

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresenta sempre o valor exato.

1. Para o funcionamento de uma máquina, uma fábrica utiliza água que se encontra num depósito.

Ao longo do dia, a altura da água no depósito vai variando.

Admita que a altura, a, em metros, de água no depósito, às t horas de um certo dia, é dada por

$$a(t) = 5 + 2.8\cos\left(\frac{\pi}{12}t - 2\right)$$
, com $t \in [0, 24]$

O argumento da função cosseno está em radianos.

- **1.1.** Qual é, em metros e com arredondamento às décimas, a altura da água às 14h 45min?
 - **(A)** 4,2
- **(B)** 4,4
- (C) 4,6
- **(D)** 4,8
- 1.2. Sem usar a calculadora (exceto para cálculos numéricos), calcula os instantes em que a altura da água é igual a 36 dm.

Apresenta o(s) valor(es) pedido(s) arredondado(s) às centésimas.

Recorrendo às capacidades gráficas da calculadora, determina quanto tempo decorreu, em horas, desde o instante em que a altura de água no depósito foi máxima até ao instante em que a altura de água no depósito foi mínima.

Na tua resposta:

- reproduz, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que te permite(m) resolver o problema;
- determina as abcissas de eventuais pontos com arredondamento às milésimas;
- apresenta o valor pedido arredondado às unidades.

Adaptado do Exame Nacional de Matemática B, 2.ª fase de 2024

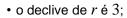
PREPARAR OS TESTES

- Considera a função f definida por $f(x) = \operatorname{tg}\left(3x \frac{\pi}{3}\right) + \sqrt{6}$. 2.
 - **2.1.** Qual é o domínio da função f?

(A)
$$\mathbb{R} \setminus \left\{ x \in \mathbb{R} : x = \frac{5\pi}{18} + \frac{\pi}{3}k, k \in \mathbb{Z} \right\}$$
 (B) $\mathbb{R} \setminus \left\{ x \in \mathbb{R} : x = \frac{\pi}{2}k, k \in \mathbb{Z} \right\}$ (C) $\left\{ x \in \mathbb{R} : x = -\sqrt{6} + \frac{\pi}{2}k, k \in \mathbb{Z} \right\}$ (D) $\left\{ x \in \mathbb{R} : x = -\sqrt{6} - \frac{\pi}{3}k, k \in \mathbb{Z} \right\}$

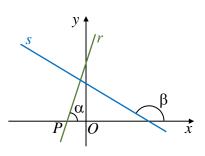
(B)
$$\mathbb{R} \setminus \left\{ x \in \mathbb{R} : x = \frac{\pi}{2} k, k \in \mathbb{Z} \right\}$$

(C)
$$\left\{ x \in \mathbb{R} : x = -\sqrt{6} + \frac{\pi}{2}k, k \in \mathbb{Z} \right\}$$


(D)
$$\left\{ x \in \mathbb{R} : x = -\sqrt{6} - \frac{\pi}{3}k, k \in \mathbb{Z} \right\}$$

2.2. Seja g a função, de domínio $\left\{x \in \mathbb{R} : x \neq \frac{\pi}{4} + \pi k, k \in \mathbb{Z}\right\}$, definida por $g(x) = \sqrt{6} - \operatorname{tg}(-2x)$. Determina todas as soluções da equação f(x) = g(x).

Seja h a função, de domínio $\left[-\frac{\pi}{8}, \frac{\pi}{4}\right]$, definida por $h(x) = 2 \operatorname{sen}(4x) - \sqrt{2}$. 3.


Sem usar a calculadora, determina os zeros de h.

4. Considera, na figura, as retas r e s, de inclinações α e β , respetivamente. Sabe-se que:

- o ponto P pertence à reta r e ao eixo Ox e tem abcissa $-\frac{3}{2}$;
- uma equação de s é 3x+5y-15=0.

Complete o texto seguinte, selecionando a opção correta para cada espaço, de acordo com as condições dadas.

Escreva, na folha de respostas, apenas cada um dos números, I, II, III e IV, seguido da opção, a), b) ou c), selecionada. A cada espaço corresponde uma só opção.

O valor de $\cos \alpha$ é \mathbf{I} e a equação reduzida da reta r é \mathbf{II} .

