+3\ln(\lim u_n) = 1+3\ln e^{\frac{1}{3}} = 1+3\times\frac{1}{3} = 1+1=2$$

Resposta: (B)

5.
$$\lim_{x \to +\infty} f(x) = 1^- \text{ e } \lim_{x \to +\infty} e^{-x} = 0$$

$$\lim_{x \to +\infty} \frac{3 + e^{-x}}{1 - f(x)} = \frac{3 + 0}{1 - 1^{-}} = \frac{3}{0^{+}} = +\infty$$

Resposta: (D)

Grupo II

1.1. X: "Quantia, em euros, correspondente às moedas retiradas pelo André"

2,5

Moedas de 1 €	Moedas de 0,5 €	Valor de X
<u>2</u>	<u>4</u>	
0	3	1,5
1	2	2,0

$$P(X=1,5) = \frac{{}^{4}C_{3}}{{}^{6}C_{3}} = \frac{4}{20} = \frac{1}{5}$$

$$P(X=2) = \frac{{}^{2}C_{1} \times {}^{4}C_{2}}{{}^{6}C_{3}} = \frac{2 \times 6}{20} = \frac{3}{5}$$

$$P(X = 2,5) = \frac{{}^{2}C_{2} \times {}^{4}C_{1}}{{}^{6}C_{3}} = \frac{1 \times 4}{20} = \frac{1}{5}$$

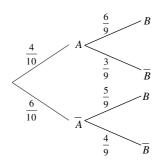
A distribuição de probabilidades da variável aleatória X é:

X_i	1,5	2,0	2,5
$P(X=x_i)$	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

1.2. Moedas de 1 € Moedas de 0,5 €

A: "A moeda retirada em primeiro é de 50 cêntimos."

B: "A moeda retirada em segundo é de 1 euro."



$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(\overline{A}) \times P(B|\overline{A})} =$$

$$= \frac{\frac{4}{10} \times \frac{6}{9}}{\frac{4}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{5}{9}} = \frac{\frac{24}{90}}{\frac{24}{90} + \frac{30}{90}} = \frac{24}{54} = \frac{4}{9} \approx 44\%$$

2.1. Área de
$$[ABC] = \frac{\overline{AB} \times h}{2}$$

Ponto *B*: B(1, f(1))

$$f(1) = 2^{1+1} - 1 = 2^2 - 1 = 3$$

Logo, B(1, 3).

Ponto A: A(x, 3)

$$g(x) = 3 \Leftrightarrow 2 - \log_2(x+2) = 3 \Leftrightarrow \log_2(x+2) = -1 \Leftrightarrow x+2 = 2^{-1} \Leftrightarrow x = \frac{1}{2} - 2 \Leftrightarrow x = -\frac{3}{2}$$

Assim,
$$A\left(-\frac{3}{2}, 3\right)$$
.

$$\overline{AB} = \left| -\frac{3}{2} - 1 \right| = \frac{5}{2}$$

A altura h do triângulo [ABC] é igual à ordenada de B: h = 3

Área de
$$[ABC] = \frac{\overline{AB} \times h}{2} = \frac{\frac{5}{2} \times 3}{2} = \frac{15}{4}$$
 u.a.

2.2.1.
$$f(x) - 2^{-x} = 0 \Leftrightarrow 2^{1+x} - 1 - 2^{-x} = 0 \Leftrightarrow 2 \times 2^{x} - 1 - \frac{1}{2^{x}} = 0 \Leftrightarrow 2 \times (2^{x})^{2} - 2^{x} - 1 = 0$$

Fazendo $y = 2^x$:

$$2y^2 - y - 1 = 0 \Leftrightarrow y = \frac{1 \pm \sqrt{1+8}}{4} \Leftrightarrow y = 1 \lor y = -\frac{1}{2}$$

Assim:

$$2 \times (2^{x})^{2} - 2^{x} - 1 = 0 \Leftrightarrow 2^{x} = 1 \vee 2^{x} = -\frac{1}{2} \Leftrightarrow$$
$$\Leftrightarrow 2^{x} = 2^{0} \Leftrightarrow x = 0$$
$$2^{x} > 0, \forall x \in \mathbb{R}$$

$$S = \{0\}$$

2.2.2.
$$\log_2(3-x) \le g(x) \Leftrightarrow \log_2(3-x) \le 2 - \log_2(x+2)$$

Domínio da condição:

$$D = \left\{ x \in \mathbb{R} : 3 - x > 0 \land x + 2 > 0 \right\} = \left\{ x \in \mathbb{R} : x > 3 \land x > -2 \right\} = \left] -2 \ , 3 \right[$$

$$\log_2(3-x) \le 2 - \log_2(x+2) \Leftrightarrow$$

$$\Leftrightarrow \log_2(3-x) + \log_2(x+2) \le 2 \Leftrightarrow$$

$$\Leftrightarrow \log_2 |(3-x)(x+2)| \le 2 \land x \in]-2, 3 \in$$

$$\Leftrightarrow 3x+6-x^2-2x \le 2^2 \land x \in]-2,3[\Leftrightarrow$$

$$\Leftrightarrow -x^2 + x + 2 \le 0 \land x \in]-2.3[\Leftrightarrow$$

$$\Leftrightarrow x \in (]-\infty-1] \cup [2,+\infty[) \cap]-2,3[\Leftrightarrow$$

$$\Leftrightarrow x \in]-2,-1] \cup [2,3[$$

$$S =]-2, -1] \cup [2, 3[$$

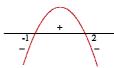
$$\Leftrightarrow \log_{2} \left[(3-x)(x+2) \right] \leq 2 \land x \in]-2, 3 [\Leftrightarrow$$