O valor de α , arredondado à décima de grau é III e o valor de β , arredondado à décima do radiano, IV

I	II	III	IV			
a) $-\frac{\sqrt{15}}{12}$	a) $y = \frac{x}{3} + \frac{8}{3}$	a) 71,6°	a) -0,5	PREPARAR OS TESTES 110		
b) $\frac{\sqrt{5}}{5}$	b) $y = 3x + \frac{\sqrt{3}}{3}$	b) 73,2°	b) 2,6	MATEMÁTICA A		
c) $\frac{\sqrt{10}}{10}$	c) $y = 3x + \frac{9}{2}$	c) 108,4°	c) 3,7			
				INC. III - Preserves des correscoles de 11-1 enc Marcia de 2012 encocación - Marcia de 2012 encocación - Marcia de Encolução - Proposorio de consulação - Proposição - Proposiç		

- 5. Considera os vetores do plano \vec{u} e \vec{v} tais que:
 - $\|\vec{u}\| = \|\vec{v}\| = 2$;
 - $\operatorname{sen} \alpha = \frac{1}{4}$, sendo α a amplitude do ângulo formado por \vec{u} e \vec{v} .

Qual é o valor de $2\vec{u} \cdot (-3\vec{v})$?

(A)
$$6\sqrt{15}$$

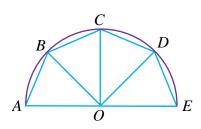
(A)
$$6\sqrt{15}$$
 (B) $-6\sqrt{15}$ (C) $\frac{\sqrt{5}}{4}$

(C)
$$\frac{\sqrt{5}}{4}$$

(D)
$$-\frac{\sqrt{5}}{4}$$

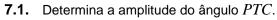
- 6. Considera, na figura:
 - a semicircunferência de diâmetro [AE] e centro O;
 - os triângulos iguais [ABO], [BCO], [CDO] e [DEO], sendo B, C e Dpontos da semicircunferência.

(A)
$$-a^2$$


(B)
$$-2a^2$$

(C)
$$a^2$$

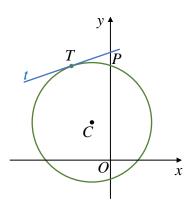
(D)
$$2a^2$$


6.2. Supõe que a = 4.

Determina $\overrightarrow{AD} \cdot \overrightarrow{OB}$.

- **7.** Considera, no referencial o.n. xOy da figura:
 - a circunferência de centro C, definida por $(x+2)^2 + (y-4)^2 = 40$;
 - a reta t, tangente à circunferência no ponto T(-4,10);
 - o ponto P, pertencente à circunferência e ao semieixo positivo Oy.

Resolve as alíneas seguintes sem usar a calculadora (exceto para cálculos numéricos).



Apresenta o resultado em graus, arredondado às décimas.

Se, em cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, três casas decimais.

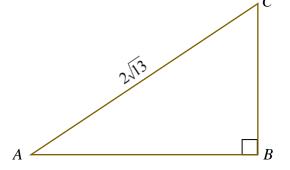
7.2. A reta t interseta o eixo Ox num ponto.

Determina a abcissa desse ponto.

- **8.** Para um certo número real k, considera, num referencial o.n. Oxyz, os vetores $\vec{u}(3k+1,9,4)$ e $\vec{v}(-2,0,1)$. Qual é o valor de k para os quais \vec{u} e \vec{v} são perpendiculares?
 - (A) $\frac{1}{3}$
- **(B)** $\frac{9}{4}$
- (C) $-\frac{9}{2}$
- **(D)** $-\frac{5}{9}$

9. Seja $\vec{a}(12,5)$ um vetor num referencial o.n. xOy.

Determina as coordenadas de um vetor \vec{w} tal que:


- seja perpendicular a \vec{a} ;
- a sua primeira coordenada seja positiva;
- a sua norma seja 2.
- **10.** Considera, na figura, o triângulo retângulo [ABC], retângulo em B.

Sabe-se que:

•
$$\overline{AC} = 2\sqrt{13}$$

•
$$\overrightarrow{AC} \cdot \overrightarrow{CB} = -16$$
.

Determina a área do triângulo [ABC].

FIM

COTAÇÕES

Item															
Cotação (em pontos)															
1.1.	1.2.	1.3.	2.1.	2.2.	3.	4.	5.	6.1.	6.2.	7.1.	7.2.	8.	9.	10.	
8	16	16	8	16	16	16	8	8	16	16	16	8	16	16	200