$$\Leftrightarrow 3x+6-x^{2}-2x \leq 2^{2} \land x \in]-2, 3 [\Leftrightarrow$$

$$\Leftrightarrow -x^{2}+x+2 \leq 0 \land x \in]-2, 3 [\Leftrightarrow$$

$$\Leftrightarrow x=\frac{-1\pm\sqrt{1+8}}{-2} \Leftrightarrow$$

$$\Leftrightarrow x=-1 \lor x=2$$



2.3.
$$g(x) = 2 - \log_2(x+2)$$

$$D_g = \{x \in \mathbb{R} : x + 2 > 0\} =]-2, +\infty[$$

$$D'_{g^{-1}} = D_g =]-2, +\infty[$$

Expressão da correspondência inversa:

$$g(x) = y \Leftrightarrow 2 - \log_2(x+2) = y \Leftrightarrow$$

$$\Leftrightarrow -\log_2(x+2) = y - 2 \Leftrightarrow$$

$$\Leftrightarrow \log_2(x+2) = -y + 2 \Leftrightarrow$$

$$\Leftrightarrow x + 2 = 2^{2-y} \Leftrightarrow x = 2^{2-y} - 2$$

$$g^{-1} : \mathbb{R} \to]-2, +\infty[$$

$$x \searrow 2^{2-x} - 2$$

3.
$$A(t) = 30t^2 e^{-0.5t} + 5, t \in [0, 24]$$

$$B(t) = 19,2t^2e^{-kt} + 5, t \in [0, 24]$$

3.1.
$$A(4) = B(5) \Leftrightarrow 30 \times 4^2 e^{-0.5 \times 4} + 5 = 19, 2 \times 5^2 e^{-k \times 5} \Leftrightarrow 480e^{-2} = 480e^{-5k} \Leftrightarrow e^{-2} = e^{-5k} \Leftrightarrow \Leftrightarrow -5k = -2 \Leftrightarrow k = \frac{2}{5}$$

3.2.
$$A(t) = B(t) \Leftrightarrow 30t^2 e^{-0.5t} + 5 = 19, 2t^2 e^{-0.4t} + 5 \Leftrightarrow$$

 $\Leftrightarrow 30t^2 e^{-0.5t} = 19, 2t^2 e^{-0.4t} \Leftrightarrow$
 $\Leftrightarrow 30t^2 e^{-0.5t} - 19, 2t^2 e^{-0.4t} = 0 \Leftrightarrow$
 $\Leftrightarrow 30t^2 \left(e^{-0.5t} - \frac{19, 2}{30} e^{-0.4t} \right) = 0 \Leftrightarrow$
 $\Leftrightarrow 30t^2 = 0 \vee e^{-0.5t} - 0, 64e^{-0.4t} = 0 \Leftrightarrow$
 $\Leftrightarrow t = 0 \vee \frac{e^{-0.5t}}{e^{-0.4t}} = 0, 64 \Leftrightarrow$
 $\Leftrightarrow t = 0 \vee e^{-0.1t} = 0, 64 \Leftrightarrow$
 $\Leftrightarrow t = 0 \vee -0, 1t = \ln(0, 64) \Leftrightarrow$
 $\Leftrightarrow t = 0 \vee t = -10\ln(0, 64) \Leftrightarrow$
 $\Rightarrow t = 0 \vee t \approx 4, 462.87$
 $t \approx 4, 462.87 h \approx 4 h 28 min$

As duas substâncias estiveram à mesma temperatura às 4 h e 28 min.

4.1.
$$\lim_{x \to 5^{-}} f(x) = f(5)$$
; $f(5) = e^{\frac{k}{2}}$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} \frac{3x - 15}{\sqrt{x} - \sqrt{5}} = 3 \lim_{x \to 5^{-}} \frac{(x - 5)(\sqrt{x} + \sqrt{5})}{x - 5} =$$

$$= 3 \lim_{x \to 5^{-}} (\sqrt{x} + \sqrt{5}) = 3 \times 2\sqrt{5} = 6\sqrt{5}$$

$$e^{\frac{k}{2}} = 6\sqrt{5} \Leftrightarrow \frac{k}{2} = \ln(6\sqrt{5}) \Leftrightarrow k = 2\ln(6\sqrt{5}) \Leftrightarrow$$

$$\Leftrightarrow k = \ln(6 \times \sqrt{5})^{2} \Leftrightarrow k = \ln(6^{2} \times 5) \Leftrightarrow k = \ln(180)$$

4.2.
$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} \frac{\ln(x-4)}{10x-2} = \lim_{x \to 5^+} \frac{\ln(x-4)}{-2(x-5)} =$$

$$= -\frac{1}{2} \lim_{x \to 5^+} \frac{\ln(y+5-4)}{y} = -\frac{1}{2} \lim_{y \to 0^+} \frac{\ln(y+1)}{y} =$$

$$= -\frac{1}{2} \times 1 = -\frac{1}{2}$$
Mudança de variável:
$$y = x - 5 \Leftrightarrow x = y + 5$$

$$x \to 5^+ \Rightarrow y \to 0^+$$

4.3.
$$\lim w_n = \lim \frac{1+3n}{n^2} = 0$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{3x - 15}{\sqrt{x} - \sqrt{5}} =$$

$$= 3 \lim_{x \to 0^{+}} \frac{(x - 5)(\sqrt{x} + \sqrt{5})}{x + 5} = 3\sqrt{5}$$